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Abstract: The construction of heterojunctions has been widely applied to improve the gas sensing
performance of composites composed of nanostructured metal oxides. This review summarises the
recent progress on assembly methods and gas sensing behaviours of sensors based on nanostructured
metal oxide heterojunctions. Various methods, including the hydrothermal method, electrospin-
ning and chemical vapour deposition, have been successfully employed to establish metal oxide
heterojunctions in the sensing materials. The sensors composed with the built nanostructured hetero-
junctions were found to show enhanced gas sensing performance with higher sensor responses and
shorter response times to the targeted reducing or oxidising gases compare with those of the pure
metal oxides. Moreover, the enhanced gas sensing mechanisms of the metal oxide-based heterojunc-
tions to the reducing or oxidising gases are also discussed, with the main emphasis on the important
role of the potential barrier on the accumulation layer.
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1. Introduction

Gas sensors based on nanostructured metal oxides have attracted significant interest
over the last few decades due to their advantages of low cost, ease of fabrication, high
sensor response and short response/recovery times [1–4]. Various metal oxides have been
successfully assembled as gas sensors since Seiyama et al. reported their research on the
gas sensing performance of the ZnO thin film in the 1960s [5,6]. According to the sensing
behaviours of the metal oxides, sensing metal oxides are typically divided into two main
groups: n-type metal oxides and p-type metal oxides. Normally, the resistances of the
n-type metal oxides decrease (or increase) towards reducing gases such as H2, H2S, CO,
CH4, NH3 and other volatile organic compounds (or oxidising gases such as NO2, NO, O3,
SO2, etc.), while p-type metal oxides exhibit the opposite behaviour [7,8]. The n-type metal
oxides of SnO2, TiO2, WO3, MoO3, Nb2O5, ZnO, etc., and the p-type metal oxides of CuO,
Co3O4, Cr2O3, NiO, PdO, etc., have been widely studied for their gas sensing behaviours
towards both reducing and oxidizing gases [9–12].

In recent years, the advancement of new technologies and methods has induced a
boom in nanomaterials. Nanostructured metal oxides with various morphologies, such as
nanoparticles, nanosheets, nanowires, nanorods, nanoribbons, nanofibres, nanoflowers and
nanocages, have been successfully prepared through the routes of hydrothermal process-
ing, thermal oxidation, sol-gel processing, atomic layer deposition, etc. Nanoscale metal
oxides have been reported to exhibit promising gas sensing performances, benefiting from
their high specific surface areas [13] and active surface states [14]. Specifically, the sensor
response of the pure ZnO nanowires was ~15 towards 0.5 ppm NO2 at a working tempera-
ture of 225 ◦C [15]. Other sensors based on SnO2 nanowires [16], TiO2 nanotubes [17], WO3
nanoparticles [18] and In2O3 nanofibres [19] have also been found to respond to the gases
of NO2, formaldehyde, H2S and CO, respectively. The gas sensing performances of the gas
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sensors mentioned above could be further improved to better meet the demands of practi-
cal applications via compositing the metal oxide with another (different) metal oxide to
form a heterojunction between them. It is noteworthy that when the main phase of a metal
oxide was decorated or composited with the second phase of a different semiconductor,
the interface between them was known as the structure of a heterojunction in the sensing
material [20]. Reports show the specific surface area of the composite is higher than that of
the pure metal oxide [21], and the modulation of the potential barrier or accumulation layer
in the composite effectively improves the gas sensing behaviour [22,23]. More and more
researchers have focused their attention on the studies of the high-performance sensors
based on nanostructured metal oxide heterojunctions, as shown in Figure 1. For example,
the ordered mesoporous WO3/ZnO nanocomposites synthesised with a hydrothermal
method displayed an enhanced sensor response of 168.7 to 1 ppm NO2 at a working
temperature of 150 ◦C, over 10 times higher than that of the pure WO3 [24]. Moreover,
the sensor response of CeO2 nanostructures modified with NiO was reported to be ~1570,
much higher than that of the pure CeO2 (139). The response time and the recovery time of
the composite was 15 s and 19 s, respectively, which is also shorter than that of the pure
CeO2 (96 s/118 s) [25]. Therefore, the construction of heterojunctions could be a successful
method to improve the gas sensing performances of sensors based on metal oxides.
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Figure 1. The number of the published papers on nanostructured metal oxide heterojunctions for
high-performance gas sensors during 2009–2020 as obtained from the Web of Science. The words
“nanostructured metal oxide heterojunctions” or “high-performance gas sensors” were keyed into
the “topic” search box.

As reported, there have been different kinds of heterojunctions assembled to improve
the gas sensing performances of metal oxides, such as n-n, n-p, p-n or p-p heterojunc-
tions [26–29]. Note that, in this paper, the type of heterojunction is defined according to
the dominant material or the main phase in the composite [30,31]. Accordingly, an n-p
heterojunction is formed when the main phase of an n-type metal oxide is modified with
a second phase of a p-type semiconductor. Similarly, a p-n heterojunction is established
through compositing a p-type metal oxide with an n-type semiconductor. An n-n (or
p-p) heterojunction would also be constructed if an n-type (p-type) metal oxide is dec-
orated with a different n-type (p-type) semiconductor in the composite. For example,
CuO-decorated ZnO or ZnO-decorated WO3 are the typical n-p or n-n heterojunctions. The
ZnO-decorated CuO or NiO-decorated CuO are defined as the p-n or p-p heterojunctions.
With the development in the techniques to synthesise nanomaterials, it is facile to construct
heterojunctions in composites composed of metal oxides. The metal oxide-based hetero-
junctions have been successfully established through various combined technologies, such
as the thermal oxidation [28], hydrothermal method [32], electrospinning [33,34], chemical
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vapour deposition (CVD) [35], pulsed laser deposition (PLD) [36], the co-precipitation
method [37] and the solvothermal method [38]. For example, the hydrothermal method
was reported to effectively prepare the ZnO/SnO2 [39] and the NiO/SnO2 composites [32].
The difference in the Fermi levels of the two metal oxides in the obtained composite would
lead to the formation of the potential barrier at their interfaces, an important factor for
improving sensing property of the gas sensor based on heterojunctions. The hydrother-
mal method combined with CVD was also used by Li et al. to establish heterojunctions
composed of vertically aligned MoS2/ZnO nanowires [40]. SnO2-CuO heterojunctions
were successfully constructed via electrospinning [41]. Their results clearly indicated that
the sensor response of the sensor based on the MoS2/ZnO nanowires or the SnO2-CuO
heterojunctions was highly improved compared with that of the bare ZnO or SnO2. Though
there have been a number of references reviewing the developments in the gas sensing
performances of given metal oxides, only a few articles provide a comprehensive review of
the effects of the heterojunctions on the enhanced gas sensing performances of composites
based on nanostructured metal oxides or separately discuss heterojunctions with n-n, n-p,
p-n or p-p structures. Moreover, the enhanced gas sensing mechanism of a given type of
heterojunction to a reducing or an oxidising gas should also be studied and summarised.
The synthesised methods and the gas sensing performances of the normally studied metal
oxides as well as the important roles of the heterojunctions need to be systematically sum-
marised and compared. This will allow us to fully understand the improved gas sensing
properties of metal oxide heterojunctions.

In this review, the typical synthetic routes of n-n, n-p, p-n and p-p heterojunctions
based on metal oxides are introduced. The gas sensing behaviours of the n-n/n-p hetero-
junctions (or p-n/p-p heterojunctions) are based on SnO2 and TiO2. ZnO, WO3, MoO3,
In2O3, CuO, Cr2O3, NiO and Co3O4, etc., semiconductors are reviewed and compared
to show the effects of the heterojunctions on the gas sensing performances of the metal
oxides. The enhanced gas sensing mechanisms of the composites towards reducing and
oxidising gases are also discussed in detail to systematically understand the role of the
built heterojunctions in improving the gas sensing properties of the composites.

2. Nanostructured Metal Oxide Heterojunctions for High-Performance Gas Sensors

As reported, the formation of heterojunctions could be a positive effective strategy
to improve the gas sensing performance of the metal oxides. Various methods such
as hydrothermal [42], PLD [36], vapour-liquid-solid (VSL) [43], anodic oxidation [44],
solvothermal treatment [45], sputtering [46], thermal evaporation [47], electrospinning [33],
sol-gel [48] and spin-coating [49] have been successfully applied to assemble the het-
erostructures in the sensors, and are generally combined to form various heterojunctions
(n-n, n-p, p-n or p-p types), as displayed in Figure 2. Other methods to assemble nanos-
tructured metal oxide heterojunctions are listed in Tables S1–S4 (see Supporting Materials),
along with the improved gas sensing performances of sensors based on n-p, n-n, p-n and
p-p heterojunctions. Some of the typical nanostructured heterojunctions with the n-type
(or p-type) metal oxides as the main phases are discussed in the following sections.

2.1. Enhanced Gas Sensing Performances of n-n Junctions or n-p Junctions

Heterojunctions with the n-p or the n-n structure in the sensing materials have been
reported to be successful strategies to enhance their gas sensing properties. When the
p-type metal oxide (acting as the second phase) is attached to an n-type metal oxide
(acting as the main phase), an n-p heterojunction is formed between the two sensing metal
oxides. Additionally, n-n heterojunctions can also be assembled in a similar way. One
of the common routes to establish the n-n (or n-p) heterojunctions is to prepare the main
n-type metal oxides and then decorate the prepared n-type metal oxides with the n-type
(or p-type) metal oxides [50]. The modulation of the built potential barrier in the n-n
or n-p heterojunction can effectively modify the resistance of the sensing material, and
thus greatly improve the gas sensing properties of the sensor composed with the n-n (or
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n-p) heterojunctions. Meanwhile, it is also noticed that the majority of heterojunctions
are assembled as a decorated structure, core-shell structure or mixed structure (one metal
oxide mixed with another metal oxide), discussed in the following subsections.
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2.1.1. Gas Sensors Based on n-n Junctions

Many references report the improved gas sensing performances of sensors based
on n-n heterojunctions. For example, Lu et al. reported the gas sensing properties of
the ZnO-decorated SnO2 hollow spheres towards the ethanol synthesised via a two-step
hydrothermal method [39]. Hollow spheres of SnO2 of ~100 nm thickness were synthesised
via a facile template-free hydrothermal route (see Figure 3a,b) with ZnO nanoparticles of
10–30 nm diameter (see Figure 3c,d) uniformly decorated on its surface via a solution route.
The sensor response of the ZnO-decorated SnO2 hollow spheres was calculated to be 34.8
towards 30 ppm ethanol at their optimised operating temperature of 225 ◦C (see Figure 3e),
much higher than that of the bare SnO2 (~5.7 times). Their further research indicated that
the composite also exhibited promising selectivity to acetone compared with methanol
(Figure 3f). The recovery time of the composite towards 30 ppm ethanol (50 s) was also
much shorter than that of acetone (120 s) at the same concentrations as shown in Figure 3g.
In addition, the SnO2 compositing with Co3O4 and SiO2 have been reported to be promising
gas sensing materials. The SnO2/SiO2 heterojunctions were synthesised via a facile method
of a magnetron sputtering process and exhibited promising H2 sensing performance at
room temperature [51]. Hybrid Co3O4/SnO2 core-shell nanospheres prepared with a one-
step hydrothermal method demonstrated a measured response of 13.6 to 100 ppm NH3 at
200 ◦C, a value two times higher than that of the solid nanospheres [52]. CeO2-decorated
ZnO nanosheets were prepared by a hydrothermal process in combination with the wet
impregnation method, exhibited an enhanced sensor response of 90 to 100 ppm ethanol
at 310 ◦C [53]. Additionally, Kim et al. have fabricated ZnO-SnO2 nanofibres through an
electrospinning process to effectively detect CO [54].
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30 ppm ethanol at different operating temperatures (e), the sensor response of ZnO-decorated SnO2

hollow spheres to 30 ppm ethanol, acetone and methanol at different operating temperatures (f), and
the dynamic sensing performance of the decorated SnO2 hollow spheres towards 30 ppm ethanol or
acetone at 225 ◦C (g). Copied with permission from reference [39]. Copyright 2017, Elsevier.

The α-MoO3/TiO2 core/shell nanorods have been synthesised through a hydrother-
mal process combined with the following annealing process in air atmosphere [55]. Uniform
α-MoO3 nanorods were first prepared and then coated with a shell of TiO2 via a modified
wet-chemical method. It was found that the core/shell nanorods exhibited an improved
gas sensing performance to 10 ppm ethanol at 180 ◦C with a short response time of less than
40 s. Meanwhile, the SnO2-core/ZnO-shell nanowires [56] and the Ga2O3-core/ZnO-shell
nanorods [57] were successfully synthesised through a plasma-enhanced CVD and atomic
layer deposition (ALD), respectively, which also exhibited promising gas sensing perfor-
mances. The MoO3 nanorods decorated with the ZnO nanoparticles were also reported
to be a promising material to detect 100 ppm ethanol with a sensor response of ~30 at
the working temperature of 250 ◦C [58]. Besides the nanocomposites discussed above, it
was reported that α-MoO3 compositing with WO3 through a sol-gel method [59] or with
Fe2O3 nanoparticles via a hydrothermal method [60] also showed improved gas sensing
performances towards O2 or xylene, respectively.

In addition, ZnO nanorods/TiO2 nanoparticles [61] and the ZnO/La0.8Sr0.2Co0.5Ni0.5O3
heterojunction structure [62] were successfully constructed to research their improved
gas sensing performances to NO2 and CO, respectively. WO3 compositing with SnO2
was reported to be a potential material to detect acetone [63], while WO3-modified ZnO
nanoplates synthesised via the hydrothermal route were assembled for the detection of
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NH3 [26]. Other effective methods to synthesise n-n heterojunctions and their gas sensing
performances are listed in Table S1.

2.1.2. Gas Sensors Based on n-p Junctions

The sensors based on the n-p heterojunctions have been found to show promising gas
sensing properties towards various gases. For example, PdO nanoparticles-decorated
flower-like ZnO structures (see Figure 4) were prepared by Zhang et al. through a
surfactant-free hydrothermal process combined with a further heat treatment [42]. The
Zn(AC)2·2H2O was used in the study to synthesise the flower-like ZnO structures, a certain
amount of which was dissolved in a solution of NaOH, ethanol and deionized water. The
obtained precursor was kept at 150 ◦C for 24 h. Before decorating with PdO nanoparticles,
the flower-like ZnO structures were treated by an annealing process. The annealed ZnO
nanoflowers were then dispersed in methanol solvent dissolving PdCl2, and the collected
products were calcined at 350 ◦C for 1 h to obtain the PdO-modified ZnO structures. The
decorated flower-like ZnO was reported to show a gas sensor response of 35.4 to 100 ppm
ethanol at 320 ◦C (see Figure 4e), which was much higher than that of the pure ZnO (~10 as
shown in Figure 4f). Moreover, the composite presented a shorter recovery time of 7 s than
that of the ZnO (14 s). ZnO/Co3O4 composite nanoparticles [64] and Al-doped ZnO/CuO
nanocomposites [65] were reported to be sensitive to NO2 and ammonia, respectively.
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junctions) (c,d), the dynamic sensing performance of the sensor based on the PdO nanoparticle-
decorated ZnO (e) or pure ZnO (f) to 100 ppm ethanol at 320 ◦C. Copied with permission [42].
Copyright 2013, Elsevier.

Gao et al. synthesised CuO nanoparticles-decorated MoO3 nanorods through a hy-
drothermal process combined with an annealing process [66]. In the first step, MoO3
nanorods were prepared with the raw material (NH4)6Mo7O24·4H2O. Then, the obtained
MoO3 nanorods were dispersed in a solution of anhydrous ethanol and copper nitrate
under high intensity ultrasonication. The final collected samples were annealed at 550 ◦C
for 2 h. The CuO nanoparticles-decorated MoO3 nanorods showed a higher H2S sensor
response of 272 at 270 ◦C compared with that of pure MoO3, which was mainly attributed
to the formation of n-p heterojunctions in the sensing material as reported in their article.
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Nano-coaxial Co3O4/TiO2 heterojunctions were successfully assembled through a
typical two-step process by Yang et al. [44]. The authors firstly synthesised uniform TiO2
nanotubular arrays via anodic oxidation of a Ti plate which were then decorated with
Co3O4 nanoparticles by a hydrothermal process at 120 ◦C for 5 h. The sensor based
on the nano-coaxial Co3O4/TiO2 heterojunctions showed an enhanced sensor response
of 40 to 100 ppm ethanol at 260 ◦C with a short response/recovery time of 1.4 s/7.2 s.
The SnO2-Co3O4 composite nanofibres were prepared through electrospinning combined
with annealing with the working voltage of 15 kV [67]. The PdO nanoparticle-decorated
WO3 nanorods were also reported to be synthesised via a modified precipitation process
combined with annealing at 300 ◦C for 2 h [68]. The SnO2-Co3O4 composite nanofibres
and the PdO nanoparticle-decorated WO3 nanorods were found to be sensitive to 10 ppm
C6H6 at 350 ◦C and 3.0 vol% of H2 at 25 ◦C with enhanced sensor responses of 20 and
80.4, respectively.

CuO/ZnO heterostructural nanorods were prepared by Cao et al. via a combination
of hydrothermal and wet-chemical processes [69]. The CuO nanoparticles-decorated ZnO
nanorods array showed a sensor response of ~8 to 50 ppm towards triethylamine at a
relatively low working temperature of 40 ◦C (higher than that of the bare ZnO nanorods of
~2.4), and a response time of 5 s (significantly shorter than that of the pure ZnO nanorods
of ~11 s). Improved gas sensing performances were also observed in sensing materials
composed of CuO-decorated SnO2 nanowires [70], CuO nanoparticles-decorated ZnO
flowers [71], flower-like p-CuO/n-ZnO nanorods [72], NiO@ZnO heterostructured nan-
otubes [73], n-ZnO/p-NiO heterostructured nanofibres [74] and Co3O4 decorated flower-
like SnO2 nanorods [75]. The various methods used to assemble the n-p heterojunctions
and their gas sensing properties are provided in Table S2.

Besides the nanocomposites discussed above, sensors based on the n-n or n-p het-
erojunctions have also been assembled to enhance the gas sensing performances of metal
oxides. TiO2 composited with ZnO, MoS2, MoO3, V2O5 and WO3 have been designed and
successfully established, exhibiting improved gas sensing performances towards ethanol,
NO2, alcohol and ammonia [33,55,76–78]. For example, the ZnO-decorated TiO2 nan-
otube layer (prepared by anodic oxidation combined with atomic layer deposition) [76],
TiO2/V2O5 branched nanoheterostructures (synthesised by an electrospinning process
followed by an annealing treatment) [33] and a TiO2-WO3 composite (obtained via plasma
spraying technology using mixed feedstock suspensions) [77] have each exhibited promis-
ing gas sensing performances to 1170 ppm ethanol, 100 ppm ethanol and 100 ppm NO2,
respectively. α-Fe2O3 composited with SnO2, In2O3 and CdO have also been successfully
synthesised through hydrothermal, carbon sphere template and co-precipitating processes,
enabling excellent gas sensitivity towards acetone, TMA and CO, respectively [37,79,80].
In2O3 composited with WO3, Fe2O3, TiO2 and SnO2 were also synthesised to assemble the
high-performance gas sensors [81–84]. A series of In2O3-WO3 nanofibres were prepared
via an electrostatic spinning technology, which was reported to show an enhanced gas
sensing performance to acetone with the n-n semiconductor heterojunctions formed at
the interface between WO3 and the In2O3 [81]. The sensor based on mixed Fe2O3-In2O3
nanotubes was also reported to show a high gas sensor response of ~33 towards 100 ppm
of formaldehyde at 250 ◦C [82]. TiO2 nanoparticle-functionalised In2O3 nanowires [83],
SnO2/In2O3 composite hetero-nanofibres [84], an octahedral-like ZnO/CuO composite [85]
and a nanoporous SnO2@TiO2 heterostructure [86] were reported to show enhanced gas
sensing properties towards acetone, formaldehyde and H2S, respectively.

Based on the research discussed above, it is clear that the establishment of n-n or
n-p heterojunctions can effectively improve the gas sensing properties of n-type metal
oxides. Typically, n-type metal oxides are decorated with zero-dimensional nanoparticles
and two-dimensional nanosheets, the concentrations of which have significant effects on
the performance of the main n-type phase [67,87–89]. More specifically, the gas sensing
performance of the main phase in a sensing material improves with increasing concentra-
tion of the second phase up to an optimal value, which can be attributed to the increase
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in the specific surface area of the composite. However, the sensing property of the main
phase always degenerates when the content of the second phase is further elevated. The
interconnection of the second phase and decrease in the effective surface area was reported
to be the two main factors causing a weakened sensor response of the composite. However,
most of the reported sensors based on the n-n or n-p heterojunctions always worked at
temperatures above 100 ◦C. We also found there are no clear strategies to indicate which
material should be chosen to enhance the gas response of a certain n-type metal oxide,
which may be paid more attention in the future by researchers.

2.2. Improved Gas Sensing Properties of p-n or p-p Junctions

Sensors based on the heterojunctions with p-n or p-p structures were also reported
to exhibit promising gas sensing properties with high sensor responses and short re-
sponse/recovery times. Similar to the formation of n-n or n-p heterojunctions, p-n and p-p
junctions are also built with p-type metal oxides (as the main phase) decorated or coated
with n-type or p-type metal oxides (as the second phase). The different Fermi levels of
the metal oxides in the constructed p-n or p-p junctions induce the formation of a thick
accumulation layer and thin depletion layer in the sensing composite. The modulation of
the thickness of the accumulation layer (acting as the conductive channel of the carriers)
significantly influences the conductivity of the sensors, further resulting in improved gas
sensing properties of the p-n or p-p junctions.

2.2.1. Gas Sensors Based on p-n Junctions

The p-n heterojunctions in sensing materials have been reported to be effective in im-
proving the gas sensing properties of metal oxides. For example, the SnO-SnO2 composite
(p-n heterojunction) was successfully prepared by a facile two-step method with the raw
materials of SnCl2·2H2O, NaOH and CTAB at 140 ◦C for 5 h. Black SnO nanopowders were
synthesised via a hydrothermal method at 140 ◦C for 5 h, and the obtained sample was then
treated with an annealing process at a high temperature of 300–500 ◦C in air atmosphere to
obtain the SnO–SnO2 composite. The sensor response of the SnO-SnO2 composite was 2.5
towards 200 ppm NO2 at room temperature, significantly higher than that of pure SnO2
(1.27) or bare SnO (1.1) [90]. The hydrothermal method was also applied to synthesise
SnO2-decorated NiO nanostructures (see Figure 5) with the raw sources of NiCl2·6H2O
and SnCl4·5H2O at 160 ◦C for 12 h [91]. It is worth noting that NiO was modified with
SnO2 nanoparticles through a one-step process without any catalysts. The SnO2-decorated
NiO nanostructure was reported to show enhanced gas sensor responses to 1–200 ppm
toluene (see Figure 5e,f). The calculated sensor response of the composite was measured to
be 66.2 to 100 ppm toluene at 250 ◦C, more than 50 times higher than that of the pure NiO
nanospheres (1.3). Moreover, the detection limit of this sensor was reported to be as low as
10 ppb toluene with a promising sensor response of 1.2.

Novel TiO2-decorated Co3O4 acicular nanowire arrays were also successfully synthe-
sised by Li et al. with a hydrogen thermal method combined with pulsed laser deposition.
The s acicular nanowire arrays modified with TiO2 nanoparticles were found to present
a high sensor response of 65 to 100 ppm ethanol at 160 ◦C, much higher than that of the
pure Co3O4 nanowires (~25) [92]. In2O3-decorated CuO nanowires were also prepared
through thermal oxidation of Cu meshes followed by the deposition of amorphous indium
hydroxide from In(AC)3 solution in ammonia [93]. The decorated CuO nanowires showed
a shorter response time of 12 s to CO than that of the pure CuO nanowires (25 s). The novel
rod-like α-Fe2O3/NiO heterojunction nanocomposites were synthesised with a one-step
hydrothermal method, exhibiting an enhanced sensor response of 290 to 100 ppm acetone
at 280 ◦C with a response time or a recovery time being 28 s or 40 s, respectively [94].
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Additionally, CuO composited with TiO2 [95] and SnO2 [35] were constructed to
investigate their improved gas-sensing properties. The nanofibres composed of SnO2-CuO
heterojunctions have been reported to be successfully synthesised by an electrospinning
process and exhibited an improved sensor response of ~95 compared with that of the
pure CuO (<10) [35]. Co3O4 composited with In2O3 [96], SiO2 [97] and TiO2 [98] were
also successfully prepared via hydrothermal, thermal conversion and facile nanoscale
coordination polymer routes, respectively, which showed better gas sensing properties
than those of pure Co3O4. The reported sensors based on p-n heterojunctions and their gas
sensing performances are listed in Table S3.

2.2.2. Gas Sensors Based on p-p Junctions

The p-p heterojunctions have been found to enhance the gas sensing performance of
metal oxides. Li et al. prepared NiO@CuO nanocomposites (a p-p junction) via a facile
reflux and hydrothermal process [99]. In their work, the Ni(OH)2 was firstly synthesised
with the raw material of nickel nitrate hexahydrate through a hydrothermal method
at 140 ◦C for 5 h. Then, the obtained Ni(OH)2 and the Cu(CH3CO)2·H2O compounds
were added in a solution separately with a certain amount of NaOH added during a
reflux process to obtain the Ni(OH)2@Cu2(OH)3NO3. The synthesised products were
finally treated by a calcination process in air atmosphere at 450 ◦C for 2 h. The prepared
hierarchical flower-like nanostructured NiO-CuO composite exhibited an enhanced gas
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sensing performance to NO2 at room temperature with a higher gas sensor response
compared to pure NiO. The response time of the composite to the 100 ppm NO2 was
measured to be as low as 2 s, much shorter than that of the pure NiO. Moreover, the
NiO/NiCr2O4 nanocomposite was also found to be more effective at detecting xylene than
the pure NiO nanoparticles [100].

Co3O4 hollow nanocages (HNCs) decorated with PdO nanoparticles (see Figure 6a–d)
were successfully assembled by the infiltration of metal precursors combined with a
subsequent reduction process [101]. The gas sensing performance of the pure Co3O4
hollow nanocages was significantly improved when composited with PdO nanoparticles
(PdO-Co3O4 HNCs), with the sensor response measured to be 2.51 towards 5 ppm acetone
at 350 ◦C (see Figure 6e), which was higher than that of the Co3O4 powders (1.96), Co3O4
HNCs (1.45) or PdO-Co3O4 powders (1.98). Moreover, the PdO-Co3O4 HNCs also exhibited
outstanding stability to 1 ppm acetone, which is shown in Figure 6f.
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Lee et al. prepared TeO2/CuO core-shell nanorods by a combined method of thermal
evaporation and sputter deposition [102]. In the reported study, the Te powders were
used as the raw material to synthesise TeO2. The TeO2 nanorods were prepared on a
substrate of p-type Si (100) by thermal evaporation of Te powders at 400 ◦C in air in a
quartz tube furnace. Then, a thin layer of CuO was directly sputtered on the surface of the
obtained TeO2 nanorods through a radio frequency magnetron sputtering process with a
target of CuO. The sensor response of TeO2-core/CuO-shell nanorods was found to be 4.25
to 10 ppm NO2 at 150 ◦C, which was over two times higher than that of the pure TeO2.
However, the relatively low sensor response of the TeO2/CuO core-shell nanorods is a
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drawback that limits their application. Further studies are required to further improve the
gas sensing performance of the TeO2/CuO core-shell nanorods.

Meanwhile, p-NiFe2O4 nanoparticle-decorated p-NiO nanosheets were also synthe-
sised with a solvothermal method [103]. The NiO precursor was firstly synthesised after
which FeCl3·6H2O was added to prepare NiO nanosheets decorated with NiFe2O4 nanopar-
ticles. The ratio of Fe/Ni was found to have a significant effect on the gas sensing perfor-
mance of the decorated NiO nanosheets. The composite with the Fe/Ni-24.9 exhibited the
optimal sensing performance to 50 ppm acetone at 280 ◦C, with a high response of ~23.0.
The release of captured electrons back to the sensing material breaks the dynamic carrier
balance between p-NiO and p-NiFe2O4. This resulted in a reduced potential barrier near
the surfaces of the heterojunctions and yielded a large variation in resistance, improving the
sensor response of the Fe/Ni-24.9 at%. The in situ formation of a second phase (p-NiFe2O4)
on the first phase (p-NiO) was a novel and effective strategy to improve the interaction
between the targeted gas and the sensing composite. Similar improvements in CuO-NiO
nanotubes with controllable element content of Cu/N developed by a one-pot synthesis
was also found, with a sensing capability towards 100 ppm glycol at 110 ◦C [104]. Based
on the studies listed above, the in situ preparation of the second phase required further
attention to improve the gas sensing performance of the sensor based on the metal oxide.
Other sensors composed with p-p heterojunctions and their gas sensing performances are
listed in Table S4.

Other types of heterojunctions based on metal oxides that improve gas sensing per-
formances also exist. Duy et al. assembled n-p-n heterojunctions with the structure of
SnO2-carbon nanotube-SnO2 by the method of CVD combined with spray coating pro-
cess [105]. The obtained n-p-n heterojunctions showed a high response of 17.9 to 100 ppm
NO2 at 100 ◦C. The n-p-n heterostructure of the ZnO-branched SnO2 nanowires decorated
with Cr2O3 nanoparticles [106] or the p-n-p heterojunctions of PANI coated CuO-TiO2
nanofibres [107] were also reported to exhibit improved gas sensing performance towards
hydrogen and ammonia, respectively. However, only a few references report the study of
the sensor based on n-p-n or p-n-p heterojunctions. More research should be conducted
to systematically investigate the gas sensing properties of metal oxide heterojunctions
comprising the n-p-n or the p-n-p structures.

Based on the discussions above, many kinds of metal oxides heterojunctions have
been successfully assembled to enhance the gas sensing performance towards various
gases. The sensor response of sensors based on heterojunctions was much higher than that
of the pure metal oxides and the response time was improved. The n-n, n-p, p-n or p-p
(even the n-p-n or p-n-p) heterojunctions can be chosen to be constructed to assemble gas
sensors with outstanding properties. We should point out that the enhanced gas sensing
mechanisms of certain heterojunctions towards the oxidising or reducing gases need to
be clearly discussed and compared to fully understand the role of the heterojunctions.
Therefore, in the next section, we review the mechanisms of the improvements in the
gas-sensing properties of the metal oxide heterojunctions.

3. Enhanced Gas Sensing Mechanisms of the Metal Oxide Heterojunctions

Compared with the pure metal oxides, sensors based on metal oxide heterojunctions
show improved gas sensing performances towards the targeted gases. When in contact with
each other, the transfer of carriers between the two semiconductor materials is induced due
to inconsistent Fermi levels at their interfaces. In the n-n or n-p heterojunctions, the Fermi
levels of the two metal oxides will move up or down to an equilibrium state, resulting
in the bending of their energy bands and the formation of a potential barrier between
them [28]. The gas sensing performances of the studied metal oxides are reported to be
mainly attributed to the redox reactions of the adsorbed targeted gases on the surfaces of
the sensing materials, which has been widely reported by researchers to explain the gas
sensing mechanisms of the assembled sensors [12,108]. The variation in the concentration
of the carriers induced by the redox reactions on the surfaces of the composites could be
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of importance to affect the height of the built-in potential barrier. This process further
influences the resistance or conductivity of the sensor based on n-n or n-p heterojunctions
according to Equation (1):

∆R ∝ exp{−e∆Vb/kBT} (1)

where the ∆R is the change of the resistance of the sensor, ∆Vb is the reduction of the
height of the potential barrier, kB is the Boltzmann constant and T is the temperature [109].
Therefore, little change in the height of a potential barrier would make the resistance of
the investigated sensor vary greatly, leading to an improved gas sensing property of the
heterojunction [110]. In the case of the p-n or p-p heterojunctions, the interaction between
the targeted gases and the sensing materials would also modify the carriers (especially
holes) in the sensors, which would further result in the variation of the thickness of the
accumulating layer in the heterojunctions, making a more effective modulation in the
width of the conduction channel for the carriers. As a result, sensors based on p-n or p-p
heterojunctions also show improved gas sensing properties to the reducing or oxidising
gases [108]. Moreover, the composites composed of metal oxide heterojunctions always
show higher specific surface areas than the pure metal oxides, which was confirmed by BET
measurements of the composites. The higher specific surface area enables gas molecules to
diffuse more smoothly to the surface and more easily interact with the composite as well
as provide more active sites. The size of the pore volume can be increased with a higher
specific surface area, facilitating the diffusion of gas molecules into the sensing material and
increasing the active surface in internal parts of the composite for gas molecule adsorption.
The absorption and the desorption of the gas molecules can also be accelerated during
the response and recovery process of the sensor based on metal oxide heterojunctions.
Therefore, the high specific surface area forms another positive factor contributing to the
comprehensive improvements in the gas sensing performance of the composite [111–115].

Compared with the effect of the specific surface area, it is more complex to study the
enhanced gas sensing mechanisms of the heterojunctions in the sensing materials. The
role of the heterojunctions in enhanced gas sensing performances should be analysed in
detail to fully understand their direct and significant effects on the enhancement of the gas
sensing properties of the sensors based on the composites. In the following section, the gas
sensing mechanisms of the metal oxides to the common reducing and oxidising gases are
discussed, and the effects of various commonly studied heterojunctions on the improved
gas sensing properties of the composites are systematically investigated. In order to make
the discussions clear, H2 (a typical reducing gas) and NO2 (a typical oxidising gas) were
selected for the discussion of the enhanced gas sensing mechanisms of the metal oxides
due to their immense studies in the area of gas sensors.

3.1. Enhanced Gas Sensing Mechanisms to Reducing Gases

Gas sensors based on n-n or n-p heterojunctions always exhibit typical n-type sensing
performances at relatively low working temperatures towards reducing gases such as H2,
H2S, CO, NH3 and ethanol. The widely studied ZnO-based material is taken as an example
to more clearly illustrate the sensing mechanism of the n-type metal oxide to a reducing
gas. The resistance of ZnO-based sensors has been reported to decrease quickly when H2
(ethanol or H2S) is introduced onto their surface [116–118]. In air, oxygen molecules would
spontaneously be adsorbed on the active sites of the surface of the ZnO to form chemisorbed
oxygen molecules according to Equation (2). Then, the chemisorbed oxygen molecules
can capture electrons from the conductive bands of the ZnO to become the oxygen species
(O2
−: <150 ◦C, O−: 150 ◦C~400 ◦C and O2−: >400 ◦C) based on Equation (3), which

builds a depletion layer in the ZnO surface and a high resistance in air. When H2 gas
is introduced, the H2 molecules will interact with the pre-adsorbed oxygen species to
form H2O based on Equation (4), releasing electrons back to ZnO. This response process
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increases the concentration of electrons and decreases the thickness of the depletion layer
in ZnO, leading to a decrease in the resistance of the sensor based on ZnO-based materials.

O2(g) + e− ↔ O2(ad) (2)

O2(ad) + e− ↔ O2
−(ad) (3)

2H2(g) + O2
− (ad) = 2H2O(g) + e− (4)

In contrast, composites made of p-n or p-p heterojunctions show typical p-type sensing
performances towards reducing gases. As reported, the resistance of CuO nanowires
increased when used to detect hydrogen gas (at working temperatures between 150 ◦C
and 400 ◦C) [119]. When the CuO nanowires were placed in an air atmosphere, the oxygen
molecule could also adsorb on the active sites in the surface of CuO to form adsorbed
oxygen species (O−) based on Equation (5), releasing holes to CuO and thus increasing
the concentration of holes. This forms an accumulation layer in the sensing material,
which acts as the conduction channel for carriers in CuO. In an H2 atmosphere, hydrogen
molecules interact with the adsorbed oxygen molecules according to Equation (6), reducing
the concentration of carriers and the thickness of the accumulation layer and induces the
formation of a depletion layer on the surface of CuO. Therefore, the resistance of a sensor
based on CuO nanowires increases in reducing gas environments [108,119].

O2(g)↔ O2
−(ad) + h+ ↔ 2O−(ad) + 2h+ (5)

2H2(g) + 2O−(ad) + 2h+ = 2H2O(g) (6)

The synthesis of TiO2 nanotubes decorated with SnO2 nanoparticles and their H2
sensing performance has been reported [89] and is selected to analyse the important role
of the typical n-n heterojunction in improving the sensing performance of the sensor
towards reducing gases. The results showed that the H2 sensing property of the TiO2-based
composite was highly improved with the help of the heterojunction between TiO2 and
SnO2. It was reported that the Fermi level of TiO2 was higher than that of SnO2, resulting
in the electron transfer to SnO2 from TiO2 until achieving the equilibrium states of their
Fermi levels. This would make a thick depletion layer formed at the interface between
TiO2 and SnO2 and induce a high potential barrier built in air due to the adsorption of
oxygen molecules. The potential barrier always acts as the obstacle to the transportation of
electrons in the sensing materials, resulting in the high resistance of the composites. The
accumulation of electrons in the SnO2 side would induce more oxygen molecules adsorbed
onto the surface of the composite. When hydrogen gas is introduced, the hydrogen gas
interacts with the adsorbed oxygen species on the surfaces of TiO2 and SnO2 immediately
and releases electrons back to the sensing materials. The released electrons would decrease
the thickness of the depletion layers between TiO2 and SnO2, further resulting in the
decrease in the height of the potential barrier. This process would increase the conductivity
of the sensor and significantly enhance the H2 sensing performance of the composite. The
porous MoO3/SnO2 nanoflakes with n-n junctions was also reported to show an improved
gas sensing property with a higher gas sensor response being 43.5 towards 10 ppm H2S
at 115 ◦C compared with that of the pure SnO2, which could also be attributed to the
reasons mentioned previously (see Figure 7a1,a2) [120]. Moreover, the improvement in the
H2S or xylene sensing performance of TiO2-decorated α-Fe2O3 nanorods [121] or Fe2O3
nanoparticles-decorated MoO3 nanobelts [122] could also be explained by the enhanced
gas sensing mechanism above.
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tion) (Copied with permission [120]. Copyright 2019, American Chemical Society), (b1,b2) NiO-
Nb2O5 composite nanoparticles (n-p heterojunction) (Copied with permission [123]. Copyright 2017,
Elsevier) and (c1,c2) Nb2O5 nanoparticle-decorated CuO nanorods (p-n heterojunction) (Copied with
permission [119]. Copyright 2017, Springer Nature) to reducing gases.

In the case of sensors based on n-p heterojunctions, the NiO-decorated Nb2O5 nanocom-
posites have been reported to exhibit a significant improvement in the H2 gas sensing
performance compared with that of the pure Nb2O5 nanoparticles [123]. When the NiO
nanoparticles are loaded onto the surface of the Nb2O5 nanoparticles, the electrons diffuse
to the Nb2O5 and the holes move toward the NiO, causing the Fermi levels of the two
different metal oxides to reach an equilibrium state. In air, the adsorption of the oxygen
molecules on the surfaces of the NiO and the Nb2O5 also results in the formation of an
accumulation layer of holes in the NiO side and a depletion layer in the Nb2O5 side. This
causes the energy bands of NiO to bend upwards, increasing the potential barrier at the
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interfaces in the region of heterojunctions. When the NiO-decorated Nb2O5 nanocom-
posites is exposed to H2, the interaction with H2 and adsorbed oxygen species releases
electrons to Nb2O5 but captures the holes in the NiO. This process induces the formation of
a depletion layer between NiO and Nb2O5 and makes the energy bands of NiO bend down-
wards, dramatically decreasing the height of the potential barrier at the heterojunction (see
Figure 7b1,b2). The NiO nanoparticles have also been reported to be an excellent catalyst
to effectively oxidise H2, causing reactions between the adsorbed H2 and the adsorbed
oxygen species to occur more sufficiently and smoothly. As a result, the NiO-decorated
Nb2O5 nanocomposites exhibit an improved gas sensing property to H2. The enhanced
gas sensing performances of the Co3O4-decorated WO3 nanowires [124], SnO2-Co3O4
composite nanofibres [67], CuO-loaded In2O3 nanofibres [125], hierarchical SnO/SnO2
nanocomposites [126], ZnO nanowire arrays/CuO nanospheres heterostructures [127] and
p-NiS/n-In2O3 heterojunction nanocomposites [34] towards reducing gases can also be
attributed to the reasons listed above.

For the p-n junction, Lee et al. reported the sensor based on Nb2O5 nanoparticles-
decorated CuO nanorods to be more sensitive towards hydrogen molecules than the pure
CuO nanorods [119]. The higher Fermi level of Nb2O5 makes the electrons diffuse to the
CuO and the holes transfer in an opposite orientation, leading to the bending of energy
bands. In air, the adsorption of oxygen molecules captures the electrons from Nb2O5 but
releases the holes to the CuO, resulting in the formation of a thick depletion layer in Nb2O5
and a thick accumulation layer in the CuO. This leads to the high potential barrier in the
composite in air. As reported, the accumulation layer in the CuO can act as a conduction
channel for carriers in the sensing material. When exposed to H2, the hydrogen molecule
can interact with the adsorbed oxygen species on the Nb2O5 and the CuO, releasing the
electrons back to the Nb2O5 but capturing the holes in the CuO. Effectively, this decreases
the thickness of the depletion layer in Nb2O5 and significantly thins the accumulation
layer in CuO with the possible formation of a depletion layer in the CuO, attributed
to more oxygen molecules adsorbed on the surface of the CuO due to the formation of
heterojunctions. This dramatic decrease in the thickness of the accumulation layer greatly
narrows the conduction channel width for carriers, as shown Figure 7(c1,c2). As a result,
the Nb2O5 nanoparticle-decorated CuO nanorods exhibited an improved p-type sensing
performance to H2. The improved sensing mechanism could also reasonably explain the
enhancements in the gas sensing performances of the In2O3-decorated CuO nanowires [93],
SnO2-decorated NiO nanostructure [91], hierarchical α-Fe2O3/NiO composites [128], SnO2-
decorated NiO foam [129] and CuxO-modified ZnO composite [130] with a hollow structure
towards H2, the toluene and the acetone.

Similarly, in the case of the p-p heterojunction, p-NiO-decorated p-CuO microspheres
were prepared through a hydrothermal process and studied the enhanced gas sensing
performance of the obtained composite with p-p heterojunctions [131]. The Fermi level of
the CuO was higher than that of the NiO, resulting in the transfer of holes from NiO to
CuO and the diffusion of electrons to NiO from CuO. As such, accumulation and depletion
layers of holes build on the CuO and the NiO sides, respectively. In air atmosphere, the
adsorption of the oxygen molecules on the surfaces of CuO and NiO releases holes to the
sensing material as previously mentioned. As a result, the thickness of the depletion layer
of the holes in the NiO decreases, but the thickness of the accumulation layer of the holes
in the CuO increases. The width of the conduction channel increased in the heterojunctions
between CuO and NiO, causing a low resistance of the composite. When a reducing
gas was introduced on the surface of the composite, the adsorbed oxygen ions reacted
with the introduced gas molecules, capturing the holes from CuO and NiO. This process
decreases the concentration of the carriers in the sensing materials, further increasing
the thickness of the depletion layer of the holes in NiO and decreasing the thickness of
the accumulation layer of holes in CuO. Therefore, the width of the conduction channel
increased in the heterojunctions was significantly narrowed, causing an increase in the
resistance of the composites. Therefore, the gas sensor response of the p-NiO-decorated
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p-CuO microspheres was highly improved towards reducing gases. The enhanced gas
sensing mechanisms of p-NiO/p-NiCr2O4 nanocomposites [132] or the Cr2O3-Co3O4
nanofibres [133] to xylene or C2H5OH can also be explained by the above discussions.

Apart from H2, there are also a number of references reporting similar improved
sensing mechanisms of sensors based on metal oxide heterojunctions towards NH3, another
widely investigated reducing gas. The work conducted by Shi et al. showed that the
sensor response of WO3@CoWO4 (n-n type) heterojunction nanofibres was over 10 times
higher than that of the bare WO3 at room temperature [134]. The authors pointed out the
formation of a number of heterojunctions for WO3 composited with CoWO4 in the sensing
material. The differences in the Fermi levels of WO3 and CoWO4 cause band bending and
trigger the transfer of electrons and holes between them until an equilibrium in final Fermi
levels is reached. In air, oxygen gas can be adsorbed on the surface of the two different
sensing materials and capture electrons from their conductive bands to form chemisorbed
oxygen ions (O2

− at room temperature) according to Equation (3). This process results
in a wider depletion layer and constructs a higher potential barrier near the surface of
the heterojunction in the composite than those in the pure CoWO4. NH3 molecules could
interact with the O2

− according to the following equation: 4NH3(ad) + 5O2
− (ad) →

4NO(g) + 6H2O(g) + 5e−. Electrons were then released back to the sensing materials of the
WO3@CoWO4 composite, reducing the thickness of the depletion layer and decreasing the
height of the potential barrier at the heterojunction. As a result, the sensing performance
of WO3@CoWO4 heterojunction nanofibres towards NH3 could be significantly enhanced
at room temperature. Additionally, the specific surface area of the composite was higher,
allowing more electrons to be transferred from the shallow donor levels of the WO3
nanoparticles to CoWO4 nanoparticles in the composite, thus enabling the enhanced NH3
sensing property of the sensor based on the metal oxide heterojunction. The study of Gong
et al. also revealed that the enhanced NH3 sensing performance of the flower-like n-ZnO
decorated with p-NiO with hierarchical structure was mainly attributed to the formation
of the depletion layer and the modulation of the potential barrier height at the surface
of the heterojunction [135]. A similar improved sensing mechanism was also reported in
the enhanced NH3 sensing performance of the sensors based on other heterojunctions,
including polyaniline/SrGe4O9 nanocomposite [136], polyaniline nanograin enchased TiO2
fibres [137], SnO2@polyaniline nanocomposites [138], V2O5/CuWO4 heterojunctions [139],
Fe2O3-ZnO nanocomposites [49], rGO/WO3 nanowire nanocomposites [140], WO3@SnO2
core-shell nanosheets [141], PANI-CeO2 nanocomposite thin films [142], CuPc-loaded ZnO
nanorods [143], Co3O4 nanorod-decorated MoS2 nanosheets [144], SnO2/NiO composite
nanowebs [145], bilayer SnO2-WO3 nanofilms [146], Cu2O nanoparticles decorated with
p-type MoS2 nanosheets [147], TiO2 and NiO nanostructured bilayer thin films [148] and
mesoporous In2O3@CuO multijunction nanofibres [149].

3.2. Improved Gas Sensing Mechanism towards Oxidising Gases

In contrast to the sensing behaviour of n-n or n-p heterojunctions towards reducing
gases, sensors based on n-n or the n-p heterojunctions were reported to exhibit a typical
p-type sensing performance towards the oxidising gases. Many researchers have studied
the oxidising gas (such as NO2) sensing performance of heterojunctions based on n-type
metal oxides at working temperatures within the range of 150 ◦C to 400 ◦C. The ZnO
nanoparticles exhibited a typical p-type sensing performance towards 0.3–10 ppm NO2
at the working temperature of 250 ◦C, with the resistance of the sensor increasing quickly
when exposed to an NO2 gas atmosphere [150]. In air, oxygen molecules can adsorb
onto the active sites of the surface of the nanostructured ZnO according to Equation (7),
capturing electrons from the conductive bands of ZnO. This process causes a decrease
in carriers in ZnO and the formation of a depletion layer on the surface of ZnO. When
exposed to an NO2 atmosphere, the NO2 molecules can interact with the ZnO directly and
with adsorbed O− on the ZnO according to Equations (8) and (9), respectively. Generally,
NO2 can be adsorbed onto the active sites of the ZnO surface based on Equation (8),
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capturing the electrons from the ZnO to form NO2
−. The NO2

− can then further react
with adsorbed oxygen species following Equation (9), grabbing electrons from ZnO. These
sensing processes decrease the concentration of the carriers in the ZnO and increase the
thickness of the depletion layer in the surface of the ZnO, resulting in a significant increase
in the resistance of ZnO and the p-type sensing performance to NO2 gas.

1/2O2(g) + e− ↔ O−(ad) (7)

NO2(g) + e− ↔ NO2
−(ad) (8)

NO2
−(ad) + O−(ad) + 2e− ↔ NO(g) + 2O2

− (9)

In addition, sensors based on p-n or p-p heterojunctions have been found to show
typical n-type sensing performances towards oxidising gases. The resistances of the
sensors assembled by heterojunctions based on p-type metal oxides decrease rapidly when
exposed to oxidising gases at the working temperatures of approximately 200 ◦C. Taking
the sensor based on Co3O4 as an example, oxygen molecules can be adsorbed onto the
active sites on the surface of Co3O4 according to Equation (5), releasing holes to Co3O4 and
resulting in the formation of chemisorbed oxygen species (mainly O−). This process can
also induce the establishment of an accumulation layer in the surface of Co3O4. In an NO2
atmosphere, NO2 molecules have also been reported to adsorb onto the active sites of a
Co3O4 surface based on Equation (10), releasing holes to the sensing materials and forming
NO2

−. The adsorbed NO2
− can then interact with the adsorbed oxygen species according

to Equation (11), releasing more holes to Co3O4. These processes make the accumulating
layer thicker on the surface of Co3O4 and cause the resistance of the sensor to decrease,
leading to an n-type sensing performance of the Co3O4-based sensor towards NO2 [64].

NO2(g)↔ NO2
−(ad) + h+ (10)

NO2
−(ad) + O−(ad)↔ NO(g) + 2O2

−(ad) + 2h+ (11)

For the sensor based on an n-n heterojunction, the study of the gas sensing properties
of ZnO-SnO2 hollow nanofibres showed that the composites exhibit a much higher sensor
response towards NO2 than pure SnO2 [151]. In the composite, the Fermi level of the SnO2
is higher than that of the ZnO. The lower Fermi level of the ZnO can thus lead to the transfer
of the holes from ZnO to SnO2 and the diffusion of electrons to ZnO from SnO2 until their
Fermi levels reach an equilibrium state. This process can then form a thick accumulation
layer on the ZnO side and a thin depletion layer on the SnO2 side. In air atmosphere,
oxygen molecules can adsorb onto the surface of SnO2, which would capture electrons from
SnO2 and increase the thickness of the built-in depletion layer. The accumulation layer of
the electrons in ZnO can cause more molecules to absorb onto its surface in air, capturing
electrons and significantly decreasing the thickness of the established accumulation layer
and even lead to the formation of a thin depletion layer (see Figure 8(a1)). In an NO2
atmosphere, adsorbed NO2 molecules on the surfaces of the metal oxides and the reaction
between NO2 and adsorbed oxygen molecules further capture electrons in ZnO and SnO2,
significantly increase in the depletion layer at the interfaces between ZnO and SnO2 (see
Figure 8(a2)). As a result, the height of the potential barrier increases greatly, making
the ZnO-SnO2 hollow nanofibres exhibit an improved NO2 gas sensing property. The
sensors based on ZnO nanorods decorated with TiO2 nanoparticles [61], Bi2O3-branched
SnO2 nanowires [112], In2O3-composited SnO2 nanorods [152] and SnO2-core/ZnO-shell
nanowires [153] also exhibited improved NO2 gas sensing performances according to the
mechanism discussed above.
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heterojunction) (Copied with permission [151]. Copyright 2018, Elsevier.), (b1,b2) the ZnO/Co3O4

composite nanoparticle (n-p heterojunction) (Copied with permission [64]. Copyright 2016, Elsevier.)
and (c1,c2) NiO-SnO2 nanocomposites (p-n heterojunction) (Copied with permission [154]. Copyright
2016, Royal Society of Chemistry.) towards oxidising gases.

In the case of the n-p junction, Co3O4-decorated ZnO nanoparticles have been es-
tablished by Lee et al. and showed a significant enhancement in the NO2 gas sensing
performance [64]. The Fermi level of ZnO is higher than that of Co3O4, inducing the trans-
fer of carriers between them and the formation of a depletion layer at the heterojunction. In
air, the adsorption of the oxygen molecules on the surfaces of ZnO and Co3O4 capture the
electrons from ZnO and release holes to Co3O4. This leads to the building of a depletion
layer on the ZnO side and an accumulation layer on the Co3O4 side as well as a significant
bending in their energy bands (see Figure 8(b1)). As a result, a potential barrier is formed
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at the interfaces between ZnO and Co3O4, resulting in a higher resistance of the sensor
based on the composites than that of pure ZnO. In an NO2 atmosphere, the adsorption
of NO2 molecules on the surfaces of ZnO and Co3O4 can lead to the capture of electrons
from ZnO but the release of the holes to Co3O4. The variation in the carriers in ZnO and
Co3O4 causes both the depletion layer in ZnO and the accumulation layer in Co3O4 to
become thicker. This sensing process increases the height of the potential barrier in the
heterojunctions and significantly increases the resistance of the Co3O4-decorated ZnO
composite (see Figure 8(b1,b2)). Meanwhile, the catalytic property of Co3O4 to NO2 also
acts as a positive factor for the improved NO2 gas sensing performance of the composite.
Oxygen molecules are reported to be more easily adsorbed onto the surface of p-type metal
oxides, which is another reason for the improved NO2 gas sensing performance of the
Co3O4-decorated ZnO nanoparticles. The improvements in the NO2 gas sensing properties
of the SnO-SnO2 nanocomposites [90], CuO-decorated ZnO nanowires [155], TeO2/SnO2
brush- nanowires [156] and ultra-long ZnO@Bi2O3 heterojunction nanorods [157] can also
be attributed to the reasons listed above.

Sensors based on the p-n heterojunctions have also been reported to be effective at
detecting oxidising gases. For example, NiO-SnO2 nanocomposites (p-n junctions) were
found to exhibit an improved gas sensing performance towards NO2 compared with pure
NiO [154]. The Fermi level of the n-type SnO2 was found to be higher than that of the
p-type NiO. The electrons would be transferred from SnO2 to the NiO, and the holes would
diffuse from the NiO to the SnO2. In an air atmosphere, the adsorption of oxygen molecules
would capture electrons in the SnO2 and release the holes to NiO, resulting the formation
of a thin depletion layer in SnO2 and an accumulation layer in NiO. A potential barrier
is then established between NiO and SnO2, and the carriers in the sensing materials are
mainly transported through the accumulation layer. In an NO2 atmosphere, the adsorption
of NO2 molecules on the surface of NiO results in more holes being released to NiO, further
increasing the thickness of the accumulation layer in the NiO layer. The adsorption of
NO2 molecules on the surface of SnO2 would allow more electrons to be grabbed from the
SnO2, further increasing the thickness of the depletion layer in SnO2. Moreover, NO2 can
be adsorbed on SnO2 more easily due to its higher electron concentration. There would
be more NO2 molecules adsorbed on the NiO-SnO2 nanocomposites, further resulting in
the great modulation in the accumulation layer of the heterojunction nanocomposites. The
increase in the thickness of the accumulation layer in NiO would widen the conduction
channel for the carriers, which would result in a significant decrease in the resistance
of the sensing material (see Figure 8(c1,c2)). Therefore, the sensors based on NiO-SnO2
nanocomposites exhibit a higher sensor response to NO2 than that of bare NiO.

For the p-p heterojunction, the NO2 gas sensing performance of sensors based on
p-type NiO nanosheets could be successfully improved through modifying them with the
p-type CuO nanoparticles [158]. In the CuO-decorated NiO nanosheets, the differences in
Fermi levels of CuO and NiO lead to the transfer of carriers between the two, resulting
in the formation of a hole depletion layer and a hole accumulation layer between their
interfaces. In air, the adsorption of oxygen molecules on the surfaces of CuO and NiO
can release holes to the sensing materials, leading to the increase in the thickness of the
accumulation layer at the interfaces between CuO and NiO. When NO2 is introduced and
interacts with the sensing material, more holes are released to CuO and NiO. Moreover,
more NO2 molecules become adsorbed on the sensing material due to the accumulation of
holes in the composite and its higher specific surface area. This sensing process would more
effectively increase the carriers (holes) in the composites and widen the accumulation layer
between CuO and NiO. As a result, the resistance of the p-p heterojunctions significantly
decreased and the CuO-decorated NiO nanosheets presented an enhanced NO2 gas sensing
performance. The enhanced NO2 sensing mechanism discussed above can also be applied
to explain the improved NO2 sensing properties of the sensors based on CuO-decorated
TeO2 nanorods [102] and vertically aligned Cu3Mo2O9 micro/nanorods on a CuO layer
(Cu3Mo2O9@CuO nanorods) [159].
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The discussions of the enhanced gas sensing mechanisms of the n-n, n-p, p-n and p-p
heterojunctions reveal that modulations of the height of the potential barriers and the thick-
ness of the accumulation layer in the heterojunctions are responsible for the improvements
of the gas sensing performances of the nanocomposites. The different Fermi levels of the
metal oxides induce band bending in the heterojunctions, leading to the formation of po-
tential barriers and accumulation layers in n-type and p-type heterojunctions, respectively.
The interactions between the targeted gases and the sensing materials cause variations
in the height of the potential barriers in n-type heterojunctions (n-n or n-p heterojunc-
tions) and the thickness of the accumulation layer in p-type heterojunctions (p-n or p-p
heterojunctions), inducing enhancements of the sensing performance of the composites.

4. Conclusions

The gas sensing performances of metal oxides have been successfully improved
through assembling heterojunctions in sensing materials. The heterojunctions are usually
constructed via combined methods of electrospinning, thermal oxidation, ALD, PLD,
hydrothermal process and CVD. The sensor response, response time or recovery time based
on n-n, n-p, p-n or p-p heterojunctions can be effectively enhanced. Modulations in the built-
in heterojunctions are mainly responsible for the enhanced gas sensing performances of
the sensors based on n-n or n-p junctions. The improvement in the gas sensing behaviours
of the sensors based on p-n or p-p heterojunctions can be attributed to variations in the
thicknesses of the accumulation layers in the junctions. n-type or p-type nanostructured
metal oxides with different morphologies can be selected to assemble heterojunctions and
their concentrations can modified, indicating that more interesting gas sensors based on
nanostructured metal oxide heterojunctions might be explored.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11041026/s1, Table S1: The assembled strategies of n-n heterojunctions and their gas
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sensing performances. Table S3: The assembled strategies of p-n heterojunctions and their gas
sensing performances. Table S4: The assembled strategies of p-p heterojunctions and their gas
sensing performances.
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