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Abstract: In this work, the effective mechanical reinforcement of polymeric nanocomposites contain-
ing spherical particle fillers is predicted based on a generalized analytical three-phase-series-parallel
model, considering the concepts of percolation and the interfacial glassy region. While the concept
of percolation is solely taken as a contribution of the filler-network, we herein show that the glassy
interphase between filler and matrix, which is often in the nanometers range, is also to be considered
while interpreting enhanced mechanical properties of particulate filled polymeric nanocomposites. To
demonstrate the relevance of the proposed generalized equation, we have fitted several experimental
results which show a good agreement with theoretical predictions. Thus, the approach presented
here can be valuable to elucidate new possible conceptual routes for the creation of new materials
with fundamental technological applications and can open a new research avenue for future studies.

Keywords: percolation threshold; mechanical reinforcement; nanocomposites; spherical fillers;
interphase; interphase modeling; polymer nanocomposites

1. Introduction

The introduction of inorganic fillers into polymer matrixes has emerged as an at-
tractive design approach for the creation of new materials with novel and often unique
combinations of properties [1-5]. Fillers are important additives in polymeric materials
that not only have the potential to alter several physical properties of polymer composites
(e.g., mechanical, electrical, thermal, optical, photonic and magnetic), but also may also
lead to cost reductions [6]. It has been shown that dramatic improvements in mechanical
properties can be achieved by adding a small amount of nanofillers without sacrificing the
low cost, ease of processing and the lightweight of the composite [7,8]. This has also served
as a pioneering technological route for developing innovations with fundamental impact in
broad industrial areas such as automobiles, household goods, vibration mounts etc. [9,10].

The material’s stiffness can be readily improved by adding either micro- or nanoparti-
cles, since rigid inorganic particles generally have much higher stiffness than the polymer
matrixes. The strength of composites strongly depends on the stress transfer between the
particles and the matrix. For well bonded particles, the applied stress can be effectively
transferred to the particles from the matrix, giving rise to a clear strength improvement
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known as mechanical reinforcement [11,12]. This is also manifested in nonlinear viscoelas-
tic behaviors [13], commonly explained in terms of a breakdown of a ‘filler network” under
the influence of the filler particle volume fraction; the particle morphology, surface area
and surface activity [14]. On the other hand, the works of Heinrich and Kliippel [15,16]
also explain such a striking reinforcement effect based on the formation and breakdown
of physical (van der Waals) bonds between the networking filler particles. However, this
mechanism is known to be insufficient to account for the markedly enhanced tensile mod-
ulus in polymer nanocomposites. The precise physical mechanisms underpinning the
observed reinforcement phenomena are still only partially understood, being a crucial and
open scientific problem.

The calculation of the Young’s modulus in polymer composites created by adding
spherical particles (e.g., micro-/nano-5iO,, Al,O3, CaCOj3, carbon black and layered sili-
cates), has been extensively analyzed in the literature based on two-phase models (fillers
+ polymer matrixes) [17]. Classical models as well as several empirical or semi-empirical
equations have been developed to estimate their tensile modulus. For example, based on
the consideration that the tensile modulus of the composites under low shear stress would
behave similarly to the viscosity of a fluid, the classical Einstein’s equation [18] developed
to describe the viscosity increase due to spherical particles in a dispersion was adapted
in 1944 by Smallwood [19] to the field of filled elastomers assuming perfect adhesion
between fillers and polymer matrixes. Further, the interactions between particle pairs were
incorporated by Guth [20] providing the formula known as the Guth-Smallwood-Einstein
equation written as:

Ec = En (14259 +141¢?) 1)

where the composite and the polymer matrix modulus are defined by E. and E;, respectively
and ¢ is the particle volume fraction.

The linear term in Equation (1) accounts for the stiffening effect of individual particles
in terms of a constant of 2.5, associated with a geometric factor for spherical particles.
The second power term is the contribution of particle interactions. The premise of the
equivalence between shear stress and viscosity of a fluid has subsequently inspired the
establishment of another two popular semi-empirical equations, the Kerner equation [21],
which is expressed in terms of the Poisson ratio, approximately assumed to be (v = 0.35)

and written as: 15(1 ) "
—v
EC:Em<l+ T (1¢)) @)

and the general Halpin and Tsai [22,23] equation, which for the case of spherical particles,

is written as: 149
Ui
o= Eu( T2 ) ®
where = (Ef — En)/ (Ef + En), Ef and E;, are the tensile moduli of the filler and polymer
matrix, respectively.

Nielsen [24] modified the Kerner approach by postulating a general equation as a
function of the particle packing fraction. Instead, the famous equation of Mooney [25]
has introduced another modification to Einstein’s equation by introducing an s-parameter,
defined as a crowding factor that reproduces Einstein’s equation at low volume fractions.
Christensen and Lo [26] presented a simplified model for studying the mechanical re-
inforcement in polymer filled with hard spherical particles. Equations based on perfect
adhesion between the phases have also been proposed by Counto [27] and Verbeek [28]
and by Mori-Tanaka [29], whose micromechanical approach has already proved to be
greatly successful in the prediction of the overall effective elastic moduli of composites.
Other equations have been very well summarized in the review by Shao-Yun Fu et al. [30].

Despite the existence of these equations, their experimental validation shows that in
general, they are not accurate enough. This issue is experimentally illustrated by several
researchers [31] who faced challenges in finding an agreement between their experimental
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results and the theoretical predictions. The divergence of the fittings, either at a low
filler volume fraction or at higher filler volume fractions, indicates that, in addition to the
hydrodynamic reinforcement, the fillerfiller interaction and polymer-filler interaction,
there are other parameters to be considered. One of the fundamental aspects that is
not considered by classical models to date is the formation of an interfacial glassy layer
between the polymer matrix and nanofillers [32,33]. Although a practical and precise
technique for the estimation of interfacial interactions or interphase characteristics has
not been established to date, the existence of such an interphase has been experimentally
and computationally revealed. For example: (i) based on NMR experiments on silica
filled elastomer model systems, Berriot et al. [34-36] and others [37,38] observed a layer of
immobilized segments at the particle surface (glassy layer), whose thickness varies with
temperature. This result was in agreement with previous works by Struik [39,40], who
found a glassy shell around particles in filled rubber; (ii) via torsional harmonic Atomic
Force Microscopy (AFM) indentation, Meng Qu et al. [41] showed evidence of the existence
of a particle interphase in hydrogenated nitrile butadiene rubber (HNBR)-carbon black
composites, through direct visualization and measurement of their elastic properties; (iii)
Lewis and Nielsen [42] indicated a surface layer containing an excess of matrix material,
giving rise to a modulus increase as particle size decreases; (iv) Vollenberg and Heikens [43]
observed an effective reinforcement for a polystyrene with fine silica and chalk particles
by the formation of a more dense matrix in the interfacial region; (v) Takayanagi et al. [44]
have noted the formation of microfibrils with diameters from 10 to 30 nm, which were more
influential at the interphase boundaries than in the bulk system; (vi) based on large-scale
dissipative particle dynamics simulations Gavrilov et al. [45] concluded that several sets
of subchains in the polymer matrix around the filled particles have distinct properties
and are deformed slightly more than in the unfilled matrix; (vii) using finite elements
calculations, Gusev [46] indicated that the mechanical reinforcement can be explained
micromechanically, by taking into account that the networking filler particles are joined by
coating layers of immobilized rubbers. All these evidences clearly indicate that the strong
interfacial interactions between polymer matrix and particles at the nanoscale will form an
interphase, namely a third phase, which has different properties from both the matrix and
the nanofiller phases and can depend on several other factors, such as the type of polymers,
the presence of functional groups on the polymer and on the fillers and on the interactions
between polymer-filler and filler-filler.

Analytical treatment of composites, including interphases, has received significant
attention. For example, by solving for the stress field and effective bulk moduli of com-
posites containing spherical particles, Lutz and Zimmerman [47] and Weng and Ding [48]
explored the mechanical contributions of an interphase. Herve and Zaoui [49] proposed
a model with an n-layered spherical inclusion embedded in an infinite matrix. Nie and
Basaran [50] developed a series of parameterized equations from which bulk and shear
elastic moduli could be calculated. However, the predictions of elastic properties were
obtained by solving the elastic governing equations with high mathematical complex-
ity. To minimize such complexity, Deng and Van Vliet [51] employed a micromechanical
analytical approach termed interaction direct derivation (IDD) [52-54], to estimate the
effective elastic properties of composites comprising spherical particles surrounded by
mechanically distinct interphases, showing good correspondence with experimental results.
In addition, it is important to remark on the prominent three-phase model developed by
X. Ling Ji et al. [1]. Based on Takayanagi’s two-phase approach [44] and assuming a linear
gradient distribution of the modulus of the interface, an analytical equation to calculate the
Young’s modulus of polymer composites formed with spherical nanoparticles of radius,R,
and thickness interphase,r, is derived. This yields a relationship of tensile moduli as a
function of their nanoparticles content E. (¢), written as:

-1
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where § = \/(1+ g)¢pand v = /¢

The tensile moduli of the composite, polymer matrix, interphase and filler particles
are denoted by E;, Ej;, E; and Ef respectively where the k-parameter is k = E;/E;,. This
parameter takes values between the minimum case, E; = E;, i.e., k = 1, meaning no inter-
phase contribution (r = 0, signifying that the volume fraction of the fillers is much greater
than that of the interface region) where Equation (4) reduces to the classical Takayanagi
two-phase model, and possible maximum values when E; = Ef, meaning that 1 <k < Ef/ E,..

Besides the above mentioned theoretical, empirical-semi empirical and micromechani-
cal approaches, there are two important issues that have been overestimated: (i) to date, all
developed approaches consider that 100% of the added particles will contribute into the
mechanical reinforcement; however this will only occur if the particles aggregate/interact
with each other. When this happens, a percolation network of particles will be formed at
a critical volume fraction, the starting point of the contributions to the mechanical rein-
forcement. (ii) The interfacial glassy layer formation (also known as. the third phase) is
directly correlated to the size and volume fraction of particles in addition to the nature
of the polymer. These are two important factors that have been omitted in previous ap-
proaches. Hence, the purpose of the present paper is to develop a generalized and more
complete theoretical approach to calculate the tensile modulus of polymer nanocomposites
reinforced with spherical nanoparticles.

Based on the three-phase series-parallel model of X. Ling Ji et al. [1] and the percolation
approach of Schilling et al. [2], herein, we have developed a three-phase model, including
both the percolation concepts and the glassy layer, as well as the colloidal glass transition.
We firstly introduced the concept of the effective particles explaining the percolation con-
cepts. We then present the generalized approach and briefly visualiz some representative
cases. Finally, we experimentally validate the approach by using data of six polymer
nanocomposites having unique properties and specific uses for technological applications.

2. Generalized Approach

To describe the nanoparticle-interphase-matrix composite, we assume that all parti-
cles will have radius R and an interphase with a uniform thickness r.

The volume fraction of the particles is defined as ¢ = NV),/V, where N is the number
of particles, the single particle volume is V), and V is the total system volume. The
consideration of the polydispersity effect is an issue, which can be added as a next step
into our general approach, but in order to simplify we consider this aspect beyond the
scope of this paper. The nanoparticle-interphase regions will be assumed as core—shell
assemblies embedded in an infinite polymer matrix. All interfaces between particles and the
surrounding matrix will be assumed to be perfectly bonded, thereby removing additional
complexities. We will also consider the particles’ interactions as those of hard-spheres,
meaning that they cannot interpenetrate.

2.1. Effective Particles Contributing to the Mechanical Reinforcement

By connecting polymer chains and filler particles, a network between fillers and
polymers is created, which enhances the mechanical properties of nanocomposites. Above
a certain volume fractions, the particles will form a percolating network giving rise to
a stepwise change of their tensile modulus (mechanical reinforcement) observed upon
crossing a critical point ¢, defined as the percolation volume fraction. This threshold
will depend on several variables, such as the sizes, shapes and orientations of particles,
with particle interface sizes being a fundamental parameter that cannot be overlooked.
Its clarification will be fundamental for the precise understanding of the mechanical
reinforcement. On the other hand, it should not be forgotten that as one increases the
particle concentration, the system exhibits a dramatic increase in viscosity where upon
crossing a critical volume fraction ¢y, the particle movements are slow enough that it can be
considered essentially frozen, leading to a glass transformation (colloidal glass transition),
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which was discussed already in 1980’s [55-57]. This effect must also be taken into account,
especially for a precise characterization of the mechanical properties of the composite.

For spherical particles, the glass transformation will be mainly reached at a specific
concentration depending on the nature of the polymer and filler. For our model validation,
we will set it as ¢¢ ~ 0.65, which is intrinsically correlated with the maximum density of
occupancy of the spherical particles [58]. Above this volume fraction, fillers will not diffuse
through the sample anymore and, hence, percolation will no longer be possible. This will
imply that only a portion of particles ¢ 5 = A, will effectively contribute to the formation
of the percolating network within a restricted particle volume fraction domain (¢, < ¢ <
¢g ~ 0.65), as is illustrated in Figure 1.
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Figure 1. Effective particles contributing to the mechanical reinforcement.

The following three statements can be then formulated: (i) when the particle volume
fraction (¢) is smaller than the percolation threshold ¢, the effective particles ¢4 go to 0;
(ii) when ¢ = g, Ppeg will reach the maximum value at the glassy phase ¢¢ and (iii) based on
considerations pointed out by Ouali [59], the ratio ¢p.g/¢¢ can be described by a power law
dependence, i.e., A(¢ — 4),,)”‘ where « defines the percolation exponent. Based on that, the
effective amount of particles contributing to the mechanical reinforcement can be found by
the following equation (see Supplementary Materials):

0 0<9< ¢y

= b\ & 5
Peff %(%) 9y < ¢ < g ®)

As shown in Figure 1, three representative’ cases derived from Equation (5), green
dotted line (« = 0), blue dotted line (« = 1), red full line (« = 0.4), are visualized, where the
percolation volume fraction is denoted by ¢,,. If a glassy phase is immediately formed after
the particles percolate, a step function will describe the process (« = 0), corresponding to
a hypothetical extreme situation of composites formed with many particle interactions,
where all the particles immediately become trapped.

The other limit case, « = 1, will take place due to weaker particle interactions, where
the glassy phase will be reached in a uniform and slower linear manner. A more realistic
situation will follow a pattern assertively modeled by a power law behavior with exponent
0 < a <1, and the universal case « = 0.4 is exemplified. The percolation exponent will
provide quantitative information about the dynamic aggregation of the particles as well as
of the rapidity of the interphase glassy phase formation.
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2.2. Percolation Threshold

For calculating the percolation volume fraction, we have used here the recent promi-
nent theoretical approach developed by Schilling et al. [2] where an analytical equation
able to predict the percolation threshold from spheres to extremely slender particles was
developed. For the case of composites formed with spherical particles of radius R and
thickness r, the mentioned equation is reduced to the following relationships (see Supple-
mentary Materials):

21+ Eopnene) —2(1+ c%)é
¢P(7/R) - 3(1 + %gsphere) (6)

1
4((1 +(r/R))> - 1)

Two important trends can be elucidated: (1) composites formed of particles with thick
interfaces in comparison with the particle radius (r > R) will need fewer particles to initiate
mechanical reinforcement, and therefore percolate at a lower particle volume fraction.

For example, in the hypothetical case of r = 2R, the percolation threshold will be
0.00478 (blue point of Figure 2a), meaning that the systems will percolate at only 1% of
¢4 to start the mechanical reinforcement, while composites with particles having smaller
interphases in comparison with particle radius (r << R) will require a greater number of
particles to interconnect with each other, leading to higher percolation volume fractions.
The black point of Figure 2a illustrates the last situation, when particle thickness is 10%
of particle radius, and the percolation threshold will be 0.26 where the systems will need
a considerable amount of particles (40% of ¢.) to start mechanical reinforcement. If the
system percolates at the limiting case ¢, = ¢, a hypothetical and totally unfeasible case
will take places at a lower bound of r/R = 0.0151 (Figure 2b). The percolation threshold
can never be greater than the glass particle volume fraction (0 < ¢, < 0.65) meaning
that the interphase thickness cannot be smaller than 1.5% of particle radius, for example
in composites formed with particles on the micrometers scale (e.g., R = 1000 nm) the
thickness will never be smaller than 15 nm. The mentioned situations are extreme cases,
but how consistent such boundary predictions are in comparison with real situations must
be understood.
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Figure 2. Percolation threshold: (a) numerical illustration of Equation (6) as the function of thickness
and radius size effect. When the thickness of the particles is 1.5% of their radius, a hypothetical and
extremely R-bound case will take place ¢p = dg. (b) A modeled situation for different composites
formed with particles of R = 50 nm having different thicknesses, ranging from 5 nm (black point) to
100 nm (blue point) where the dotted line is the plot of Equation (6) in the entire r/R domain. The
inset part of the right figure displays the corresponding values of the effective number of particles
determined from Equation (5) where the power law exponent is assumed to be 0.4.
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Considering the AFM experimental results by Meng Qu et al. [41], a particle interphase
thickness of r = 19 & 8 nm was estimated in carbon black spherical particles having average
radius particles of R = 56 £ 9 nm. Such a value will correspond to /R = 0.33, which
implies ¢, = 0.08, perfectly consistent with the theoretical prediction. On the other hands,
for spherocylindrical surfaces of carbon particle (diameters on the order of a nanometer),
quantum mechanical treatment gives rise to a representative value of 7/R = 0.2 [60], which
means ¢, = 0.14 which is also perfectly reliable, and this implies that Equation (6) can be a
valuable and consistent approach to compute percolation thresholds in polymer composite
systems formed with spherical particles and having glassy interphase regions.

2.3. Critical Percolation Exponent

According to the works of Stauffer and Aharony [61] and de Gennes [62], the perco-
lation exponent is generally assumed as &« = 0.4, even though there are some works that
have considered the exponent as a free fitting parameter. For example, Bauhofer et al. [63]
obtained & = 0.7 for polymeric nanocomposites of single walled carbon nanotubes, and
Nawaz et al. [64] used « = 0.8 for graphene oxide elastomer composites. For interpreting
the experimental tensile modulus of cellulose based composite data, it is also assumed that
« = 0.4 [65,60], even though, in our opinion, it is difficult to accept such an exponent as
universal. Considering that for each composite, we will only have a single exponent value,
the following relationship can be directly derived from Equation (5):

B din |:4)€ff:|
YT dinTg — 9y

Considering the mathematic definition of the elasticity of a differentiable function [67],
Equation (7) can be interpreted as the ratio of the percentage change in ¢, to the percentage
change in ¢ — ¢, of a composite or, equivalently, as the slope of an In(¢g) vs. In(¢ — ¢p) plot
(numerical example is plotted in Supporting Information). From the physical point of view,
Equation (7) can also be understood as a Griineisen parameter [68], which for molecular
glasses is written in terms of their index of activation energy, which extremely valuable to
elucidate the nonlinear thermal behavior of the glass transformation process [69-71]. Based
on the aforementioned arguments, we can introduce a new interpretation of the percolation
exponent as a measure of the aggregation dynamics of the particles, intrinsically related
to the speed of the glassy phase formation. This will provide information about how fast
or slow the vitreous phase can form, intrinsically correlated with the degree of strength
of the interactions of the particles and their coupling/aggregations within the polymer
matrix. If the exponent were universal, it would imply that regardless of the nature of
the polymer matrix and the type of particles, the particles will always become trapped
in the same manner, following a universal pattern curve (Equation (5) with a constant
exponent). However, as pointed out in the Introduction, this process depends on several
interconnected parameters, such as particle interface, type of particles, particle physical
properties (charge values and their sign) and strength of the filler-filler and filler-matrix
interactions, all of which will not necessarily take place in the same manner. For the
aforementioned reasons, we will not consider the percolation exponent as universal, but as
a fitting variable intrinsically coupled with the rest of the parameters.

@)

2.4. Tensile Modulus

The response to an applied stress in the composite will be schematically described by
three phases connected to each other in series and in parallel, where the tensile modulus of
the composite, polymer matrix interphase and filler particles will be denoted by E., E;;, E;
and Ey, respectively (Supporting Information Section 54). The modulus of the interfacial
region will also be assumed, as in case of the X. Ling Ji et al. approach [1], by a linear
gradient change in modulus between the polymer matrix and the surface of the particle,
and is quantitatively described in terms of a k-parameter defined as (k = E;/Ey;,).
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Ec=En|(1-0)+

Based on the mentioned assumptions, for the case of a three-phase model (r > 0),
we have conceptually incorporated Equations (5) and (6) into the main considerations
of X. Ling Ji et al.’s approach [1], improving the calculation of the tensile modulus of
the interface region (corner boundary effect) by assuming a linear gradient distribution
of the modulus along the direction of the normalized vector u = (—+/2/2,—+/2/2). This
gives rise to a correction to Equation (4), leading to the following general equation (see
Supporting Information):

-1
v

=0+ (kb )r+ ((k+2k-1) G -) i (1-6)+ Lkt 4 o pr ®
A+ R0 (2%)" sop<9 <9y
{0 0S¢ < ¢y
Y= P a/2
[\/@Q’S*JP)} P <=9

where ¢, ~ 0.65, the radius of the particle will be (R) and the tensile modulus of the
polymer matrix E;, and the percolation threshold ¢, will be determined from Equation (6).
On the other hand, the thickness of the interphase (r), the rate of the interphase modulus
k-parameter, the tensile modulus of the particles E; and the percolation exponent « will be
considered as fitting model parameters.

As we see from Equation (8), the mechanical reinforcement (E. > E;;) will take place
only above the percolation threshold (¢, < ¢ < ¢¢), manifested by a step-wise change
behavior of E.. Below the mentioned threshold (0 < ¢ < ¢y,), the tensile modulus of the
composites will be the same as that of the polymer matrix E; = E;; (6 = ¥ = 0). This trend is
numerically visualized in Figure 3 by modelling the hardness (left) and size (right) effects
of the particle interphase in the mechanical reinforcement for hypothetical composites. The
lines correspond to the plot of Equation (8) with Equation (6). The left figure visualizes
the cases of different composites formed with particles of radius R = 50 nm and thickness
r=30nm. When k changes from 1 to 5, the tensile modulus of the composite E; will
gradually increase, and, especially for k > 3, the slope of the curve (dlogE./dy) will change
drastically giving rise to a higher mechanical reinforcement. The right part of Figure 3
shows the case of two different composites formed by the addition of particles with the
same radius and different thickness interphases into the same polymer matrix. From this
modeled situation, we can clearly see that composites formed with particles with large
interfacial thicknesses (brown line r = 70 nm) will need fewer particles in comparison to
the particles with smaller thicknesses to initiate mechanical reinforcement and, therefore,
will percolate at a lower particle volume fraction. This will give rise to an increase in
modulus for the resulting composite, as compared to the smaller thickness case (blue line),
which shows that when the particle size is in the nanoscale range, the interfacial region
greatly affects E.. Undoubtedly, the four fundamental discussed effects (particles and
interphase size, tensile modulus, ratio of the interface, and percolation exponent) will have
a dominant influence on E; and validation of these parameters with experimental data is
the ultimate goal.
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Figure 3. Numerical evaluation of the (a) hardness and (b) size effects of the interphase in the
mechanical reinforcement for hypothetical composites. The lines are the plot of Equation (8) with
Equation (5). The percolation exponent for both figures is assumed as 0.4, k parameters in (b) as 1.5,
the tensile modulus of the filler and the matrix as Er=1x 10! Pa and E,,, = 2.4 MPa respectively.

3. Model Validation and Discussion

In order to test the consistency of the developed approach, we have collected ex-
perimental data describing the variations of the tensile modulus as a function of their
nanoparticle content E. (¢). The data correspond to six nanocomposites having unique
properties and specific performances for technological applications (see details in data
information). They are extracted from dynamic mechanical thermal analysis (DMTA)
experiment at temperatures above the glass transition temperature T¢, where a higher
modulus is experimentally observed when increasing the filler content. A common trend
presented in these types of polymer composites is observed. At lower filler content, the
modulus of the composites is only slightly higher than that of the unfilled material. How-
ever, a higher modulus is experimentally reached with increasing filler content. In order
to explain this, we have fitted the experimental data with five model equations which are
plotted in Figure 4. The fitting curves in Figure 4 correspond to: (1) our general approach
(Equation (8), solid blue line), (2) the X. Ling Ji et al. model (Equation (4), brown dashed
line), (3) the Guth-Smallwood-Einstein equation (Equation (1), pink dashed line), (4) the
Kerner equation (Equation (2), green dashed line) and (5) the Halpin and Tsai equation
(Equation (3), black dashed line). Table 1 summarizes the parameters (e.g., interphase size,
r, modulus ratio of the interface, k, percolation exponent, «, and modulus of the fillers, Ef)
corresponding to the fitting of Equation (8) and Equation (4) respectively.

Table 1. The samples, their characteristics and the calculated interphase properties.
Our Model X. Ling Ji et al. Model [1]
No. Composite [ref.] R (nm) R (nm) E,, (GPa) K=E;/E, E; (GPa) o ¢y R (nm) K=E;/E, Ef (GPa)
1 Polyolefin ! /CB [31] 50 51 24 %1073 1.66 364 075  0.0117 59 2.76 579
2 Polyolefin 1 /fumed silica [31] 7.5 8 24 %1073 1.43 4.3 0.63 0.0153 8 4.09 4.1
3 PEEK 2/ALO; [72] 15 15 3.9 4.37 19.2 0.74 0.0127 14 7.22 15.8
4 PEEK 2/SiO; [72] 15 17 3.9 4.76 16 0.72 0.0141 15 7.72 17
5 PTMHMTA 3/ TiO; [73] 4.5 4 1.82 2.04 9 0.64 0.0212 4 2.22 249
6 P(MMA-MTC) 4/SiO, [74] 10 23 191 2.35 428 0.72 0.0036 21 5.59 271

1: Carboxy-telechelic polyolefin prepolymers. 2: poly(ether ether ketone). 3: poly(trimethyl hexamethylene terephthalamide). #: methyl
methacrylate copolymerized with 2-(methacryloyloxy)ethyl trimethyl ammonium chloride comonomer.

It is clearly shown that at low filler content, the fittings curves of Equations (1)-(3) are
relatively close to the experimental results, especially for the data shown in Figure 4c,d,
however, as the filler content increases, the experimental tensile modulus becomes much
higher than the predicted value. A pronounced nonlinear behavior of E.(¢) is reached
at a higher volume fraction of fillers, indicating a clear inconsistency of the equations.
This implies that, in addition to hydrodynamic reinforcement, both filler —filler interaction
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and polymer—filler interaction, and the particle interfacial effect, will contribute to the
improvement of mechanical properties of the composites and should be considered.
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Figure 4. Comparison between experimentally obtained (red squares) Young’s modulus vs theoretical prediction using
different approaches: our generalized approach (Equation (8), solid blue line), X. Ling Ji model (Equation (4), brown dashed
line), Guth-Smallwood-Einstein equation (Equation (1), pink dashed line), Kerner equation (Equation (2), green dashed line)
and Halpin and Tsai equation (Equation (3), black dashed line) for (a) polyolefin/carbon black (b) polyolefin/fumed silica
(c) PEEK/Al,O3 (d) PEEK/SiO; (e) PTMHMTA /TiO; and (f) PIMMA-MTC)/SiO;.

The fitting of Equation (4) yields a good match in comparison with the classical
equations, providing in principle a physical explanation for the higher storage modulus
reached with increasing filler content. If we consider the acceptable mathematical fitting
correspondence of Equation (4) in comparison with the fitting of Equations (1)—(3), we
could think that the mentioned inconsistency is clarified. However, we should keep in
mind that, besides Equation (4) and in all of the theoretical, empirical /semi-empirical and
micromechanical approaches developed to date, two important effects have never been
included, (i) the formation of percolation networks (ii) the colloidal glass transition. In
addition, Equation (4) does not account for the corner boundary effect (see Supplementary
Materials) into the tensile modulus of the interface region. Here, we have incorporated
these important effects into our generalized approach Equation (8).
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The corresponding fitting curves to our general model Equation (8) are illustrated in
Figure 4. These show a remarkably good fitting quality in comparison with the classical
Equations (1)—(3). On the other hand, at a higher particle content, a good correspondence
between our model and the three-phase X. Ling Ji et al. approach [1] is reached, however, a
remarkable difference is noted at a lower filler content. Stepwise reinforcement behavior
of E. is manifested above the percolation threshold (¢, < ¢ < ¢¢), which is true for all
six composites.

Below the mentioned threshold, the tensile modulus of the composites will increase
minimally. The percolation threshold will strongly depend on the particle size, R, and
interphase thickness, r, as we have previously discussed in detail in a previous section. As
we can see in Table 1, the determined fitting r-values from our model are similar to those
determined by Equation (4) and are in the order of the measured interphase thickness [41].

As we discussed before, the percolation threshold will follow a ¢ ~ (r/ R)~1 tendency,
meaning that composites formed of particles with large thickness interfaces in comparison
with particle radius will need fewer particles to initiate mechanical reinforcement and there-
fore percolate at a lower volume particle fraction. Fitting the data of Figure 4f corresponds
to a special case where composites were intentionally formed with a special polymer matrix
where, with only 1 wt.% of particle content, a considerable enhancement of the mechanical
reinforcement was achieved, while other composites need 10% particle content to consider-
ably increase their mechanical properties. On the other hand, we can also see from Table 1
that the addition of particles with different physical properties in the same polymeric ma-
trix will yield different percolation threshold values. Data in Figure 4a,b lead to ¢, = 0.0117
and 0.0153 for carbon black and fumed silicate, respectively, with a discrepancy of 31%,
while data in Figure 4c,d lead to ¢, = 0.0127 and 0.0141 for Al,O3 and SiO,, respectively,
having a discrepancy of 11%. Since the siloxane and silanol groups on the surface of the
silica particles are hydrophilic in nature, attractive filler—filler interactions are strong due
to the hydrogen bonds between silica particles. Thus, silica particles often form larger
agglomerates that will lead to inhomogeneous filler distributions, making the dispersion
of silica particles more difficult than the dispersion of other particles, such as carbon black
and Al,Os. This implies that composites formed with silicate particles will have a tendency
to reach higher percolation threshold values. The lower compatibility of spherical Al,O3
and SiO, particles in PEEK could be the reason for the lower discrepancy of the percolation
threshold. On the other hand, the dispersion of silica particles in polyolefins offers more
resistance than the case of carbon black particles, leading to a higher percolation threshold
difference. These data show that the formation of some percolating filler structures will
affect the modulus of the composites and their effect should not be omitted.

The modulus ratio of the interface, k-parameter will also be intrinsically correlated
with the percolation effect. As we can see in Table 1, the values of the k-parameter obtained
from the fitting of Equation (4) are higher than those obtained by our generalized equation.
We can explain this because, although the determined fitting r-values from Equation (8)
are similar to those determined from Equation (4), the X. Ling Ji et al. model [1] considers
that 100% of the particles contribute to the mechanical reinforcement while, conversely, our
model considers that only an effective amount of ¢ will contribute. This will imply that
the area of the total surface formed as a result of adding the individual interface thicknesses
of each particle in the effective group of particles will be smaller than the area of the
group formed by the total amount of particles. An ineffective extra interface thickness is
hidden behind the k-values obtained from Equation (4), which gives rise to higher values
of the k-parameter.

Related to the assumption of a universal power law exponent &, we can see in Table 1
that the power law exponents give rise to different values, ranging from 0.63-0.72, which
are considerably higher than the value of 0.4 predicted by Staugger and De Gennes [61,62].
As we have pointed out before, the percolation exponent provides information about how
fast or slow the vitreous phase can form, which is intrinsically correlated with the degree
of strength of the interactions of the particles and their coupling/aggregations within the



Nanomaterials 2021, 11, 830

12 of 15

polymer matrix. Weaker particle interconnections, such as those of nanospheres, will lead
to higher values of the power law exponent in comparison with nanorods [11].

On the other hand, the lower compatibility of spherical Al,O3 and SiO, particles in
PEEK could be the reason why both composites have the same power law exponent of
0.74, irrespective of other differences [12]. Conversely, for the case of data in Figure 4a,b,
the power law exponents are different, with the smallest values being the case of fume
silicate. This could be justified due to the strong hydrogen bond interactions between
silica particles, which lead to a faster interphase formation, resulting in a lower percolation
exponent. In regard to the values of the tensile modulus of the fillers Ef, we can also see
in Table 1 that for each model equation, the obtained values are different, and the reason
is because X. Ling Ji et al.’s approach (Equation (4)) considers an ineffective excess of
material which does not contribute to the mechanical reinforcement below the percolation
threshold (0 < ¢ < ¢,) and above the maximum density of occupancy of the spherical
particles (¢ < ¢ < 1). The obtained values are also considerably higher than those of the
matrix Ey,, although variations of E¢/E,, will have only slight effects on the modulus of the
composite E.

4. Conclusions

In summary, we have demonstrated that the mechanical reinforcement of polymeric
nanocomposites containing spherical nanoparticle fillers is dependent on the percolation
threshold of filler, i.e., filler-filler network and glassy interphase between the polymer
and the filler, meaning polymer-matrix interphase. The generalized equation proposed
here represents the most complete three-phase model developed to date to account for
the Young’s modulus in polymers composites formed with spherical nanoparticles. For
the first time, both the percolation effect and the geometrical constraint of the maximum
occupancy of spherical particles are incorporated into a three-phase approach to accurately
evaluate the mechanical reinforcement of these composites. Our model was validated with
experimental data of six polymer nanocomposites having unique properties and specific
industrial performances, showing good agreement with the theoretical considerations.
Thus, the approach presented here can be valuable to elucidate new possible conceptual
routes for the creation of materials with unique technological applications, and can open a
new a research avenue for future studies.
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