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Abstract: In this manuscript the dynamic response of porous functionally-graded (FG) Bernoulli–
Euler nano-beams subjected to hygro-thermal environments is investigated by the local/nonlocal
stress gradient theory of elasticity. In particular, the influence of several parameters on both the
thermo-elastic material properties and the structural response of the FG nano-beams, such as material
gradient index, porosity volume fraction, nonlocal parameter, gradient length parameter, and mixture
parameter is examined. It is shown how the proposed approach is able to capture the dynamic
behavior of porous functionally graded Bernoulli–Euler nano-beams under hygro-thermal loads and
leads to well-posed structural problems of nano-mechanics.

Keywords: porous functionally graded materials; nano-beams; dynamics; local/nonlocal stress
gradient elasticity; hygro-thermal loadings

1. Introduction

In the last decades, nanostructures have become a subject of great interest among
academic researchers due to their wide of application potentials including high-tech devices
in nano-scaled systems such as NEMS (nano electromechanical systems) [1–5]. Nowadays,
with the rapidly development of the fabrication technology of materials, the concept of
functionally graded materials (FGMs) is more and more extended to nanotechnologies in
order to design nano-scaled structures for use in the most extreme conditions, including
extremely high ambient temperatures and absorbed moisture environments [6–11]. In this
way, the use of temperatures-dependent FGMs allows to improve the overall performance
of nanostructures as well as to ensure their structural integrity when they are exposed
to the coupled effect of mechanical loads and hygro-thermal environments. So that, it is
necessary to study in depth their response in such loading conditions.

As demonstrated by the results of experimental nanoscale tests and atomistic sim-
ulations [12,13], nanostructures exhibit a size-dependent structural response that can be
captured by resorting the non-classical continuum models including both nonlocal theories
of elasticity and nonlocal gradient ones. These theories are widely applied to capture the
nano-scale effects, but in a different way: the first one is a formulation based on a single
length scale parameter, while the second one is based on two length scale parameters in
order to consider both of the microstructure strain mechanism and the inter-atomic long-
range force. In addition, nonlocal theories are able to predict only softening or hardening
material response as opposed to nonlocal gradient ones capable to predict both softening
and hardening behaviors of the material at nano-scale. In the framework of nonlocal elas-
ticity, two of the most notable purely nonlocal constitutive laws are surely the softening or
Eringen’s strain-driven nonlocal integral model (StrainDM) [14,15], in which the total stress
of a given point is a function of the strain at all other adjacent points of the continuum, and
the more recently hardening or stress-driven nonlocal integral model (StressDM) developed

Nanomaterials 2021, 11, 910. https://doi.org/10.3390/nano11040910 https://www.mdpi.com/journal/nanomaterials

https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0003-3905-5263
https://orcid.org/0000-0002-3180-7478
https://orcid.org/0000-0003-4149-8661
https://doi.org/10.3390/nano11040910
https://doi.org/10.3390/nano11040910
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nano11040910
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/2079-4991/11/4/910?type=check_update&version=3


Nanomaterials 2021, 11, 910 2 of 16

by Romano and Barretta [16], in which the strain at any point is resulted from the stress
of all points. As widely discussed in [17–19], the differential formulation of StrainDM is
ill-posed and leads to the unexpected paradoxical results for some boundary and loading
conditions, unlike the well-posed StressDM that provides a consistent approach for the
analysis of nanostructures [20–31].

In addition, Lim et al. [32] introduced the nonlocal strain gradient theory (Lim’s
NStrainGT) in order to generalize the Eringen’s nonlocal model by combining it with the
strain gradient model [33,34] in which the total stress is a function of the strain and its
gradient not only at the reference point x, but also at all other points within the domain.
Although this model is extensively applied for many years by several researchers in a large
number of investigations, recently Zaera et al. [35] have declared that the nonlocal strain
gradient theory leads to ill-posed structural problems since the constitutive boundary con-
ditions are in conflict with both non-standard kinematic and static higher-order boundary
conditions.

The ill-posed problem related to the Lim’s NStrainGT model may be bypassed by
resorting to the Eringen local-nonlocal mixture constitutive model [36] or by using coupled
theories based on the combination of pure nonlocal theory with the surface theory of
elasticity [37]. In the last years, some applications of the theories mentioned above are
addressed in [38–41] and [42,43], respectively.

The ill-posedness of Lim’s NStrainGT can be advantageously circumvented using
the variationally consistent nonlocal gradient formulations, such as local/nonlocal strain-
driven gradient (L/NStrainG) and local/nonlocal stress-driven gradient (L/NStressG)
theories, conceived by Barretta et al. in [44,45] for both static and dynamics problems.
These novel constitutive formulations lead to well-posed structural problems of nano-
mechanics.

The motivation of the present paper is to extend the analysis on the hygro-thermal
bending behavior of porous FG nano-beams, developed in [46] by using the aforementioned
consistent nonlocal gradient formulations, to their dynamic response, against of many
articles on the topic in which the hygro-thermal effects on the size-dependent behavior of
nanostructures have been analyzed by making recourse to Eringen’s nonlocal model [47–53]
or Lim’s nonlocal strain gradient theory in [54–56], more popularities due to their simply
differential formulation.

The main assumptions and simplifications used for studying the nonlocal vibration
characteristics of porous functionally graded within hygro-thermal environments are the
following:

- a slender and perfectly straight porous FG nano-beam of an Euler–Bernoulli type, with
rectangular cross-section, is considered; hence, the influence of thickness stretching
and shear deformation are neglected;

- the material properties are assumed to be temperature dependent following a nonlin-
ear equation and to vary continuously through the thickness according to a power
law distribution in terms of the volume fractions of the constituents;

- both a uniform temperature variation and a moisture concentration are assumed to
occur in the thickness direction only;

- the thermo-elastic material properties are evaluated with respect to the elastic center
of the nano-beam cross-section; hence, the bending–extension coupling due to the
variation of the functionally graded material is eliminated;

- the influence of a temperature-dependent rotary inertia has been considered.

The paper is structured as follows: The effective mechanical and hygro-thermal
properties of the FG material, as well as the equations of motion of the porous Bernoulli–
Euler nano-beams are derived in Section 2 by using the Hamilton’s principle. In Section 3,
the local/nonlocal stress-driven gradient model of elasticity is introduced. In Section 4 the
dimensionless governing equations of the linear transverse free vibrations are obtained.
The solution procedure is presented in Section 5 and validated in Section 6 where the
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main results of the free vibration analysis are also presented and discussed. Some closing
remarks are provided in Section 7.

2. Problem Formulation
2.1. Temperature-Dependent Porous FG Nano-Beam

Let us consider a Bernoulli–Euler nano-beam made of a metal-ceramic functionally
graded (FG) porous material with length “L”, thickness “h” and width “b”, undergoing
hygro-thermal loads (Figure 1).
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By denoting by y’ and z’ the principal axes of geometric inertia originating at the geo-
metric center O of the nano-beam rectangular cross-section, Σ(x), the effective value of the
FG material generic property, f (z′), including the mass density, ρ(z’), the Young’s modulus,
E(z’), the thermal expansion coefficient, α(z’), and the moisture expansion coefficient, β(z’),
can be evaluated by the following rule of mixture equation:

f
(
z′
)
= fm + ( fc − fm)

(
1
2
+

z′

h

)k
− ζ

2
( fc + fm) (1)

being fc and fm the generic thermo-elastic and physical properties of ceramic (Si3N4) and
metal (SuS3O4), whose characteristic values, P0, are listed in Table 1 [46]; k (k ≥ 0) and
ζ (ζ << 1) are the gradient index and the porosity volume fraction of the FG material,
respectively.

Table 1. Thermo-elastic properties of metal (SuS3O4) and ceramic (Si3N4).

Material Properties Unit P0

Ceramic (Si3N4)

Ec (GPa) 348.40
ρc (kg/m3) 2325
αc (K−1) 0.00000587
βc (wt% H2O)−1 0.0

Metal (SuS3O4)

Em (GPa) 201.04
ρm (kg/m3) 8011
αm (K−1) 0.00001233
βm (wt% H2O)−1 0.0005

Moreover, the following nonlinear equation is introduced to express the temperature
dependence of the thermo-elastic property, P(T):

P(T) = P0

(
1 + X−1 T−1 + X1 T + X2 T2 + X3 T3

)
(2)
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where X−1, X1, X2 and X3 are the coefficients of the two constituent materials (Table 2).

Table 2. Coefficients of material phases for metal (SuS3O4) and ceramic (Si3N4).

Ceramic (Si3N4) Metal (SuS3O4)

Coefficients Unit Ec ρc αc βc Em ρm αm βm

X−1 (K) 0 0 0 0 0 0 0 0
X1 (K−1) −0.0003070 0 0.0009095 0 0.0003079 0 0.0008086 0
X2 (K−2) 2.160 × 10−7 0 0 0 −6.534 × 10−7 0 0 0
X3 (K−3) −8.946 × 10−11 0 0 0 0 0 0 0

In this investigation, both a uniform temperature rise, T(z′ ) = Tb +∆T, and a moisture
concentration, C(z′ ) = Cb + ∆C, between the bottom (z’ = −h/2) and the top surface
(z’ = +h/2) of the nano-beam cross-section are considered (Figure 1), being T(z′ ) and C(z′ )
the current values of the temperature and moisture through the thickness direction (z’),
Tb = 305 [K] and Cb = 0 [wt%H2O] the reference values of the temperature and moisture
concentration at the bottom surface, and ∆T, ∆C the increments of the temperature and
moisture concentration, respectively.

In order to eliminate the bending–extension coupling due to the variation of the
functionally graded material, the thermo-elastic material properties are evaluated with
respect to a new elastic Cartesian coordinate system originating at the elastic center C,
whose position, z′c, is given as:

z′c =

∫
Σ E(z′ , T)z′ dΣ∫

Σ E(z′ , T)dΣ
(3)

Therefore, the coordinate z originating at C is given by z = z’–z
′
c , while y = y’.

2.2. Governing Equation

Based on Bernoulli–Euler theory, the displacement field components (ux, uz) and the
corresponding nonzero strain (εxx) are expressed as follows:

ux(x, z, t) = u(x, t)− z
∂w
∂x

(x, t) (4)

uz(x, z, t) = w(x, t) (5)

εxx(x, z, t) =
∂u(x, t)

∂x
− z

∂2w(x, t)
∂x2 (6)

where u (x,t) and w (x,t) are the axial and transverse displacements of the elastic centre C,

at time t, respectively, and the term ∂2w(x,t)
∂x2 refers to the geometrical curvature χ.

Now, by using Hamilton’s principle [49], the equations of motion can be derived as:

∂N(x, t)
∂x

= Aρ
∂2u(x, t)

∂t2 , (7)

∂2M(x, t)
∂x2 −

(
NT + NC

)∂2w(x, t)
∂x2 = Aρ

∂2w(x, t)
∂t2 − Iρ

∂4w(x, t)
∂x2 ∂t2 , (8)

with the corresponding boundary conditions at x = [0,L]:

u(x, t) or N(x, t), (9)

− ∂w(x, t)
∂x

or M(x, t), (10)

w(x, t) or V(x, t) =
∂M(x, t)

∂x
−
(

NT + NC
)∂w(x, t)

∂x
, (11)
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where N(x, t), M(x, t), and V(x, t) denote the local axial force, the bending moment resul-
tant and the equivalent shear force, respectively. In Equations (7) and (8), Iρ and Aρ are,
respectively, the temperature-dependent rotary inertia and the effective cross-sectional
mass of the porous FG nano-beam, expressed as follow:

Iρ = b
∫ h

2−z′c

− h
2−z′c

ρ(z, T)z2dz, (12)

Aρ = b
∫ h

2−z′c

− h
2−z′c

ρ(z, T)dz, (13)

and NT and NC denote the hygro-thermal axial force resultants, defined as:

NT = NT(z, T) =
∫

Σ
Eα∆Tdz, (14)

NC = NC(z, T) =
∫

Σ
Eβ∆Cdz, (15)

in which α = α(z, T) and β = β(z, T) are the thermal and moisture expansion temperature-
dependent coefficients, respectively, previously defined, and E = E(z, T).

3. Local/Nonlocal Stress Gradient Formulation

By using the local/nonlocal stress gradient integral formulation [46], the elastic axial
strain component, εel

xx, is expressed by the following constitutive mixture equation:

εel
xx = ξ1

σxx(x, t)
E

+
1− ξ1

E

∫ L

0
ΦLc(x− ξ) σxx(ξ, t)dξ − 1

E
L2

l
∂

∂x

∫ L

0
ΦLc(x− ξ)

∂σxx(ξ, t)
∂x

dξ, (16)

where x and ξ are the position vectors of the points of the domain at time t; σxx and ∂σxx
∂x

denote the axial stress component and its gradient, respectively; ξ1 is the mixture parameter
and Ll is the gradient length parameter.

Moreover, ΦLc , is the bi-exponential function of the scalar averaging kernel:

ΦLc(x, Lc) =
1

2Lc
exp (− |x|

Lc
), (17)

depending on the length-scale parameter, Lc, which describe the nonlocal effects.
In hygro-thermal environment, the elastic axial strain is expressed by the following

relation:
εel

xx = εxx − ε∗xx, (18)

in which, εxx, is the total axial strain and, ε∗xx = α ∆T + β∆C, denotes the non-elastic axial
strain depending on the increases in temperature, ∆T, and moisture concentration, ∆C.

As it is well-known, by choosing a smoothing function as Equation (17), the integro-
differential Equation (16) can be rewritten in the following differential form:

εel
xx − L2

c
∂2εel

xx
∂x2 =

σxx

E
− L2

c
E

(
ξ1 +

L2
l

L2
c

)
∂2σxx

∂x2 , (19)

equipped with the constitutive boundary conditions (CBCs) at the nano-beam ends:

∂εel
xx (0, t)

∂x
− 1

Lc
εel

xx(0, t) = − 1
E

ξ1

Lc
σxx(0, t) +

1
E

(
ξ1 +

L2
l

L2
c

)
∂σxx(0, t)

∂x
, (20)

∂εel
xx (L, t)

∂x
+

1
Lc
εel

xx(L, t) =
1
E

ξ1

Lc
σxx(L, t) +

1
E

(
ξ1 +

L2
l

L2
c

)
∂σxx(L, t)

∂x
. (21)
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Next, by substituting Equation (6) into Equations (19)–(21), then multiplying by (1, z),
the integration over the nano-beam cross section provides the following NStressG equations
in terms of axial and transverse displacement:

∂u(x, t)
∂x

− L2
c

∂3u(x, t)
∂x3 −

(
NT + NC)

AE
=

NNStressG(x, t)
AE

− L2
c

AE

(
ξ1 +

L2
l

L2
c

)
∂2NNStressG(x, t)

∂x2 , (22)

− ∂2w(x, t)
∂x2 + L2

c
∂4w(x, t)

∂x4 =
MNStressG(x, t)

IE
− L2

c
IE

(
ξ1 +

L2
l

L2
c

)
∂2MNStressG(x, t)

∂x2 , (23)

with two pairs of CBCs:

∂2u(0, t)
∂x2 − 1

Lc

∂u(0, t)
∂x

= − 1
AE

ξ1

Lc
NNstressG(0, t) +

1
AE

(
ξ1 +

L2
l

L2
c

)
∂NNStressG(0, t)

∂x
, (24)

∂2u(L, t)
∂x2 +

1
Lc

∂u(L, t)
∂x

=
1

AE

ξ1

Lc
NNstressG(L, t) +

1
AE

(
ξ1 +

L2
l

L2
c

)
∂NNStressG(L, t)

∂x
, (25)

− ∂3w
∂x3 (0, t) +

1
Lc

∂2w
∂x2 (0, t) = − 1

IE

ξ1

Lc
MNstressG(0, t) +

1
IE

(
ξ1 +

L2
l

L2
c

)
∂MNStressG(0, t)

∂x
, (26)

− ∂3w
∂x3 (L, t)− 1

Lc

∂2w
∂x2 (L, t) =

1
IE

ξ1

Lc
MNstressG(L, t) +

1
IE

(
ξ1 +

L2
l

L2
c

)
∂MNStressG(L, t)

∂x
, (27)

in which NNStressG and MNStressG denote the local/nonlocal stress gradient axial force and
moment resultants; AE and IE are, respectively, the axial and bending stiffnesses of a FG
nano-beam, defined as:

IE = b
∫ h

2−z′c

− h
2−z′c

E(z, T)z2dz, (28)

AE = b
∫ h

2−z′c

− h
2−z′c

E(z, T)dz. (29)

Furthermore, by substituting Equations (7) and (8) into Equations (22) and (23), the
local/nonlocal stress gradient axial force and moment resultants can be described explicitly
in terms of displacement components as follows:

NNStressG(x, t) = AE

(
∂u(x, t)

∂x
− L2

c
∂3u(x, t)

∂x3

)
−
(

NT + NC
)
+ L2

c

(
ξ1 +

L2
l

L2
c

)
Aρ

∂3u(x, t)
∂x∂t2 , (30)

MNStressG(x, t) = −IE
∂2w(x,t)

∂x2 + IEL2
c

∂4w(x,t)
∂x4 + L2

c

(
ξ1 +

L2
l

L2
c

)(
Aρ

∂2w(x,t)
∂t2 − Iρ

∂4w(x,t)
∂x2∂t2 +

(
NT + NC) ∂2w(x,t)

∂x2

)
. (31)

Finally, by employing Equations (7), (8), (30), and (31) the following local/nonlocal
stress gradient equations of motion are derived:

AE
∂2u(x, t)

∂x2 − L2
c AE

∂4u(x, t)
∂x4 − ∂

∂x

(
NT + NC

)
= Aρ

∂2u(x, t)
∂t2 − L2

c

(
ξ1 +

L2
l

L2
c

)
Aρ

∂4u(x, t)
∂x2∂t2 , (32)

−IE
∂4w(x,t)

∂x4 + IEL2
c

∂6w(x,t)
∂x6 + L2

c

(
ξ1 +

L2
l

L2
c

)
∂2

∂x2

(
Aρ

∂2w(x,t)
∂t2 − Iρ

∂4w(x,t)
∂x2 ∂t2 +

(
NT + NC) ∂2w(x,t)

∂x2

)
=(

Aρ
∂2w(x,t)

∂t2 − Iρ
∂4w(x,t)
∂x2 ∂t2 +

(
NT + NC) ∂2w(x,t)

∂x2

)
,

(33)

with the following natural boundary conditions at the nano-beam ends (x = 0, L):

NNstressG(x, t) = N, (34)
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∂MNstressG(x, t)
∂x

−
(

NT + NC
)∂w(x, t)

∂x
= V, (35)

MNstressG(x, t) = M, (36)

being N, M, and V the assigned generalized forces acting at the nano-beam ends together
and with the aforementioned CBCs at the nano-beam ends given by Equations (24)–(27).

4. Linear Transverse Free Vibration Analysis

Firstly, the following dimensionless quantities are introduced:

x
L
= x̃,

w(x, t)
L

= w̃(x̃, t),

Lc

L
= λc,

Ll
L

= λl ,

NT

IE
L2 = ÑT ,

NC

IE
L2 = ÑC,

AρL4

IE
= Ãρ,

1
L2

Iρ

Ãρ

= g̃2,

ω2 Ãρ = ω̃2. (37)

Applying these quantities, the dimensionless governing equations of the linear trans-
verse free vibrations associated with NStressG constitutive formulation can be obtained as
follows:

- Dimensionless free vibration equation

λ2
c

∂6w̃(x̃,t)
∂x̃6 − ∂4w̃(x̃,t)

∂x̃4 + λ2
c

(
ξ1 +

λ2
l

λ2
c

)(
ÑT + ÑC

)
∂4w̃(x̃,t)

∂x̃4 −
(

ÑT + ÑC
)

∂2w̃(x̃,t)
x̃2

= Ãρ

(
∂2w̃(x̃,t)

∂t2 − g̃2 ∂4w̃(x̃,t)
∂x̃2∂t2

)
− ω̃2λ2

c

(
ξ1 +

λ2
l

λ2
c

)(
∂4w̃(x̃,t)
∂x̃2∂t2 − g̃2 ∂6w̃(x̃,t)

∂x̃4∂t2

)
,

(38)

- Dimensionless standard boundary conditions

w̃(x̃, t) = w̃∗, or
∂M̃NStressG(x̃, t)

∂x̃
−
(

ÑT + ÑC
)∂w̃(x̃, t)

∂x̃
= Ṽ, (39)

−∂w̃(x̃, t)
∂x̃

=
∂w̃∗

∂x̃
, or M̃NStressG(x̃, t) = M̃, (40)

- Dimensionless constitutive boundary conditions

− ∂3w̃(0, t)
∂x̃3 +

1
λc

∂2w̃(0, t)
∂x̃2 = − ξ1

λc
M̃NStressG(0, t) +

(
ξ1 +

λ2
l

λ2
c

)
∂M̃NStressG(0, t)

∂x̃
, (41)

−∂3w̃(1, t)
∂x̃3 − 1

λc

∂2w̃(1, t)
∂x̃2 =

ξ1

λc
M̃NStressG(1, t)+

(
ξ1 +

λ2
l

λ2
c

)
∂M̃NStressG(1, t)

∂x̃
. (42)
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In addition, the bending moment in dimensionless form can be rewritten as:

M̃NStressG(x̃, t) = − ∂2w̃(x̃,t)
∂x̃2 + λ2

c
∂4w̃(x̃,t)

∂x̃4 + Ãρ

(
λ2

c ξ1 + λ2
l
)( ∂2w̃(x̃,t)

∂t2 − g̃2 ∂4w̃(x̃,t)
∂x̃2∂t2

)
+
(
λ2

c ξ1 + λ2
l
)((

ÑT + ÑC
)

∂2w̃(x̃,t)
∂x̃2

)
.

(43)

5. Solution Procedure

The natural frequencies and mode shapes of flexural vibrations are here evaluated by
employing the classical separation of spatial and time variables:

w̃(x̃, t) = W̃(x̃)eiω̃t, (44)

where ω̃ denotes the dimensionless natural frequency of flexural vibrations.
By substituting Equation (44) into Equations (38)–(43), the following dimensionless

governing equations of the linear transverse free vibrations based on NStressG can be
rewritten in terms of non-dimensional spatial shape W̃(x̃) as:

- Dimensionless free vibration equation in terms of spatial shape

λ2
c

∂6W̃(x̃)
∂x̃6 + ∂4W̃(x̃)

∂x̃4

(
ω̃2 (λ2

c ξ1 + λ2
l
)

g̃2 +
(
λ2

c ξ1 + λ2
l
)(

ÑT + ÑC
)
− 1
)

− ∂2W̃(x̃)
x̃2

(
ω̃2(λ2

c ξ1 + λ2
l
)
+ g̃2ω̃2 +

(
ÑT + ÑC

))
+ ω̃2W̃(x̃) = 0;

(45)

- Dimensionless standard boundary conditions in terms of spatial shape

W̃(x̃) = W̃∗, or
∂M̃NStressG(x̃)

∂x̃
−
(

ÑT + ÑC
)∂W̃(x̃)

∂x̃
= Ṽ, (46)

−∂W̃(x̃)
∂x̃

=
∂W̃∗

∂x̃
, or M̃NStressG(x̃) = M̃; (47)

- Dimensionless constitutive boundary conditions in terms of spatial shape

− ∂3W̃(0)
∂x̃3 +

1
λc

∂2W̃(0)
∂x̃2 = − ξ1

λc
M̃NStressG(0) +

(
ξ1 +

λ2
l

λ2
c

)
∂M̃NStressG(0)

∂x̃
, (48)

− ∂3W̃(1)
∂x̃3 − 1

λc

∂2W̃(1)
∂x̃2 =

ξ1

λc
M̃NStressG(1) +

(
ξ1 +

λ2
l

λ2
c

)
∂M̃NStressG(1)

∂x̃
; (49)

- Dimensionless bending moment in terms of spatial shape

M̃NStressG(x̃) = λ2
c

∂4W̃(x̃)
∂x̃4 + ∂2W̃(x̃)

∂x̃2

(
ω̃2(λ2

c ξ1 + λ2
l
)

g̃2 +
(
λ2

c ξ1 + λ2
l
)(

ÑT + ÑC
)
− 1
)
−

ω̃2(λ2
c ξ1 + λ2

l
)

W̃(x̃).
(50)

The analytical solution of Equation (45) can be expressed in the following form:

W̃(x̃) = ∑6
k=1 qkex̃ βk , (51)

wherein βk are the roots of the characteristic equation, and qk are six unknown constants to
be determined by imposing suitable boundary conditions.

Note that, the six unknown constants can be obtained by satisfying boundary con-
ditions Equations (46)–(49). Lastly, the linear fundamental natural frequencies of an FG
nano-beam consists into solving the eigenvalue problem expressed in terms of a six dimen-
sional array, q = {q1, . . . , q6}. It can be noted that the corresponding characteristic equation
is strongly nonlinear and is numerically solved by using a Wolfram language code written
by the authors in Mathematica.
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6. Results and Discussion

In this paragraph, a free vibration analysis of porous FG nano-beams under uni-
form hygro-thermal environment is carried out by considering two boundary conditions:
clamped-free (C-F) and clamped-clamped (C-C).

Firstly, the present approach has been validated by comparing the corresponding
results, in terms of normalized frequency ratio between the dimensionless nonlocal funda-
mental frequency, ω̃, and the dimensionless local natural frequency, ω̃loc, to those obtained
by Barretta et al. in [45] assuming T = C = 0. In particular, Tables 3 and 4 collect the
values of the aforementioned frequency ratio evaluated for two values of the mixture
parameter (0.0, 0.5), varying λl and λc in the sets {0.1, 0.3, 0.5} and {0+, 0.2, 0.4, 0.6, 0.8, 1.0},
respectively. It is worth noting that ω̃ and ω̃loc have been evaluated for a given value of
the non-dimensional gyration radius, g̃, equal to 1/20.

Table 3. Normalized fundamental flexural frequency of cantilever nano-beam (C-F) for T = C = 0.

λc

ω̃
ω̃loc

; T = C = 0.

ξ1 = 0.0 ξ1 = 0.5

λl =
0.1

Ref.
[45]

λl =
0.3

Ref.
[45]

λl =
0.5

Ref.
[45]

λl =
0.1

Ref.
[45]

λl =
0.3

Ref.
[45]

λl =
0.5

Ref.
[45]

0+ 0.99145 0.99145 0.92475 0.92475 0.82685 0.82685 0.99096 0.99096 0.92435 0.92435 0.82656 0.82656
0.2 1.21717 1.21717 1.14936 1.14936 1.04530 1.04530 1.08962 1.08962 1.04005 1.04005 0.96049 0.96049
0.4 1.44445 1.44445 1.38385 1.38385 1.28526 1.28526 1.16113 1.16113 1.12886 1.12886 1.07277 1.07277
0.6 1.64847 1.64847 1.59405 1.59405 1.50187 1.50187 1.20831 1.20831 1.18632 1.18632 1.12796 1.12796
0.8 1.83235 1.83235 1.78272 1.78272 1.69628 1.69628 1.24099 1.24099 1.22520 1.22520 1.16337 1.16337
1.0 2.00041 2.00041 1.95455 1.95455 1.87306 1.87306 1.26483 1.26483 1.25298 1.25298 1.18922 1.18922

Table 4. Normalized fundamental flexural frequency of fully clamped (C-C) nano-beam for T = C = 0.

λc

ω̃
ω̃loc

; T = C = 0.

ξ1 = 0.0 ξ1 = 0.5

λl =
0.1

Ref.
[45]

λl =
0.3

Ref.
[45]

λl =
0.5

Ref.
[45]

λl =
0.1

Ref.
[45]

λl =
0.3

Ref.
[45]

λl =
0.5

Ref.
[45]

0+ 0.89165 0.89165 0.52522 0.52522 0.34619 0.34619 0.88416 0.88416 0.52314 0.52314 0.34529 0.34529
0.2 1.58127 1.58127 0.89822 0.89822 0.58545 0.58545 1.14531 1.14531 0.77938 0.77938 0.54126 0.54126
0.4 2.57577 2.57577 1.38724 1.38724 0.93713 0.93713 1.28946 1.28946 1.02374 1.02374 0.77625 0.77625
0.6 3.61940 3.61940 2.01640 2.01640 1.30727 1.30727 1.34633 1.34633 1.16750 1.16750 0.95453 0.95453
0.8 4.67784 4.67784 2.59796 2.59796 1.68291 1.68291 1.37237 1.37237 1.24944 1.24944 1.07846 1.07846
1.0 5.74258 5.74258 3.18308 3.18308 2.06089 2.06089 1.38608 1.38608 1.29819 1.29819 1.16320 1.16320

6.1. Influence of Hygro-Thermal Loads

In this subsection, the effects of hygro-thermal environment on the normalized funda-
mental flexural frequency of nano-beams, with length L = 10 nm and squared cross-section
(b = h = 0.01 L), are presented by varying both the nonlocal parameter, λc, and the gra-
dient length parameter, λl . In the case under investigation, the dimensionless nonlocal
fundamental frequency, ω̃, has been evaluated assuming k = 0.3 and ζ = 0.15 and ranging
the temperature increment in the set {0, 25, 50, 75, 100 (K)} with a uniform and constant
value of the moisture concentration equal to 2 (wt% H2O). For a better interpretation of
the obtained results, it is interesting to show the influence of the temperature rise on the
non-dimensional gyration radius of the nano-beam (Figure 2).
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Note that the dimensionless local natural frequency, ω̃loc, has been obtained assuming
k = 0.0, ζ = 0.0 (pure ceramic), T = C = 0 and considering a value of the non-dimensional
gyration radius, g̃, equal to zero.

From the numerical evidence of Tables 5–8, it is possible to underline that the values
of the normalized fundamental flexural frequency based on local/nonlocal stress-driven
gradient theory of elasticity decrease as the temperature rise increases. Moreover, it is found
that such values always increase by increasing the nonlocal parameter and by decreasing
the gradient length parameter.

Table 5. Normalized fundamental flexural frequency of cantilever nano-beam (C-F) assuming ξ1 = 0.0.

ω̃
ω̃loc
− ξ1 = 0.0 − ∆C = 2.

λc

∆T = 25 ∆T = 50 ∆T = 75 ∆T = 100

λl =
0.1

λl =
0.3

λl =
0.5

λl =
0.1

λl =
0.3

λl =
0.5

λl =
0.1

λl =
0.3

λl =
0.5

λl =
0.1

λl =
0.3

λl =
0.5

0+ 0.98544 0.91112 0.81096 0.98543 0.91061 0.81076 0.95774 0.89743 0.78232 0.89187 0.85324 0.71161
0.1 1.13066 1.06061 0.95190 1.07907 1.00592 0.89094 1.02226 0.94452 0.81943 0.95918 0.87469 0.73300
0.2 1.36641 1.30477 1.20421 1.32124 1.25788 1.15415 1.27247 1.20677 1.09847 1.21960 1.15076 1.03596
0.3 1.57748 1.52261 1.42958 1.53723 1.48128 1.38631 2.49424 1.43689 1.33931 1.44822 1.38908 1.28804
0.4 1.76687 1.71711 1.63040 1.73033 1.67981 1.59176 1.69154 1.64008 1.55031 1.65033 1.59771 1.50575
0.5 1.93929 1.89349 1.81207 1.90563 1.85925 1.77684 1.87005 1.82299 1.73933 1.83242 1.78454 1.69935

Table 6. Normalized fundamental flexural frequency of cantilever nano-beam (C-F) assuming ξ1 = 0.5.

ω̃
ω̃loc
− ξ1 = 0.5 − ∆C = 2.

λc

∆T = 25 ∆T = 50 ∆T = 75 ∆T = 100

λl =
0.1

λl =
0.3

λl =
0.5

λl =
0.1

λl =
0.3

λl =
0.5

λl =
0.1

λl =
0.3

λl =
0.5

λl =
0.1

λl =
0.3

λl =
0.5

0+ 0.96700 0.89741 0.79637 0.91465 0.85428 0.76812 0.85375 0.79756 0.71106 0.75051 0.71109 0.59731
0.1 1.00082 0.94827 0.86294 0.94694 0.89096 0.79867 0.88681 0.82572 0.72204 0.81887 0.75007 0.62700
0.2 1.07717 1.04295 0.98332 1.02690 0.99065 0.92713 1.07134 0.93237 0.86316 0.90968 0.86669 0.78904
0.3 1.12808 1.10478 1.06236 1.08041 1.05580 1.01090 1.02814 1.00180 0.95349 0.97042 0.94176 0.88701
0.4 1.16349 1.14676 1.11549 1.11764 1.10001 1.06701 1.06757 1.04878 1.01348 1.01256 0.99224 0.95388
0.5 1.18936 1.17682 1.15296 1.14484 1.13164 1.10651 1.09635 1.08231 1.05554 1.04325 1.02813 0.99921
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Table 7. Normalized fundamental flexural frequency of fully clamped nano-beam (C-C) for ξ1 = 0.0.

ω̃
ω̃loc
− ξ1 = 0.0 − ∆C = 2.

λc

∆T = 25 ∆T = 50 ∆T = 75 ∆T = 100

λl =
0.1

λl =
0.3

λl =
0.5

λl =
0.1

λl =
0.3

λl =
0.5

λl =
0.1

λl =
0.3

λl =
0.5

λl =
0.1

λl =
0.3

λl =
0.5

0+ 0.87793 0.51401 0.34059 0.87788 0.51401 0.34059 0.87784 0.51358 0.34056 0.87775 0.51313 0.34050
0.1 1.56938 0.88682 0.57162 1.56718 0.88284 0.56538 1.56490 0.87869 0.55883 1.56254 0.87438 0.55194
0.2 2.55988 1.35548 0.92572 2.55854 1.35840 0.92207 2.55716 1.36141 0.91826 2.55572 1.29619 0.91430
0.3 2.59834 2.00256 1.29562 3.59739 2.00090 1.29307 3.59639 1.99917 1.29041 3.59536 1.99737 1.28765
0.4 4.65122 2.58140 1.67011 4.65046 2.58011 1.66815 4.64967 2.57877 1.66611 4.64886 2.57738 1.66399
0.5 5.71022 3.16352 2.04652 5.70959 3.16247 2.04492 5.70892 3.16137 2.04326 5.70824 3.16023 2.04154

Table 8. Normalized fundamental flexural frequency of fully clamped nano-beam (C-C) for ξ1 = 0.5.

ω̃
ω̃loc
− ξ1 = 0.5 − ∆C = 2.

λc

∆T = 25 ∆T = 50 ∆T = 75 ∆T = 100

λl =
0.1

λl =
0.3

λl =
0.5

λl =
0.1

λl =
0.3

λl =
0.5

λl =
0.1

λl =
0.3

λl =
0.5

λl =
0.1

λl =
0.3

λl =
0.5

0+ 0.86807 0.50998 0.34009 0.84925 0.49179 0.31288 0.84524 0.49166 0.30845 0.80905 0.48723 0.30840
0.1 1.13373 0.76745 0.52694 1.13089 0.76307 0.52041 1.12794 0.75850 0.51354 1.12487 0.75374 0.50631
0.2 1.27747 1.01222 0.76431 1.27501 1.00906 0.76006 1.27244 1.00576 0.75562 1.26987 1.00233 0.75100
0.3 1.33415 1.15579 0.94297 1.33180 1.15304 0.93960 1.32936 1.15020 0.93608 1.32682 1.14726 0.93243
0.4 1.36010 1.23753 1.06684 1.35780 1.23499 1.06389 1.35541 1.23235 1.06081 1.35293 1.22962 1.05762
0.5 1.37377 1.28614 1.15145 1.37149 1.28371 1.14873 1.36912 1.28118 1.14589 1.36667 1.27855 1.14295

6.2. Influence of Gradient Index and Porosity Volume Fraction

In this subsection, the influences of the material gradient index, k, and of the porosity
volume fraction, ζ on the frequency ratio between the nonlocal fundamental frequency,
ω, of porous FG nano-beams and the corresponding local natural frequency, ωc,loc, of a
purely nonporous ceramic nano-beam is presented. The values of ω and ωc,loc have been
evaluated assuming g̃ = 1/20 and two values of the mixture parameter, ξ1 = 0 and ξ1 = 0.5,
and neglecting the hygro-thermal loadings.

In particular, Figures 3 and 4 show the curves of the aforementioned frequency ratio
versus the gradient index, assuming λl = 0.1, with λc ranging in the intervals [0.0+–1.0],
while Figures 5 and 6 plot the curves of the frequency ratio λl ranging in the set {0.1, 0.3,
0.5} for a given value of λc equal to 0.2.
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Figure 6. Effects of the gradient index (k) on the frequency ratio of FG fully clamped nanobeam (C-C) for two different
values of porosity volume fraction (ζ = 0.0, 0.15) and for two different values of mixture parameter: ξ1 = 0.0 (a) and ξ1 = 0.5
(b), varying the gradient length parameter, λl, in the set {0.1, 0.3, 0.5}.

From these figures, it can be observed that all the frequency ratio curves tend to
decrease as the material gradient index, k, increases and that the continuous lines, corre-
sponding to nonporous FG nano-beams (ζ = 0.0), always present greater values than the
dashed ones, which correspond to porous FG nano-beams (ζ = 0.15).
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Moreover, on one hand (Figures 3 and 4) it is found that an increase in the values
of the nonlocal parameter, λc, causes an increase of the frequency ratio, but on the other
hand (Figures 5 and 6) it can be seen that as the gradient length parameter λl increases,
the values of the frequency ratio decrease. Finally, one can find that the aforementioned
frequency ratio decreases by increasing the mixture parameter.

Finally, the coupled effect of k and ζ on the frequency ratio is shown in the 3D plots
of Figures 7 and 8 for the cantilever and the fully clamped nanobeam, respectively. From
these figures it can be observed that the frequency ratio of the FG nano-beams under
investigation increases by increasing the nonlocal parameter and decreases by decreasing
the material gradient index and the porosity volume fraction. In addition, an increase in
the values of the mixture parameter always results in a decrease of the frequency ratio.
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mixture parameter: ξ1 = 0.0 (a) and ξ1 = 0.5 (b).
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Figure 8. Fully clamped porous FG nano-beam. 3D-plot of the frequency ratio in terms of the gradient index (k) and the
porosity volume fraction (ζ) carrying the nonlocal parameter λc in the set {0+, 0.2, 0.4, 0.6, 0.8, 1.0} and for two different
values of the mixture parameter: ξ1 = 0.0 (a) and ξ1 = 0.5 (b).

7. Conclusions

The dynamic behavior of Bernoulli–Euler nano-beams made of a metal-ceramic func-
tionally graded porous material subjected to hygro-thermal environments is examined in
this manuscript. The governing equations are derived by employing Hamilton’s principle
on the basis of the local/nonlocal stress gradient theory of elasticity (L/NStressG). The
free vibration analysis is carried out by considering two different kinematic boundary
conditions of engineering interest: Clamped-free (C-F) and clamped-clamped (C-C).

In particular, the effects of several parameters on both the thermo-elastic material
properties and the structural response of the FG nano-beams, such as the porosity volume
fraction and the material gradient index, the nonlocal parameter, the gradient length
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parameter and the mixture parameter, as well as the hygro-thermal loadings, have been
investigated by using a Wolfram language code developed in Mathematica. Moreover, a
comparison between the results of the present approach with those already available in
current literature has been successfully presented.

The main outcomes of the present study may be summarized as follows:

- Influence of the porosity volume fraction and the gradient index: by increasing the
gradient index and the porosity volume fraction, the axial and bending stiffnesses
decrease, thus resulting in a decrease in the flexural frequency;

- Influence of the nonlocal parameter: the flexural frequency always increases with
increasing the nonlocal parameter;

- Influence of the gradient length parameter: the flexural frequency always decreases
by increasing the gradient length parameter;

- Influence of the mixture parameter: an increase in the values of the mixture parameter
always results in a decrease of the flexural frequency;

- Influence of the hygro-thermal loadings: an increase of the temperature leads to an
abatement of the thermo-elastic properties of the porous FG material and a decrease
in the flexural frequency of the FG nano-beams due to a decrease in the axial and
bending stiffnesses.

In conclusion, the proposed approach, based on L/NStressG plays an important role
in revealing stiffness-hardening or stiffness-softening mechanical and dynamic behaviors
in small-scaled structures, especially in temperature-dependent porous FG nano-beams.
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