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Abstract: Diclofenac sodium salt (DSS)-loaded electrospun nanofiber mats on the base of poly(ε-
caprolactone) (PCL) were investigated as biocompatible nanofibrous mats for medical applications
with the ability to inhibit bacterial infections. The paper presents the characteristics of fibrous mats
made by electrospinning and determines the effect of medicament on the fiber morphology, chemical,
mechanical and thermal properties, as well as wettability. PCL and DSS-loaded PCL nanofibrous
mats were characterized using scanning electron microscopy, transmission electron microscopy,
attenuated total reflectance-Fourier transform infrared spectrometry, dynamic mechanical analysis,
and contact angle measurements. Electron paramagnetic resonance measurements confirmed the
lifetime of DSS before and after application of high voltage during the electrospinning process.
In vitro biocompatibility was studied, and it was proved to be of good viability with ~92% of the
diploid human cells culture line composed of lung fibroblast (MRC 5) after 48 h of incubation.
Moreover, the significant activity of DSS-loaded nanofibers against cancer cells, Ca Ski and HeLa,
was established as well. It was shown that 12.5% (m/V) is the minimal concentration for antibacterial
activity when more than 99% of Escherichia coli (Gram-negative) and 99% of Staphylococcus aureus
(Gram-positive) have been exterminated.

Keywords: electrospinning; therapeutic polymers; diclofenac sodium salt; poly(ε-caprolactone);
biocompatibility; antibacterial activity

1. Introduction

Poly(ε-caprolactone) (PCL) shows excellent biocompatibility, resorbability, and high
permeability to many drugs. Due to this fact, PCL is one of the most used synthetic
polymers for medical applications, such as controlled drug delivery or release systems with
a single bolus administration [1,2], as well as wound dressing [3,4] or regenerative tissue
engineering [5,6]. Release systems, or drug delivery vehicles, have received increased
attention in pharmaceutical treatment because they afford several advantages compared to
conventional forms of dosage, including enhanced therapeutic efficacy and low toxicity
when the drug is released at a controlled rate [7–11]. The release time of the drug needs
to be prolonged for days or even several weeks. This may be provided by entrapping
the biomolecules, such as drugs, proteins, DNA, or growth factors, within the polymer
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matrices. The authors already discussed the carriers of medicaments as particles [12–14],
micelles [15–17], fibers [18–20], or polymer-drug conjugates [21–23].

Recently, electrospinning gained great popularity in producing drug-loaded electro-
spun fibers with diameters ranging from tens of nanometers to several micrometers. This
method seems to be the most straightforward way to make fibers using a high voltage
electrostatic field [24]. Electrospun materials have the benefit of unique properties, for
instance, a large surface area to volume ratio, and enhanced cellular interactions [25]. The
electrospun mats are attractive in medical applications due to their structure being similar
to the extracellular matrix (ECM) [26–31].

The electrospun mats containing the drugs have multiple potential functions such as
temporary support, drug delivery capabilities, and antibacterial properties to help prevent
infections after, for example, surgery [14,32–34]. To prepare such type of therapeutics
on the base of polymers, the simplest way is to mix the medicament with the polymer
solution and incorporate it during electrospinning into the fibers’ structure. A well-known
medicament, which is supplied under various trade names, is diclofenac sodium salt (DSS).
DSS is a nonsteroidal drug (NSAID) of the phenylacetic acid class with anti-inflammatory,
analgesic, and antipyretic properties.

Contrary to the action of many traditional NSAIDs, DSS inhibits cyclooxygenase
COX-2 enzyme with greater potency than it does COX-113. Moreover, it has been shown to
decrease the growth of pancreatic and non-small cell lung cancer xenografts and inhibit the
growth of ovarian cancer cells [35–39]. Due to the benefits mentioned above, the diclofenac
sodium salt was used as a model system in this study.

The present study is focused on the properties of the pharmaceutical drug diclofenac
sodium salt incorporated into PCL nanofibers produced by electrospinning. The drug-
loaded fibers were characterized by fundamental methods such as scanning electron
microscopy (SEM), attenuated total reflectance-Fourier transform infrared spectroscopy
(ATR-FTIR), mechanical properties studied by dynamic mechanical analysis (DMA), and
thermogravimetric analysis (TGA). The wettability was assessed from the contact angle
point of view. This study provides some evidence of DSS activity even after being subjected
to high tension during the electrospinning process. The antibacterial activity against Staphy-
lococcus aureus, Gram-positive bacteria (G+), and Escherichia coli, Gram-negative bacteria
(G−) was studied. The minimal concentration of 12.5% (m/V) of DSS for antibacterial
activity more than 99% was established, and in vitro biocompatibility of the human cells of
the DSS-loaded electrospun PCL nanofibers were studied. Finally, the efficiency against
HeLa and Ca Ski cancer cells was estimated. The prepared fibrous system exhibits potential
for use as wound dressings with the ability to inhibit the infections caused by bacteria.

2. Materials and Methods
2.1. Materials

Biodegradable poly(ε-caprolactone) (PCL) CAPA 6800 from Solvay Interox Ltd. (War-
rington, United Kingdom) with a mass-average molar mass of Mw = 6.72 × 104 g·mol−1 and
a molar-mass dispersity of ÐM = 1.56 obtained by gel permeation chromatography (GPC)
measurement (see Section 2.2.1), N,N-dimethylformamide (DMF) HPLC grade > 99.7%
(Alfa Aesar™, Karlsruhe, Germany), dichloromethane (DCM) anhydrous, ≥99.8%, contain-
ing 50–150 ppm amylene as a stabilizer from Sigma-Aldrich (Weinheim, Germany), abso-
lute ethanol SOLVANAL, 99.8% (Centralchem, Bratislava, Slovakia), (2,2,6,6-tetramethyl
piperidine-1-yl)oxyl (TEMPO•, Sigma-Aldrich, Poznań, Poland), diclofenac sodium salt
(DSS), Phosphate Buffered Saline (PBS) and dimethyl sulfoxide (DMSO) from Sigma-
Aldrich (Weinheim, Germany) were used for the experiments. Chloroform HPLC grade
>99.7% from Fisher Scientific UK Ltd. (Loughborough, UK) was used as a GPC eluent.
The bacteria used in this study were Staphylococcus aureus (CCM 3953) and Escherichia coli
(CCM 3988), purchased from the Czech Collection of Microorganisms, Masaryk University
(Brno, Czech Republic). The strains were equivalent to ATCC 8739 and ATCC 6538P and
were selected to comply with ISO 22196:2011 concerning the measurement of antibacterial
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activity on plastic surfaces. 3-(4,5-Dimethyldiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) was purchased from Calbiochem (Merck Millipore, Darmstadt, Germany). Dul-
becco’s modified Eagle medium (DMEM), fetal calf serum (FCS), streptomycin, penicillin,
and L-glutamine were purchased from Gibco (Life Technologies, Grand Island, NY, USA).
Human cell lines, MRC 5—normal lung fibroblasts, Ca Ski—epidermoid carcinoma derived
from the metastatic site in the small intestine, and HeLa—cervix carcinoma, were obtained
from the collection of the Institute of Virology BMC SAV (Bratislava, Slovakia).

2.2. Methods
2.2.1. Gel Permeation Chromatography (GPC)

The GPC instrumentation contains a pumping system type P102 from Watrex (Prague,
Czech Republic) and an evaporative light scattering detector (ELSD) model ELS-1000 from
PL-Agilent Technologies (Stretton, UK). A TSHgel GMHHR-M GPC column from Tosoh
Bioscience (King of Prussia, PA, USA) was used. The flow rate of the eluent was set to
1 mL·min−1. The concentration of PCL was 10 mg·mL−1 with chloroform as the eluent.
The GPC measurements were performed at an ambient temperature. Molar masses are
equivalent to PS calibration. Data were collected and processed with the help of Clarity
software from DataApex (Prague, Czech Republic).

2.2.2. Preparation of Polymer Solution for Electrospinning

PCL solutions were prepared at a concentration of 10% (m/V) in the mixture of
DCM/DMF solvents in the 1/1 volume ratio. PCL granules were weighted into the vials,
and then the DCM was added. The resulting solution was intensively stirred on an IKA
magnetic plate (Staufen im Breisgau, Germany) at an intensity of 750 rpm. After it was
dissolved in DCM, the DMF was added to reach the required concentration. Diclofenac
sodium salt was added to the polymer solutions in the concentrations listed in Table 1. The
solutions were stirred until the DSS was dissolved.

Table 1. Solutions prepared for electrospinning.

Sample PCL (g) DSS (m/V%) DCM (mL) DMF (mL)

PCL 1 - 5 5
PLC/2.5%DSS 1 2.5 5 5
PCL/6%DSS 1 6 5 5

PCL/12.5%DSS 1 12.5 5 5
PCL/25%DSS 1 25 5 5
PCL/50%DSS 1 50 5 5

2.2.3. Electrospinning (ESP)

Electrospinning was carried out under ambient temperature and humidity (24 ◦C ± 1 ◦C
and 62% ± 1%, respectively) in a horizontal spinning configuration with a flat-end needle
with a 0.8 mm (21 G) inner diameter. The working distance between the tip of the needle
and the ground collector was 14 cm. The applied voltage was 15 kV, which was investigated
by gradual experiments, with positive polarity. The voltage was driven by a high voltage
power supply (Spellman SL-150W, Bochum, Germany). The solutions were fed through a
single syringe pump model NE-1000 (New Era Pump Systems, Inc., Farmingdale, NY, USA).
The feeding rate was 1.5 mL·h−1. The electrospun fibers were collected on aluminum foil.

2.2.4. Scanning Electron Microscopy (SEM)

Electrospun PCL-based fibers’ morphologies and the average diameter of fibers were
observed by JSM Jeol 6610 scanning electron microscope (Tokyo, Japan) at an accelerated
voltage of 10 kV. The samples were sputtered with a thin layer of gold. AzTec software
(Springfield, NJ, USA) was used for collecting figures and processing the results.

For SEM analysis of electrospun fibers after antibacterial testing, the procedure de-
scribed by Bandeira et al. [40] was used. The samples were washed twice with a phosphate
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buffer solution (PBS, pH 7.4). Electrospun fibers were fixed with 4% paraformaldehyde
for 30 min at room temperature. The samples were washed twice with PBS for 10 min and
distilled water for 10 min. Subsequently, the samples were dehydrated with the addition
of 25%, 50%, 70%, and 95% ethanol for 10 min and absolute ethanol twice for 15 min at
room temperature.

2.2.5. Transmission Electron Microscopy (TEM)

Topographical and morphological information was provided by JEOL 1200FX trans-
mission electron microscope (Tokyo, Japan) operated at 80 kV. Samples were placed and
observed on copper grids.

2.2.6. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR)

Nicolet 8700 spectrophotometer (Thermo Fisher Scientific, Madison, WI, USA) was
used for ATR-FTIR spectra recording, with a deuterated triglycine sulfate and thermoelec-
trically cooled (DTGS TEC) detector in the region of 600–4000 cm−1 with the resolution of
4 cm−1 using the absorbance mode.

2.2.7. Thermogravimetric Analysis (TGA)

Thermal analysis of the investigated samples was performed with a Mettler-Toledo
851e thermogravimetric analyzer (Columbus, Ohio, USA). The measurements were carried
out under constant nitrogen flow (50 mL·min−1) at a heating rate of 10 ◦C min−1 in the
range of 24–500 ◦C. Approximately 1–3 mg of the sample was weighed and sealed in an
aluminum pan. As a reference sample, the empty aluminum pans were used.

2.2.8. Dynamic Mechanical Analysis (DMA)

The dynamic mechanical analysis of the different PCL fibers was performed on a DMA
Q 800 machine (TA Instruments, New Castle, DE, USA) using the DMA controlled force
procedure and stress/strain test method at a preload of 0.01 N and a force track of 1 N·min−1

up to an 18 N limit using a tensile setup. The rectangular shape of PCL samples with length
20 mm and width 5 mm was maintained at a constant temperature of 25 ◦C. The stress (MPa)
and deformation (%) were recorded during the force track at 1 N·min−1 extension.

2.2.9. Measurements of Contact Angle

Static water contact angle measurements of all electrospun mats were performed at
room temperature (24 ◦C ± 1 ◦C). Pure water droplets were used with a drop volume of
10 µL. For taking images, the Canon PowerShot SX130 camera (Tokyo, Japan) was used.
The baseline at the surface of the nonwoven mats and the droplet interaction, and then the
tangential line from the point of contact and the outer surface of the droplet, were drawn
with the Image J software (LOCI, University of Wisconsin, WI, USA). The angles between
these two lines were recorded as the contact angle.

2.2.10. Electron Paramagnetic Resonance (EPR) Analysis

A Bruker WinEPR Processing device was used for the EPR analysis. A blank solution
(50 µM) was prepared from 0.78 mg of TEMPO• in 10 mL DCM/DMF. The concentration
of the investigated DSS was 1.48 mg·mL−1. The DSS solution after encapsulation into
the fibers structure during electrospinning was prepared by releasing the DSS from the
PCL/12.5%DSS mat. The sample with a thickness of < 1 mm and a mass of approx. 5 mg
was put into the 4 mL phosphate buffer solution (PBS, pH 7.4) for 24 h for releasing. The
EPR signals recording took 5 min after the start of the reaction. The parameters of the
measurement were field modulation 100 kHz, modulation amplitude 1 G, field constant
40.96 ms, conversion time 671.089 ms, center field 3245 G, sweep width 100 G, X-band
frequency 9.64 GHz, power 20 mW and temperature 25 ◦C.
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2.2.11. Antimicrobial Activity

The antimicrobial activity of the electrospun pure PCL and DSS-loaded PCL fibrous
mats was determined with adherence to the procedure stipulated under ISO 22196:2011
for Staphylococcus aureus and Escherichia coli [41]. Bacterial suspensions were prepared at
concentrations between 2.5 × 105 and 10 × 105 cells·mL−1. The 40 mm × 40 mm samples
and square pieces of polyethylene film to cover them were placed under UV-light for 30 min
to sterilize the material before the experiments. Afterward, 400 µL of the suspension was
applied to the surface of the samples (pure PCL and DSS-loaded PCL mats). Samples with
suspension were covered with the polyethylene film. After the contact time of 24 h, the
samples (pure PCL and DSS-loaded PCL mats) were rinsed with 10 mL of casein–peptone
lecithin polysorbate (CPLP) broth (base, Merck, Burlington, MA, USA) on a Petri dish, and
the value for colony-forming cells (CFU/mL) was determined. The logarithm of reduction
in the number of living and viable cells of tested bacteria (antibacterial activity, R) was
calculated according to Equation (1):

R = (Ut − U0) − (At − U0) = Ut − At (1)

where U0 is the average value for the common logarithm of the number of viable bacteria
[cells·cm−2], recovered from the control samples (pure PCL) immediately after inoculation,
Ut is the mean for the common logarithm of the number of viable bacteria, in [cells·cm−2],
recovered from the control samples (pure PCL) after 24 h, At is the mean for the common
logarithm of the number of viable bacteria [cells·cm−2], recovered from the test samples
(PCL with different concentrations of DSS) after 24 h.

2.2.12. Cell Viability Assay

A standard colorimetric MTT assay was used to assess the cytotoxicity of the prepared
pure PCL and DSS-loaded PCL nanofiber mats (1 cm in diameter and ~1 mm thickness).
The mats were UV-C sterilized for 30 min using germicidal lamp GT20T10, 20 W, 254 nm
(Sankyo Denki, Japan) before incubation with cells. For the MTT assay, cells were seeded in
12-well tissue culture plates at a concentration of 1 × 105 per well and incubated overnight
in a full growth medium (DMEM, 10% FCS, penicillin, and streptomycin) in a CO2 incubator
at 37 ◦C, 5% CO2, and saturated humidity. Before the incubation, 1.5 mL of a fresh culture
medium was added into cells, and 1 PCL mat was placed into each well. The incubation
and extraction of DSS were performed at 24 and 48 h, respectively. After 24, or 48 h of cell
treatment, the pure PCL and DSS-loaded PCL mats were removed from treated cells, and
the culture medium was replaced with a fresh culture medium containing 0.5 mg·mL−1

MTT and incubated for 2 h. The absorbance of the DMSO extract was measured using a
Multiskan™ FC Microplate photometer (Thermo Fisher Scientific, Waltham, MA, USA) at
595 nm. All samples were done in quadruplicates (n = 4).

2.2.13. Statistical Data Analysis

Image J software (LOCI, University of Wisconsin, Madison, WI, USA) was utilized to
measure the average diameter of the fibers in the mats. The average diameters of the fibers
and their distributions were estimated statistically from at least 50 measured values on the
5 independently prepared samples to ensure accuracy.

The contact angle was assessed from at least 10 values. The measurements were
carried out on the 5 independently prepared samples. The values of stress at break (σ) and
elongation at break (ε) are the averages of the five measurements. Data are expressed as
the mean ± standard deviation (SD).

Antimicrobial test results are given as the means of 3 independent experiments ± SD.
The differences between the given groups were tested for statistical significance using
Student’s t-test (* p < 0.05; ** p < 0.01; *** p < 0.001).
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The cell experiment results are presented as mean ± SD in quadruplicates (n = 4) from
three independent experiments. A statistical analysis was performed using OriginPro 2016
software by one-way ANOVA with subsequent means comparison using the Turkey test.

3. Results

The development of biocompatible therapeutic agents, such as a wound dressing, is
highly dependent on the characteristics of the drug carriers. In this study, the freestand-
ing pure PCL and DSS-loaded PCL fibrous mats were fabricated by electrospinning at
parameters listed in Table 1 (section Materials and Methods). Electrospun nanofibers were
analyzed by scanning and transmission electron microscopy, attenuated total reflectance-
Fourier transform infrared spectroscopy, thermogravimetric analysis, dynamic mechanical
analysis, and electron paramagnetic resonance. The biocompatibility, cytotoxicity, and
antimicrobial activity of the PCL and DSS-loaded PCL mats were also tested.

3.1. Morphology Evaluation of Electrospun Mats

The morphology, as well as the fiber diameter and distribution of diameters of the
electrospun fibers, has been investigated by scanning electron microscopy. The SEM
micrographs are shown in Figure 1.
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Figure 1. SEM micrographs comparing the fiber diameter and the distribution of diameters of pure
poly(ε-caprolactone) (PCL) (a) and diclofenac sodium salt (DSS)-loaded PCL mats: PCL/2.5%DSS
(b), PCL/6%DSS (c), PCL/12.5%DSS (d), PCL/25%DSS (e), and PCL/50%DSS (f) fibrous mats.

The values of diameters and their distribution are depicted in Table 2.

Table 2. Values of average diameters (avg. dia.) of the tested fibers and distribution of average diameters in the PCL and
PCL/DSS electrospun mats.

Content of DSS [wt%] 0 2.5 6 12.5 25 50

Avg. Dia. ± SD [nm] 162 ± 75 164 ± 59 171 ± 58 233 ± 84 266 ± 114 290 ± 145
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The internal structure of the electrospun pure PCL and PCL/12.5%DSS fibrous mats
were also analyzed using TEM (Figure 2).
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3.2. ATR-FTIR Analysis of Pure PCL and DSS-Loaded PCL Fibrous Mats

ATR-FTIR analysis was employed to identify any changes in the chemical structure
of the characterized material. ATR-FTIR gave clear proof of the DSS presence. With the
increasing DSS concentration, the band at 1574 cm−1 appeared, and the intensity of the
peak increased (Figure 3c,d).
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3.3. Thermal Analysis of Pure PCL and DSS-Loaded PCL Fibrous Mats

The TGA results of the electrospun pure PCL, PCL/12.5%DSS, PCL/25%DSS, and
PCL/50%DSS fibrous mats are shown in Figure 4. The results indicate a decreased thermal
stability with increasing DSS concentration.
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3.4. Dynamic Mechanical Analysis of Pure PCL and DSS-Loaded PCL Fibrous Mats

It is important to determine the mechanical stability due to the need for manipulation
and subsequent physiological forces [42]. Results of strain and stress of the PCL and
DSS-loaded PCL mats performed by DMA are listed in Table 3.

Table 3. Values of stress and strain of the investigated samples.

Content of DSS [wt%] σ ± SDσ (MPa) ε ± SDε (%)

0 7.5 ± 1.2 260 ± 74
2.5 7.2 ± 1.3 233 ± 59
6 7.0 ± 1.5 135 ± 22

12.5 5.5 ± 1.0 73 ± 5
25 4.3 ± 0.1 56 ± 4
50 1.5 ± 0.3 41 ± 23

σ—tensile strength, ε—strain, SD—standard deviation.

3.5. Contact Angle Analysis of Electrospun Mats

The water contact angle was measured to determine the wettability of pure PCL,
PCL/2.5%DSS, PCL/6%DSS, PCL/12.5%DSS, PCL/25%DSS, and PCL/50%DSS mats. The
water contact angle was evaluated depending on the DSS’s concentration in the PCL matrix,
and the results are shown in Figure 5.
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Table 4 shows the water contact angle values indicating the wettability of the electro-
spun mats.

Table 4. Contact angles values of the investigated samples.

Content of DSS [wt%] 0 2.5 6 12.5 25 50

Contact Angle [◦] 100 ± 4 87 ± 4 68 ± 8 33 ± 3 n.d. n.d.

n.d.—not determined since the droplet soaked into the sample immediately after contact with the measured surface when measuring the
contact angle.

3.6. Electron Paramagnetic Resonance Analysis of Releasing DSS

EPR spectroscopy was used to study the radical scavenging activity of diclofenac
sodium salt after incorporating electrospun mats using high voltage. The purpose was to
determine the activity of DSS after using high voltage. The activity of the DSS releasing
from PCL/12.5%DSS mats was compared to the original DSS activity that was not processed
at high voltages. The results are listed in Figure 6.
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3.7. Antimicrobial Activity Evaluation

Antimicrobial activity of electrospun pure PCL and DSS-loaded PCL fibrous mats:
PCL/2.5%DSS, PCL/6%DSS, PCL/12.5%DSS, PCL/25%DSS, and PCL/50%DSS was deter-
mined with adherence to the procedure stipulated under ISO 22196:2011 for Staphylococcus
aureus as Gram-positive and Escherichia coli as Gram-negative bacteria, separately. The
bacterial viability of samples was investigated after 24 h. The reduction is graphically
depicted in Figure 7.
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Figure 7. Antibacterial activity of DSS-loaded PCL mats: PCL/2.5%DSS, PCL/6%DSS,
PCL/12.5%DSS, PCL/25%DSS, and PCL/50%DSS fibrous mats against S. aureus and E. coli.
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The results of antimicrobial activity and reductions are listed in Table 5.

Table 5. Antibacterial activity and efficacy (quantitative) Staphylococcus aureus CCM 3953 and Escherichia coli CCM 3988. The
concentration of bacteria in the test inoculum is 500,000 CFU/mL.

Tested
Microorganism

Amount of DSS
[wt%]

The Number of Bacteria
Recovered at 24 h

Contact Time [CFU/mL]

Logarithm of the Number of
Bacteria Recovered at 24 h

Contact Time [CFU/mL]

Antimicrobial
Activity (R) Reduction [%]

S. aureus
CCM 3953

(G+)

0 3,000,000 6.30 - -
2.5 290,000 5.46 0.8 85.50 ± 0.01
6 250,000 5.40 0.9 87.50 ± 0.04

12.5 15,000 4.18 2.1 99.25 ± 0.02
25 14,500 4.16 2.1 99.28 ± 0.02
50 14,000 4.15 2.2 99.30 ± 0.01

E. coli
CCM 3988

(G−)

0 3,000,000 6.48 - -
2.5 390,000 5.59 0.9 87.00 ± 0.01
6 350,000 5.54 0.9 88.33 ± 0.01

12.5 35,000 4.54 1.9 98.83 ± 0.01
25 29,500 4.47 2.0 99.02 ± 0.02
50 24,000 4.38 2.1 99.20 ± 0.02

CFU—colony-forming cells, G+—Gram-positive bacteria, G−—Gram-negative bacteria.

The improvement in antimicrobial efficiency with increasing DSS reduction is notice-
able as a reducing bacterial viability (Table 5) and can be assessed optically from the SEM
micrograph. SEM micrographs after 24 h incubation with S. aureus are shown in Figure 8.
SEM micrographs after 24 h incubation with E. coli are shown in Figure 9.
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Figure 9. SEM micrograph showing the effect of the DSS concentration (wt%) on antibacterial efficacy
against E. coli: pure PCL (a), PCL/2.5%DSS (b), PCL/6%DSS (c), PCL/12.5%DSS (d), PCL/25%DSS
(e), and PCL/50%DSS (f) fibrous mats.

3.8. Biocompatibility and Antiproliferative Effect of PCL and DSS-Loaded PCL Fibrous Mats

The PCL/12.5%DSS fibrous mat was selected for the evaluation of biocompatibility
and the antiproliferative effect, as it showed relatively good mechanical properties and
thermal stability with very good antimicrobial activity. The viability of MRC 5, HeLa,
and Ca Ski cells was investigated to assess the biocompatibility of electrospun pure PCL
and PCL/12.5%DSS fibrous mats after 24 and 48 h of incubation. The results are shown
in Figure 10.
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Figure 10. Biocompatibility of PCL mats (a) and anticancer activity of PCL mats loaded with DSS
(b) after 24 h and 48 h incubation time, respectively. Cell viability was determined by MTT assay.
The results are presented as mean ± SD (n = 12) of three independent experiments. The statistical
significance is shown by asterisks (*** p < 0.001).

The morphologies of MRC 5, HeLa, and Ca Ski cells in the presence of electrospun
pure PCL and PCL/12.5%DSS mats were investigated as well. The morphology of cells
after incubation times of 24 and 48 h is shown in Figure 11.
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4. Discussion

Investigated pure PCL, as well as PCL/2.5%DSS, PCL/6%DSS, PCL/12.5%DSS,
PCL/25%DSS, and PCL/50%DSS fibrous mats were fabricated by electrospinning from
the mixture of DCM/DMF solvents under ambient temperature. The voltage of 15 kV and
the feeding rate of 1.5 mL·h−1 were used to format beadles’ fibers. The freestanding mats
were collected on alumina foil, from which they were removed before characterization
and testing.

Two parameters have been identified that play an essential role in the electrospinning
process: solute concentration and type of polymer used [43]. Therefore, through gradual
experiments and literature studies [44–46], the proper concentrations required for fiber
formation were optimized to avoid the beads, and obtain mats with good mechanical
integrity. Appropriate selection and proportion of organic solvents, their dielectric prop-
erties, volatilities or boiling points are the basis for the formation of uniform fiber mats
by electrospinning. In addition, smooth defect-free nanofibers with a narrow and more
uniform diameter distribution are collected using two-component solvent systems. There
have already been various solvents used, including benign or green, to prepare the PCL
solutions for electrospinning, such as acetone, methanol, formic or acetic acid, or ionic
liquids [47–49]. However, in these solvents it is not possible to achieve the required fiber
characteristics (smoothness, small average diameter, uniform); therefore, in the conducted
study, the solutions for electrospinning were prepared using a mixture with DCM as a good
solvent for PCL. DCM is widely used in the pharmaceutical industry as a process solvent
for which the Food and Drug Administration (FDA) has established residue tolerances [50].
Moreover, DMF was selected as co-solvent due to its suitable properties of a high dielectric
constant, conductivity and lower vapor pressure [51]. DMF is also widely used in the
pharmaceutical industry and due to its strong solvating properties and organic reactions
occurred in it, which often cannot be achieved in less polar solvents, it is a unique solvent
in chemical transformations [52].

The morphology, as well as the fiber diameter and distribution of diameters of the
electrospun fibers, has been investigated by SEM. PCL electrospun fibers without beads
were obtained from the mixture of the solvents consisting of DCM and DMF at a con-
centration of 10% (m/V). In medical applications, it is important that the fibers do not
contain beads because the diameter of the fibers must mimic the natural extracellular
morphology and thus promote optimal cell growth [2]. With the addition of DMF to the
electrospinning solution, it is possible to transform the polymer particles into fibers with a
smaller diameter [51]. The SEM micrograph of electrospun pure PCL shown in Figure 1a
revealed that the diameter of PCL fibers in the nonwoven mat range from 78 nm to 500 nm
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with an average diameter of 162 nm ± 75 nm. This is significantly less than it has already
been published [53–55] due to the balance of processing conditions as well. The individual
electrospun fibers appear to be randomly distributed and generally had a similar thickness
along with the fiber. About 50 fibers were analyzed to determine the diameter distribution.

The same experimental conditions were used to electrospin the samples with di-
clofenac sodium salt in various concentrations (see Materials and Methods section). The
electrospun fibers were randomly arranged in the mats, as shown in Figure 1b–f, per-
formed by SEM analysis. The low salt content improved spinnability (the formed fibers
were thinner and uniform) as it increased the conductivity and decreased the surface
tension of the solution. Overall, the addition of salt drastically affects the morphology and
diameter of the resultant structures [56]. A high concentration of additives, such as salt
or surfactants, into the polymer solutions could change their properties and causes the
formation of beads or beads on the string [57]. Nevertheless, the experiments in this study
showed that the electrospun fibrous mats are entirely without beads, even in the highest
concentration of 50% DSS. Increasing the diclofenac sodium salt concentration did not
result in the formation of beads. The average diameter and distribution of diameters were
analyzed for all samples. It was observed that the average diameters and their distributions
increase with the increasing concentration of the DSS. The most significant change in the
saverage diameter was in the case of PCL/50%DSS mat and was 290 nm ± 145 nm. The
data for all the investigated samples are summarized in Table 2.

The internal structure of pure PCL and PCL/12.5%DSS mats was analyzed by TEM.
The TEM analysis allows a more detailed study of internal structure defects. The results are
shown in Figure 2. There were no visible changes observed in the structure of the fibers and
the heterogeneity after the addition of DSS compared to the PCL without a DSS additive,
contrary to previous research on the internal structure of the electrospun silk nanofibers
loaded with casein/DSS [58]. The current study confirmed the fibrous structure’s homo-
geneity, which indicates that DSS was loaded into the fibers as an amorphous polymorph.
A polymorph refers to compounds that have the same chemical formula but different
crystal structures. The solubility of the polymorphs does not differ. It is generally known
that many organic molecules, including diclofenac, can be obtained in more than one
crystalline form [59]. The results of the TEM analysis suggest considering amorphization
as a factor slowing down the crystallization process of diclofenac salt. This leads to the
conclusion that in the conducted study, diclofenac is incorporated into the structure of
nanofibers mainly in the amorphous state. This phenomenon has already been described
in published studies [60], and the amorphous state can explain TEM micrographs without
changes in the internal structure.

The structural analysis was examined by ATR-FTIR. The absorbance spectra of the
electrospun pure PCL, of the diclofenac sodium salt, and of the electrospun DSS-loaded
PCL mats in two different concentrations of DSS, 12.5 and 25 wt%, which were analyzed
in the 600–4000 cm−1 region to prove the presence of the DSS in the fibers, are shown in
Figure 3. An ATR-FTIR analysis (Figure 3b) showed the presence of PCL based on its strong
band corresponding to the carbonyl stretching mode around 1724 cm−1. The 2945 and
2865 cm−1 bands are specific for the asymmetric and symmetric CH2 stretching of PCL.
The 1293 cm−1 region corresponds to C–O and C–C stretching in the crystalline phase of
PCL. By adding DSS into the polymer solution, changes in the ATR-FTIR spectrum and the
new absorption bands appearing between 3400 and 3200 cm−1 (Figure 3c,d), corresponding
to the –NH group of DSS, can be clearly observed. Strong bands around 1574 cm−1 belong
to the C=C bonding, and peaks in the absorption range 700–1300 cm−1 could be attributed
to the C–Cl and C–N bonds of DSS. In the spectrum in Figure 3d, the absorption bands are
more distinct due to the higher DSS concentration compared to the spectrum in Figure 3c.
These observations agree with in-depth studies in the available literature [61,62].

The thermal behavior of the electrospun pure PCL and DSS-loaded PCL mats is de-
picted in Figure 4. The TGA curve of the electrospun pure PCL shows stability up to 350 ◦C.
The total thermal decomposition of the investigated samples occurred at a temperature of
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450 ◦C [63,64]. The mass loss of electrospun DSS-loaded PCL mats occurs in two steps. TGA
curves of PCL/12.5%DSS and PCL/25%DSS fibrous mats show the first step of mass loss at
230 ◦C and the second step at 350 ◦C. The first temperature of thermal decomposition can
be attributed to the diclofenac sodium salt [65]; the second temperature of thermal decom-
position can be attributed to the PCL. The decomposition temperature of PCL/12.5%DSS
and PCL/25%DSS mats slightly decreased with increasing DSS concentration. In the case
of the PCL/50%DSS mat, the temperature of decomposition is 290 ◦C. The DSS affects the
thermal stability of the electrospun pure PCL mat. A shift towards a lower temperature
of decomposition value indicates a decrease in polymer stability. The PCL/2.5%DSS and
PCL/6%DSS fibrous mats showed no differences compared to the electrospun pure PCL
mat; therefore, they are not depicted in Figure 4. Nevertheless, since all materials are
organic substances, it is unusual to observe that approximately 5–15% of the initial mass
remains at 500 ◦C. This interesting thermal behavior of DSS has been pointed to in the
already published studies [65,66].

The mechanical stress/strain testing was carried out to determine the tensile strength
(σ) and strain (ε) of the electrospun fibrous mats and to assess the additives’ impact on
the mechanical properties. Generally, the mechanical properties of electrospun mats are
rather weak due to the flexibility of the polymer backbone. The macromolecules chains
in the solution tend to be highly coiled and entangled in this state. After electrospinning,
the chains remain coiled. Such a polymer chain conformation will result in fibers with
molecular chains that can slip when exposed to a tensile force, resulting in poor mechanical
properties [67]. Another reason for poor mechanical properties can be the random arrange-
ment of individual fibers in the mats [68]. The results of stress/strain testing are shown
in Table 3. The strength of the pure PCL was 7.5 MPa ± 1.2 MPa. It should be noticed
that the strength of pure PCL in this study is slightly higher than in already published
studies [69,70]. This would be explained by the smaller average diameters, which indicates
the higher molecular orientation in the fibers. DMA studies showed that the mechanical
properties worsened as the amount of the DSS in the fibrous structure increased. The
strength decreased from 7.5 MPa ± 1.2 MPa for the PCL pure to 1.5 MPa ± 0.3 MPa for the
PCL/50%DSS fibrous mat. The strain also decreased as the DSS content increased from
260 ± 74% for PCL pure to 41 ± 23 for PCL/50%DSS.

Measuring the water contact angle is an essential technique for determining the surface
wettability of mats by a liquid. It is important for the various electrospun mat applications
to control their interaction with water; for example, hydrophilic mats show better affinity
to cells [71,72]. The results of the contact angle of the PCL and DSS-loaded PCL mats are
shown graphically in Figure 5. The water contact angle was evaluated depending on the
concentration of the DSS in the PCL structure. In pure PCL, the contact angle was 100◦ ± 4◦,
which indicates the low wettability of the mat. The increasing DSS concentration improved
the hydrophilicity of the mats. The contact angles of all the investigated samples are listed
in Table 4. The PCL/6%DSS and PCL/12.5%DSS mats were well wettable, which resulted
from the contact angle of 68◦ ± 8◦ and 33◦ ± 3◦, respectively. The drops immediately
penetrated the surface of the mats in the cases of PCL mats with a DSS concentration of
25 wt% and higher; the wettability was complete. This result is due to the polar character
of diclofenac sodium salt.

The radical scavenging activity of diclofenac sodium salt in bulk and after its release
from the PCL electrospun mat into the phosphate buffer solution (PBS, pH 7.4) in 24 h of
incubation was studied using electron paramagnetic resonance spectroscopy. Free radicals
were detected using the stable free radical TEMPO• after removing the DSS from the PCL
mats. The TEMPO• is reduced when it reacts with the diclofenac sodium salt donating
hydrogen, and this reduction is recorded based on the corresponding inhibition of the EPR
spectrum [73]. No significant changes were detected in the quartet resonance of TEMPO•,
as can be seen in Figure 6. This result confirms the antioxidant activity of DSS also after
undergoing the high applied voltage and releasing from electrospun PCL/12.5%DSS mat.
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The result is comparable with the previous study conducted on electrospun silk nanofibers
loaded with casein/DSS [58].

The antimicrobial activity of diclofenac sodium salt was described by many au-
thors [74,75]. In this study, the antimicrobial activity of the electrospun pure PCL and
DSS-loaded PCL mats was tested against S. aureus and E. coli by the contact method ac-
cording to ISO 22196:2011. The selected bacterial strains are the most common bacteria
that cause soft tissue infections that delay wound healing [76,77]. S. aureus most often
causes skin infections [78], while E. coli is considered the primary source of burn wound
infections [79]. The results of the antibacterial activity test are listed in Table 5 and Figure 7.
The number of viable bacteria recovered was established. The results of this experiment
showed that bacterial growth on the PCL mats at different concentrations of diclofenac
sodium salt was reduced for both strains tested. The 2.5 wt% of DSS is a sufficient con-
centration to achieve more than 85% reduction in bacteria growth of both tested strains
after 24 h of contact. With the increase in DSS concentration, there is a further reduction in
growth. PCL with 12.5–50 wt% diclofenac sodium salt concentrations resulted in a 99%
reduction in E. coli and S. aureus cells. The inhibition of bacterial growth with the increasing
DSS concentration was confirmed by SEM micrograph, as seen in Figure 8 (S. aureus) and
Figure 9 (E. coli). Studies have shown that diclofenac sodium salt is an effective inhibitor of
the growth of selected bacteria, although TEM micrographs indicated the amorphous state
of DSS incorporated into the nanofiber structure during electrospinning. Literature data
indicate that a change in the crystalline state may also result in a change in efficiency [60].
Evidently, the DSS did not lose its efficiency.

Biocompatibility of electrospun PCL fibrous mats combined with natural or synthetic
polymers and their use in biomedical applications have been demonstrated in the litera-
ture [25,80,81]. As expected, the drug-free PCL mats used in this study have proven to be
biocompatible with the HeLa and Ca Ski cells used (Figure 10a). It was shown previously
that PCL/PEG nanofibers could control dipyridamole drugs [82]. Diclofenac sodium salt
was used as the model drug in this study, as it was shown to have anti-inflammatory
properties in addition to anticancer activity [37]. The PCL/12.5%DSS mat was selected to
study the effect of the released drug on cancer cells (HeLa and Ca Ski) and normal skin cells
(MRC 5) as it exhibited relatively good mechanical properties and thermal stability with
very good antimicrobial activity. As shown in Figure 10b, all of the treated cells’ viabilities
after 24 h incubation were significantly decreased compared to the control. However, after
an additional 24 h of incubation (48 h in summary), the normal skin cells (MRC 5) recovered,
and their viability increased. The viability of cancer cells decreased compared to control
cells and cells after a 24 h treatment with PCL mats containing DSS. The decrease in cell
viability can be assigned to the increased concentration of a released drug. Moreover, Ca
Ski cells were more sensitive to released drugs with a viability of less than 50% compared
to HeLa cells with 60% viability.

The morphology of cells in the presence of PCL mats did not change; all three types
of cells exhibited a typical shape after either 24 or 48 h of incubation (Figure 11). In the
presence of DSS-loaded PCL mats, the released DSS caused a decrease in cell viability
which was observed when changing morphological patterns showed necrosis signs. The
presence of necrotic cells is more pronounced in both cancer cell lines compared to normal
cells. These results confirm that biocompatible PCL fibrous mats could be used for the
controlled release of drugs, such as DSS.

5. Conclusions

Pure PCL and DSS-loaded PCL fibrous mats were fabricated by electrospinning, and
comprehensively characterized. Randomly distributed beadles’ fibers with good surface
homogeneity were obtained for pure PCL, as well as for all concentrations of DSS, with
average diameters fibers in the range of 162–290 nm. The addition of DSS above 6 wt%
increased the average diameters as DSS concentration increased, as well as decreased
polymer stability and mechanical properties, especially for the PCL/50%DSS fibrous mat,
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whereas the increasing DSS concentration improved the hydrophilicity of the fibrous mats.
The electrospun mats were tested for antimicrobial activity against S. aureus (G+) and E.
coli (G−) bacteria. It was observed that the reduction in viability of 99.25% for S. aureus and
98.83% for E. coli cells occurred with the PCL/12.5%DSS mat. The reduction in viability of S.
aureus and E. coli was almost 100% for the sample with the maximum concentration of DSS
(PCL/50%DSS mat). Cytotoxicity and biocompatibility were tested with human normal
lung fibroblasts cells (MRC 5). The activity of the drug released from electrospun mats was
studied against epidermoid carcinoma from the metastatic site in the small intestine (Ca
Ski) and cervix carcinoma (HeLa).

The obtained results indicate that electrospun DSS-loaded PCL mats exhibit potential
in therapeutic applications as wound dressings with the ability to inhibit bacterial infections.
In particular, the PCL/12.5%DSS fibrous mat showed relatively good mechanical properties
and thermal stability with very good antimicrobial activity, biocompatibility and good
anticancer activity.
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