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Abstract: The potential application field of single-walled carbon nanotubes (SWCNTs) is immense,
due to their remarkable mechanical and electrical properties. However, their mechanical properties
under combined physical fields have not attracted researchers’ attention. For the first time, the
present paper proposes beam theory to model SWCNTs’ mechanical properties under combined
temperature and electrostatic fields. Unlike the classical Bernoulli–Euler beam model, this new
model has independent extensional stiffness and bending stiffness. Static bending, buckling, and
nonlinear vibrations are investigated through the classical beam model and the new model. The
results show that the classical beam model significantly underestimates the influence of temperature
and electrostatic fields on the mechanical properties of SWCNTs because the model overestimates
the bending stiffness. The results also suggest that it may be necessary to re-examine the accuracy of
the classical beam model of SWCNTs.

Keywords: single-walled carbon nanotubes; thermal–electro-mechanical coupling; Bernoulli–Euler
beam theory; independent stiffness

1. Introduction

The excellent mechanical and electrical properties of carbon nanotubes (CNTs) have
attracted significant attention from researchers. However, there is no widely accepted
theory to model their mechanical properties [1–5]. In particular, the mechanical properties
under combined physical fields (for example, temperature and electric field coupling)
have not yet been thoroughly researched [5–7]. For the mechanical problems of single-
walled carbon nanotubes (SWCNTs), there are two extensively discussed topics: first,
the small-scale effect, i.e., the mechanical properties are dependent on the geometrical
dimension [4,8–10]; second, how to determine the bending stiffness [3,11]. There is plenty
of research on the small-scale effect, but these studies simultaneously introduce many
controversies [4,9,12–14]. In most existing research, the classical beam model is modified
through non-local theories to consider the small-scale effect [4,14,15]. These theories mainly
include the stress gradient theory,

(
1− a2∇2)σij = Eijklεkl , and the strain gradient theory,

σij = Cijkl
(
1− a2∇2)εkl . Here, σij and εkl are stress and strain, Eijkl and Cijkl are two

four-rank tensors, a is the scale parameter. However, when applying non-local theories
to CNTs, the question of how to determine the scale parameter a remains unanswered.
Moreover, molecular dynamics (MD) simulations have revealed a bewildering problem: the
scale parameter varies concerning length-to-diameter ratios, mode shapes, and boundary
conditions [10]. The fact that the intrinsic material parameter, a, loses its uniqueness is
odd. Fortunately, MD calculations also show that the small-scale effect can be ignored for
SWCNTs with larger long-diameter ratios [10]. The discussion below only involves slender
tubes, and the small-scale effect is ignored.
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In fact, the subject of how to determine the bending stiffness of SWCNTs may be more
important than the small-scale effect [3,11]. In the macro Bernoulli–Euler beam theory, the
axial extensional stiffness and bending stiffness of beams are EA and EI. Here E, A, and I
are the Young’s modulus, the cross-sectional area, and the cross-sectional moment of inertia,
respectively. For a hollow circular section where A = πdh and I = π

(
d3h + dh3), d and h

are the diameter and the wall thickness, as shown in Figure 1. Obviously, for the classical
beam theory, the extensional stiffness and bending stiffness are related to the tube’s wall
thickness, but an SWCNT’s wall thickness is uncertain. This makes defining the bending
stiffness by analogy with the classical beam theory difficult: the uncertainty of an SWCNT’s
wall thickness leads to uncertainty regarding the bending stiffness. In fact, the uncertainty
of SWCNTs’ bending stiffness results from the uncertainty of graphene’s bending stiffness.
This is called the Yakobson paradox [8]. For graphene, the Yakobson paradox can be
avoided by treating the bending stiffness and extensional stiffness independently [8,16,17].
Recent atomic calculations have shown that the bending stiffness and extensional stiffness
of SWCNTs are also independent [3,11].
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In application, CNTs are often in an environment with multiple coexisting fields, such
as ambient heat and electrostatic and magnetic fields. However, the multifield coupling
mechanical problems of CNTs still lack comprehensive research [6]. The present paper will
focus on the influence of ambient temperatures and electrostatic fields on the mechanical
properties of SWCNTs. For graphene, both experiments and atomic calculations show
that it has a negative coefficient of thermal expansion (CTE) under finite ambient tempera-
tures, i.e., graphene is a heat-shrinking and cold-expanding material [8,18]. However, the
existing SWCNT research has shown that the radial CTE is negative, but the axial CTE
is contradictory. Early MD calculations show that the axial CTE of SWCNTs is negative
if the temperature is less than around 1000 K, but recent theories and experiments have
confirmed that the axial CTE is positive [19–21]. For the effects of the electrostatic field on
the mechanical properties, density functional theory (DFT) calculations and experiments
show that the electrostatic field leads to the elongation of an SWCNT. The elongations
induced by an electrostatic field or temperature may cause SWCNTs to buckle, and this
problem has not yet been studied.

At the time of writing, there is no literature reporting the effects of independent bend-
ing and extensional stiffness on the vibrations of SWCNTs. Due to the experimental diffi-
culty, there are no bending deformational experimental data for short SWCNTs (<30 nm) in
the existing literature. The properties of an SWCNT’s thermal–electro-mechanical coupling
have not been investigated by researchers. In this paper, we propose a beam model to take
into account the above factors.
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2. Thermal–Electro-Mechanical Coupling Beam Model with Two
Independent Stiffnesses

Here, it is important to note that the sixfold symmetry of the graphene lattice is de-
stroyed as graphene curls to form SWCNTs. This leads to significant anisotropy for the chi-
ral (m,n). SWCNTs that have m 6=n, but armchair (n,n) nanotubes are still isotropic [22–27].
For simplicity, this paper only considers (n,n) tubes, but the present model also can describe
approximately other SWCNTs if their anisotropy is ignored. Neglecting entropy, the tube’s
deformation energy includes bending energy, axis elongation deformation energy, thermal
stress deformation energy, and electrostatic stress deformation energy. Therefore, the
total deformation energy density is F = F

(
ε0

xx, κ, T, U
)
. Here, ε0

xx, κ, T and U are the axis
elongation strain, bending curvature, absolute temperature, and electrostatic field intensity,
respectively. According to Landau and Lifshitz’s expansion theory [28,29], the deformation
energy density is expanded to the second order as

F = F0 +
(

∂F
∂ε0

xx

)
ε0

xx=0
ε0

xx +
(

∂F
∂κ

)
κ=0

κ +
(

∂F
∂T

)
T=0

T +
(

∂F
∂U

)
U=0

U

+ 1
2 kS
(
ε0

xx
)2

+ 1
2 kBκ2κ + kSBε0

xxκ + kSkTε0
xxT + kSkUε0

xxU + · · · .
(1)

Here, kS =
(

∂2F/∂
(
ε0

xx
)2
)

ε0
xx=0

is the extensional stiffness; kB =
(
∂2F/∂κ2)

κ=0 is the

bending stiffness; kSkU =
(
∂2F/∂ε0

xx∂U
)

ε0
xx=U=0, and kU is the coefficient of electrical ex-

pansion (CEE); kSkT =
(
∂2F/∂ε0

xx∂T
)

ε0
xx=T=0, and kT is the CTE; kSB =

(
∂2F/∂ε0

xx∂κ
)

ε0
xx=κ=0

is the extensional bending stiffness, and kSB = 0 for (n, n) tubes [25–27]. Using this in
the strain-free, curvature-free, and T = U = 0 state, the axis stress and moment are
zero, and we see from Equation (1) that the coefficients of the linear terms are zero, i.e.,(
∂F/∂ε0

xx
)

ε0
xx=0 = (∂F/∂κ)κ=0 = (∂F/∂T)T=0 = (∂F/∂U)U=0 = 0. Let F0 = 0, so Equa-

tion (1) can be simplified as

F =
1
2

kS

(
ε0

xx

)2
+

1
2

kBκ2 + kSBε0
xxκ + kTε0

xxT + kUε0
xxU. (2)

It is known from Equation (2) that the CTE and CEE are independent of the beam
curvature and strain under the second-order approximation, and vice versa. Therefore, we
can obtain the CTE and the CEE from a tube’s calculated or experimental data. Although
existing atomic calculations have shown that the elastic constants of SWCNTs decrease
slightly with a temperature increase [30], this effect is ignored in the second-order approx-
imation. Similarly, quantum computing shows that the electrostatic field affects elastic
constants, but its mechanism has not been studied in detail [22,23]. In the present paper, we
restrict the applied electrostatic field, U < 0.01 V/nm, so the electrostatic field’s influence
on two stiffnesses is ignored [23]. For a slender beam, the curvature and axial strain are [31]

κ ≈ ∂2w
∂x2

[
1− 3

2

(
∂w
∂x

)2
]

, (3)

ε0
xx =

∂u
∂x

+
1
2

(
∂w
∂x

)2
− 1

2

(
∂u
∂x

)2
− 1

2
∂u
∂x

(
∂w
∂x

)2
− 1

8

(
∂w
∂x

)4
. (4)

Here, u and w are the displacements in directions of the x− and y−axes of the
SWCNT’s centroid locus. The dynamic energy density of the tube is

D =
1
2

m

[(
∂u
∂t

)2
+

(
∂w
∂t

)2
]

. (5)

Here, m is the mass per unit length, l is the SWCNT’s length, and we ignore the kinetic
energy induced by cross-section rotations. The energy density due to external force is
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W = f (x, t)w + g(x, t)u, (6)

Here, f and g are external forces in the directions of the y− and x−axes. Therefore, the

structure’s Lagrangian is H =
t1∫

t0

l∫
0
(T − F−W)dxdt. Let δH = 0 (Hamilton principle [32]),

and the motion equations are

m
∂2u
∂t2 − kS(1− kUU − TkT)

∂

∂x

[
∂u
∂x

+
1
2

(
∂w
∂x

)2
]
= g(x, t) (7)

m ∂2w
∂t2 + kS(kUU + TkT)

∂2w
∂x2 + kB

∂4w
∂x4 − kS(1 + kUU + TkT)

∂
∂x

{
∂w
∂x

[
∂u
∂x

+ 1
2

(
∂w
∂x

)2
]}
− kB

[
12 ∂w

∂x
∂2w
∂x2

∂3w
∂x3 + 3

(
∂w
∂x

)2
∂4w
∂x3 + 3

(
∂2w
∂x2

)3
]
= f (x, t)

(8)

Equations (7) and (8) are the SWCNT’s plane motion equations with the independent
extensional and bending stiffness for the two immovable ends. For the tubes with hinged
support at both ends, the boundary conditions are

u = w =
∂2w
∂x2 = 0, at x = 0, l. (9)

Other boundary conditions with two immovable ends are consistent with the classical
beams. For slender beams, the longitudinal displacement is mainly induced by lateral de-
formation, and the longitudinal inertial forces can be ignored [31,32]. Thus, Equation (7) is
simplified as ∂

[
∂u/∂x + (∂w/∂x)2/2

]
/∂x = 0. For g(x, t) = 0, integrating this equation as

∂u
∂x

= −1
2

(
∂w
∂s

)2
+ c1, u = −1

2

x∫
0

(
∂w
∂s

)2
ds + c1x + c2. (10)

For boundary conditions of Equation (9), c1 = 1
2l

l∫
0
(∂w/∂x)2dx and c2 = 0 in

Equation (10) [30]. This further obtains

∂u
∂x

= −1
2

(
∂w
∂s

)2
+

1
2l

l∫
0

(
∂w
∂x

)2
dx. (11)

Substituting Equation (11) into Equation (8) produces

m ∂2w
∂t2 + C ∂w

∂t + kS(kUU + TkT)
∂2w
∂x2 + kB

∂4w
∂x4 −

kS(1+kUU+TkT)
2l

∂2w
∂x2

l∫
0

(
∂w
∂x

)2
dx− kB

[
12 ∂w

∂x
∂2w
∂x2

∂3w
∂x3 + 3

(
∂w
∂x

)2
∂4w
∂x4 + 3

(
∂2w
∂x2

)3
]
= f (x, t).

(12)

where we add a viscous damping term, c(∂w/∂x), to Equation (12). For the statics problem,
Equation (12) is simplified as

kB
∂4w
∂x4 + kS(kUU + TkT)

∂2w
∂x2 −

kS(1+kUU+TkT)
2l

∂2w
∂x2

l∫
0

(
∂w
∂x

)2
dx

−kB

[
12 ∂w

∂x
∂2w
∂x2

∂3w
∂x3 + 3

(
∂w
∂x

)2
∂4w
∂x4 + 3

(
∂2w
∂x2

)3
]
= f (x).

(13)

For the tube hinged at both ends, the boundary conditions of w in Equations (12) and (13)
are consistent with Equation (9). Using MD calculations, the extensional and bending
stiffnesses are obtained as kS = α(d− d0) and kB = β(d− d0)

3. Here, α = 1128.15 nN/nm,
β = 142.54 nN/nm, and d0 = 2.7× 10−7 nm are independent fitting parameters [3,11].
Because d0 is much smaller than the tube’s diameter d, we let d0 = 0, as shown in Ref. [11].
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In the classical beam model, the axial extensional stiffness kS = Ehπd and the bending
stiffness kB = Ehπ

(
d3 + dh2)/8 [32]. The MD calculations display E = 1.086 TPa for

h = 0.335 nm [11]. In the present paper, we take an armchair (5, 5)SWCNT hinged at
two ends to study the influence of electrostatic field and temperature on the mechanical
properties. Thus, its diameter is d = 0.678 nm. Other physical and geometric parameters
are shown in Figure 1 and Table 1. Table 1 shows that the bending stiffness of the classical
model is much greater than that of the independent stiffness model. The classical beam
theory has kB/kS =

(
d2 + h2)/8, while the independent stiffness model has kB/kS =

βα−1d2 ≈ 0.0575d2. The ratio of independent stiffness theory is smaller than that of
classical theory. The CTE in Table 1 comes from Ref. [20], and the CEE is kU = 0.025 nm/V,
which is obtained by the linear fitting of the FDT calculations of (3, 3)SWCNT in Ref. [22].

Table 1. Physical parameters for chiral (5, 5) SWCNT (here, α, β and E come from Ref. [3]).

kS,(nN/nm) kB,(nN·nm2) kT,(T−1) kU,(nm/V)

Classical model 0.786× 103 0.057× 103 6.0× 10−6 0.025

Independent
stiffness model 0.765× 103 0.044× 103 6.0× 10−6 0.025

3. Example and Discussion
3.1. Static Bending Deformation and Buckling

In this section, an armchair (5, 5)SWCNT is taken as an example to discover the tem-
perature and electrostatic field effects on the mechanical properties. Since Equations (12)
and (13) are the nonlinear differential integral equation, and it is difficult to obtain accu-
rate analytical solutions of these two equations, we use the Galerkin method to obtain
approximate analytical solutions [32]. Suppose the solution of Equation (12) is

w =
n

∑
j=1

η̂j(t) sin
(

jπx
l

)
. (14)

Substituting Equation (14) into Equation (12) here take only the first term and lets
η̂1 = η for the sake of simplification, multiplies it by sin(πx/l) on two sides, and then,
using the integrals in [0, l] (Galerkin integral [31,32]), we obtain

ml
2

..
η +

ĉl
2

.
η + k1η + k2η3 = 2lπ−1 f . (15)

In the following sections, we shall denote the derivative with respect to time by placing
a dot above the letter. In Equation (15), suppose the transverse load is a uniform load,
namely f (x, t) = f (t). The parameters in Equation (15) are

k1 =
π4kB

2l3 −
π2kS(kUU + TkT)

2l
, k2 =

π4kS(1 + kUU + TkT)

8l3 − 3π6kB

4l5 . (16)

By omitting the inertial and damping terms, the equation of the static problem is
obtained as

k1η + k2η3 =
2l
π

f (17)

In fact, Equation (17) can be obtained by applying the Galerkin method to Equation (13).
The relationship between bending deformations and applied loads can be obtained by
Equation (17), as shown in Figure 2. The figure shows that the classical model’s deforma-
tions are less than those of the independent stiffness model under the same conditions
because the classical beam theory overestimates the bending stiffness of SWCNTs. If the
transverse load f = 0 and the temperature or electrostatic field intensity exceeds its critical
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value, it is known from the expression of k1 that the SWCNTs will buckle. The critical
temperature and critical electric field intensity are determined as in classical beam theory,

kCU + TkT =
π2kB

l2kS
. (18)
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The relationship between critical temperature, critical electric field intensity, and
critical tube length can be obtained by Equation (18), as shown in Figures 3–5. These
figures clearly demonstrate that the classical beam model’s critical values are much higher
than those of the independent stiffness model. For example, the classical model’s critical
buckling temperature is T = 1140 K, while that of the independent stiffness theory is
T = 910 K for U = 0.01 V/nm, as shown in Figure 5. The difference is 230 K, which
is dramatic in practice. The buckling of SWCNTs will create initial curvatures, which
can induce quadratic nonlinearity terms in the model and make the mechanical response
appear significantly different from that of buckling-free SWCNTs [33,34]. This issue may
require intensive research. From Equation (18), it can also be found that the buckling is
more sensitive to the electric field than the temperature due to kC � kT . This issue has not
yet received attention so far.
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3.2. Nonlinear Bending Vibrations

This section focuses on the effects of temperature and electric field on the nonlinear
vibrations of SWCNTs. Because the vibrational frequencies of SWCNTs are extremely
high, it is convenient to introduce dimensionless variables η = η/l and t = t/ω0. Here,
ω0 =

√
π4kB/ml4 is nature frequency for (T, U) = (0, 0). Thus, Equation (15) is written as

..
η + 2c

.
η + k1η + k2η3 = f̂ , (19)

where
c = ĉ

2mω0
, k1 = 1− π2kS(kUU+TkT)

ml2ω2
0

,

k2 = π4kS(1+kUU+TkT)

4ml2ω2
0

− 3π6kB
2ml4ω2

0
, f̂ = 4 f

πmlω2
0
.

(20)

To research the oscillations, we perturb Equation (19) by letting c = 2ε2c and ε3 f̂ = f .
ε is a small parameter, and ε = 0.1 is used in this paper. Consequently, Equation (19) can be
rewritten as ..

η + ω2
1η + 2ε2c

.
η + k3η3 = ε3 f cos ω t, (21)

Here, ω2
1 = k1. The method of multiple scales, a classical perturbation method used

to solve the weak nonlinear differential equation [35], is used to solve Equation (21). The
solution of Equation (21) can be represented by an expansion of η as

η = εη0(T0, T2) + ε3η1(T0, T2), (22)



Nanomaterials 2021, 11, 923 8 of 12

Here, T0 = t and T2 = ε2t. Substituting Equation (22) into (21), and equating the
coefficients of ε and ε3 on both sides, gives [36]:

D2
0η0 + ω2

1η0 = 0, (23)

D2
0η1 + ω2

1η1 = −2D0D2η0 − 2cD0η0 − k3η3
0 + f (x) cos(k1T0 + σT2), (24)

Here, ω−ω1 = ε2σ. D0 and D2 signify derivatives of T0 and T2, respectively. Accord-
ing to the ordinary differential equation theory, the solution of Equation (23) is

η0 = A(T2) exp(iω 1T0) + cc, (25)

Here, cc denotes the complex conjugate of the preceding term. Substituting η0 into
Equation (24) gives

D2
0η1 + ω2

1η1 = −
[
2iω 1(D2 A + cA) + 3k3 A2 A

]
exp(iω 1T0)

−k3 A3 exp(3iω 1T0) +
1
2 f exp[i(ω 1T0 + σT2)] + cc.

(26)

Eliminating secular terms [36] from Equation (26) gives

2iω 1(D2 A + cA) + 3k3 A2 A− 1
2

f exp(iσT2) = 0. (27)

Let A = α exp(iβ)/2; here, α and β are real functions of T2. Then, separating the real
and imaginary parts of Equation (27) gives

D2α = −cα +
f

2ω 1
sin(αT2 − β), (28)

αD2β =
3k3

8ω 1
α3 − f

2ω 1
cos(αT2 − β). (29)

A steady-state motion will occur when D2α = D2β = 0. In addition, α, β can be
obtained through the following nonlinear equations:

− cα +
1
2

f
ω 1

sin γ = 0, σ α− 3
8

k3

ω 1
α3 +

1
2

f
ω 1

cos γ = 0, (30)

Here, γ = αT2 − β. Equation (30) gives[
c2 +

(
σ− 3k2

8ω 1
α2
)2
]

α2 =
f 2

4ω2
1

. (31)

Equation (31) is an implicit equation for the response amplitude, α, as a function
of the detuning parameter σ and the excitation amplitude f . Substituting α and γ into
Equation (19) gives a first-order approximate solution of Equation (21):

η ≈ εη0 = ε α cos
(
ω t− γ

)
. (32)

The damping coefficient of SWCNTs has not yet been researched intensively, so
c = 0.01 is used here. Other physical and geometric parameters are l = 10 nm, m =
1.619× 10−15kg/m, and E = 1.086 TPa [11]. Thus, ω2

0 = 3.423× 1023 s−2 for the classical
model, and ω2

0 = 2.642× 1023 s−2 for the independent stiffness model. From Equation (31),
we obtain a function of vibrational amplitude as other parameters, as shown in Figures 6–8.
These figures reveal three aspects of the main vibrational features: first, since the bending
stiffness of the classical model is greater than that of the independent stiffness model, the
vibrational amplitudes of the classical model are less than those of the independent stiffness
model with small loads, but the order of the two amplitudes will reverse with the increase
of the loads, as shown in Figure 6; second, when the vibrational amplitudes appear as multi-
values due to bifurcation, the amplitudes will jump and significantly affect the motion of
SWCNTs, as shown in Figures 7 and 8; third, the electric field intensity and temperature
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significantly affect the bifurcation positions and vibrational amplitudes. In fact, the load
bifurcation positions of the classical model are greater than those of the independent
stiffness model, as shown in Figures 7 and 8. For example, the load f = 0.95 exceeds the
independent stiffness model’s bifurcation point for (c, σ, U, T) = (1, 6, 0.01, 0), so the two
vibrational amplitudes are identical for the independent stiffness model with different
initial values. However, the difference in the classical model’s amplitudes is more than
three times for different initial values, as shown in Figures 9 and 10. Because bifurcation
points are sensitive to temperature and electric field intensity, the classical beam model
may no longer be suitable for the accurate analysis of SWCNTs’ nonlinear oscillations.
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It is necessary to note that the theory’s validity needs to be checked by experiments.
However, the bending mechanical properties of SWCNTs under combined physical fields
have not yet attracted researchers’ attention. Therefore, we do not find any calculated
and experimental data to compare with the present theoretical results. For example, the
independent extensional stiffness and bending stiffness are obtained by MD calculations
in Refs. [3,11], but the two papers do not provide data of deformations. The experiments of
SWCNT bending deformations usually use long tubes (>100 nm), but the bending stiffness
can be ignored for these. Researchers have not realized that temperature and electrostatic
field significantly affect the bending mechanical properties of SWCNTs. These issues call
for further studies, both experimental and theoretical.

4. Conclusions

In the present paper, a new thermal–electro-mechanical coupling beam model of
SWCNTs, in which the bending stiffness and extensional stiffness are independent, is
proposed. The static bending deformations, buckling, and nonlinear forced vibrations
are researched through the new model and the classical beam model. The results show
that the classical model significantly underestimates the influence of temperature and
electrostatic field on mechanical properties because it overestimates the bending stiffness
of SWCNTs. These influences are reflected in three main aspects: first, the independent
stiffness model has greater static bending deformations than the classical beam model under
the same conditions; second, the independent stiffness model has a lower critical buckling
temperature and critical buckling electric field intensity than the classical beam model;
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third, for nonlinear vibrations, the independent stiffness model has smaller bifurcation
loads than the classical beam model, and the bifurcation loads sensitively depend on the
temperature and the electric field intensity. The present research also shows that for a
precise understanding of the mechanical properties of SWCNTs, independent stiffness,
temperature and electric field intensity should be considered.
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the manuscript.
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