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Abstract: The use of nanoscale nutrients in agriculture to improve crop productivity has grown in
recent years. However, the bioefficacy, safety, and environmental toxicity of nanoparticles are not
fully understood. Herein, we used onion bulb extract to synthesize manganese oxide nanoparticles
(MnO-NPs). X-ray diffraction, X-ray photoelectron spectroscopy, and high-resolution transmission
electron microscopy were used for the structural and morphological characterization of synthesized
MnO-NPs. The MnO-NPs were oval shape crystalline nanoparticles of Mn2O3 with sizes 22–39 nm.
In further studies, we assessed the comparative toxicity of seed priming with MnO-NPs and its bulk
counterparts (KMnO4 and Mn2O3), which showed seed priming with MnO-NPs had comparatively
less phytotoxicity. Investigating the effect of seed priming with different concentrations of MnO-
NPs on the hormonal, phenolic acid, chlorophyll, and antioxidant profiles of watermelon seedlings
showed that treatment with 20 mg·L−1 MnO-NPs altered the chlorophyll and antioxidant profiles of
seedlings. At≤40 mg·L−1, MnO-NPs had a remarkable effect on the phenolic acid and phytohormone
profiles of the watermelon seedlings. The physiological outcomes of the MnO-NP seed priming in
watermelon were genotype-specific and concentration-dependent. In conclusion, the MnO-NPs were
safer than their bulk counterparts and could increase crop productivity.

Keywords: antioxidant activity; hormone; manganese oxide nanoparticles; metabolomics; chloro-
phylls; watermelon seedlings

1. Introduction

The global agricultural output needs to increase by an estimated 60% by 2050 to
assure food security for the predicted population of 9 billion people [1,2]. The use of
innovative technologies such as nanotechnology in agriculture could be crucial to make
agriculture more productive and sustainable [3]. Nanosensor systems, nanoscale nutrients,
and pesticides are gaining popularity in agriculture [4,5]. However, concerns are also
rising in the scientific community about the use of nanoscale nutrients and pesticides;
these concerns are mainly related to their bioefficacy, biosafety, and environmental toxicity.
Hence, recent research has been tilted towards developing eco-friendly nanomaterials [6].

Biotic and abiotic stresses cause considerable and unpredictable losses to crops [7].
Several methodologies, such as conventional breeding, mutation breeding, polyploidy
breeding, genetic engineering, and seed priming, have been adapted to accelerate seedling
emergence in the field and to impart tolerance to plants against adverse conditions [8]. Var-
ious seed priming (presoaking) techniques such as priming with water, salts, osmoticum,
solid matrices, different chemicals, temperature, and plant hormones have been devel-
oped [8]. Amongst these, seed priming in nanoparticle solutions (often termed “nanoprim-
ing”) is gaining importance in crop science. Nanopriming is reported to improve seed
germination, growth, and yield of crops [9,10]. Thus far, several biogenic and synthetic
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metallic nanoparticles and carbon nanotube-based seed priming methods have been used
to improve seed germination and plant growth [10–13].

Plants require micronutrient manganese (Mn) for photosynthesis, respiration, and
other processes. The Earth’s crust is rich in Mn [14,15], which is easily oxidized to produce
over 30 manganese oxides (MnOx)/hydroxide [14]. Compare to the conventional bulk or
ionic Mn compounds, nanoscale Mn is found to be less phytotoxic and more effective in
minimizing abiotic stresses in plants [16]. MnOx nanoparticles are mainly produced by
bacteria in the environment [15]. In recent studies, phytoextracts have been used in the
production of Mn nanoparticles [17,18]. However, the physiological and toxicological effect
of the various Mn nanoparticles on agricultural crops is relatively less known.

In this study, the synthesis of manganese oxide nanoparticles (MnO-NPs) was carried
out using onion bulb extract. X-ray diffraction (XRD), X-ray photoelectron spectroscopy
(XPS), and high-resolution transmission electron microscopy (HR-TEM) techniques were
used for the structural and morphological characterization of MnO-NPs. In further studies,
the comparative toxicity of seed priming with MnO-NPs and its bulk counterparts (KMnO4
and Mn2O3) was studied. The effect of MnO-NPs seed priming treatments of different
concentrations on the hormonal, phenolic acid, chlorophyll, and antioxidant profiles of
watermelon seedlings was also investigated to understand the nature of the interactions
between MnO-NPs and plants. Moreover, we used the green approach to synthesize MnO-
NPs and showed they are safer than their bulk counterparts; this information can also help
to synthesize ecofriendly MnO-NPs for their non-agri-food applications, such as in biofuel
and batteries, where the ecotoxicity of the nanomaterials is the primary concern.

2. Materials and Methods
2.1. Materials and Chemicals

Waste onion bulbs were obtained from local growers and supermarkets. The seeds
of diploid (Riverside) and triploid (Maxima) watermelon varieties obtained from Origene
Seeds Ltd., Giv’aat Brener, Israel. Abscisic acid (ABA), 2,2-diphenyl-1-picrylhydrazyl
(DPPH), gibberellic acid (GA), jasmonic acid (JA), potassium permanganate (KMnO4),
salicylic acid (SA), zeatin (ZA), and phenolic acids (4-hydroxy-benzoic acid, caffeic acid,
phthalic acid, protocatechuic acid, and trans-cinnamic acid) were procured from Sigma
Aldrich (St. Louis, MO, USA). 12-oxo phytodienoic acid (OPDA) purchased from Cay-
man Chemical, Ann Arbor, MI, USA. 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid
(ABTS) was obtained from Chem-Impex Int’l. Inc. (Bensenville, IL, USA).

2.2. Synthesis of MnO-NPs

For the synthesis of MnO-NPs, the onion bulb extract was prepared by grinding sliced
onion bulbs, as per the procedure described previously [19]. Then, the onion extract was
slowly added to 0.01 M KMnO4 solution (1:1, v/v) and kept on a magnetic stirrer with
constant stirring for two h at ambient temperature (pH 7). The resultant black precipitate
was separated by centrifuging at 7741× g for 10 min. The residue was washed with
nanopure water, and the aqueous phase was removed after centrifuging at 7741× g for
10 min. This procedure was repeated three times, and finally, the residue was washed with
absolute ethanol. After freeze-drying for 14 h (Labconco Freeze Dryer System, Kansas City,
MO, USA), the residue was calcined for 4 h at 500 ◦C in a muffle furnace (Thermo Scientific,
Pittsburgh, PA, USA). The final black-colored fine MnO-NP powder was stored in a cool
and dry place until its use for further characterization and nanopriming studies.

2.3. Characterization of MnO-NPs

The XRD, XPS, and HR-TEM analyses of dried MnO-NP powder were carried out as
per procedures described in our previous published study [20].



Nanomaterials 2021, 11, 1016 3 of 14

2.4. Phytosafety of MnO-NP Seed Priming

For seed priming, three different concentrations (25, 50, and 100 mg·L−1) of MnO-
NPs, bulk KMnO4, and Mn2O3 solutions were prepared in nanopure water. Under each
treatment, diploid watermelon seeds (n = 20, in triplicate) were presoaked in 15 mL of
priming solution for 14 h. Seeds soaked in nanopure water were used as a hydro-primed
treatment. The next day, after drying, unprimed and primed seeds were sown in a plug
tray for seedling development [20]. On the eighth day, leaf samples from seedlings of
each group were used for leaf disc-based antioxidant activity measurement assays and
chlorophyll estimation.

2.5. Nanopriming, Seed Germination, and Seedling Development

In the nanopriming procedure, 20 watermelon seeds (diploid and triploid varieties)
were primed in 15 mL of aqueous MnO-NP suspension (10, 20, 40, and 80 mg·L−1) for
14 h. For the germination test, unprimed, hydroprimed, and MnO-NP-primed seeds were
placed on Petri plates containing a sterile filter paper. First, the filter paper was wetted
with 10 mL nanopure water, and around 8 mL water was added to each plate on alternate
days [20]. The germination tests were carried out in an incubator at 28 ◦C under dark
conditions. The germinated seeds were counted daily, and the final results of germination
tests were expressed as the mean number of days to 50% germination [21].

For seedling development, another set of unprimed, hydroprimed, and MnO-NP-
primed seeds (20 seeds in triplicate under each treatment) were sown in 200-cell trays.
Trays were then transferred to the growth chamber for seedling development for eight
days. After that, seedlings from each treatment group were collected, and root and stem
lengths were measured. Fresh leaf samples from each treatment group were used for leaf
disc-based antioxidant activity measurement assays. The rest of the leaf tissue samples
were stored at −80 ◦C for further untargeted plant metabolomics study and quantitative
profiling of chlorophylls, phytohormones, and phenolic acids [20].

2.6. Antioxidant Activity and Chlorophylls Measurement

The antioxidant activity profiles of unprimed, hydroprimed, and MnO-NP-primed
diploid and triploid watermelon seedling samples were studied using novel ABTS, DPPH,
and potassium permanganate reduction (PPR) leaf-disc assays developed in our lab [19].
The chlorophyll extraction was conducted as per the procedure described in the previous
study [20], and estimation was carried out by measuring absorbance at 652 and 665 nm
in a microplate reader. The following equations were used to estimate the contents of
chlorophyll a and chlorophyll b per gram of fresh weight (FW) [22,23].

Chlorophyll a (µg·g−1 FW) = (16.72 × A665 − 9.16 × A652) × 50

Chlorophyll b (µg·g−1 FW) = (34.09 × A652 − 15.28 × A665) × 50

where A652 and A665 are the absorbances at 652 and 665 nm, respectively.

2.7. Untargeted Metabolomics and Phenolic Acids Profiling

The sample preparation and UHPLC/ESI-HR-QTOFMS based quantitative profiling
of phenolic acids were performed as per our previously described methods [19,20]. For
untargeted metabolomics study, the UHPLC/ESI-HR-QTOFMS data were preprocessed by
DataAnalysis 4.3 Software (Bruker Daltonics, Bremen, Germany), and multivariate analysis
was performed using online software MetaboAnalyst 3.0 [20,24].

2.8. Hormone Analysis

The phytohormones were extracted as per the protocol described in our previous
study [20]. UHPLC/ESI-HR-QTOFMS was used for the quantitative profiling of hor-
mones [20].
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2.9. Statistical Analysis

Results were expressed as a mean ± standard error (SE). Statistical analysis was
per-formed using the SPSS software (Version 25, IBM SPSS Statistics, IBM Corp., Chicago,
IL, USA).

3. Results
3.1. Synthesis and Characterization of MnO-NPs

The production of nanoscale nutrients using a green approach can be an effective
strategy to minimize concerns with their biosafety and environmental toxicity. Considering
this, in the present study, the green synthesis of MnO-NPs was carried out using onion ex-
tract. The clear purple KMnO4 solution immediately changed to a blackish-brown colloidal
solution after adding onion extract, which demonstrated the formation of MnO-NPs. The
phytochemicals, mainly polyphenols from the onion extract, may reduce permanganate
(MnO4

−) into manganese dioxide (MnO2) by transferring three electrons. The organic
matter from synthesized MnO-NPs was further removed by calcination. Heating MnO-
NPs at high temperatures (500 ◦C) in the air may lead to the formation of more crystalline
MnO-NPs.

Figure 1a shows the XRD pattern of synthesized MnO-NPs. The sharp diffraction
peaks confirmed the crystalline nature of MnO-NPs. In the XRD spectrum, the observed
diffraction peaks at 2θ values of 23.30◦, 33.07◦, 38.42◦, 45.31◦, 49.46◦, 55.22◦, and 65.88◦

correspond to crystal planes (211), (222), (400), (332), (431), (440), and (622), respectively,
which demonstrates the formation of Mn2O3 [25]. The results of TEM analysis showed
synthesized MnO-NPs had oval shapes of 22–39 nm (Figure 1b). The magnified HRTEM
image also demonstrated a lattice fringe spacing of 0.27 nm, which corresponds to the (222)
plane of Mn2O3 (Figure 1c) [26].

The surface electronic state of Mn2O3 was also confirmed by XPS analysis. Figure 1d
shows the typical survey spectrum of MnO-NPs, containing photoelectron lines of phospho-
rus, carbon, calcium, potassium, oxygen, and manganese. The narrow scan XPS spectrum
of the Mn 2p-electrons showed two photoelectron lines at approximately 641.4 eV and
653.5 eV, which can be attributed to Mn 2p3/2 and Mn 2p1/2 levels, respectively (Figure
1e). These binding energies agreed well with the reported Mn2O3 values [27]. The high-
resolution O 1s XPS spectrum exhibits a strong peak at 530.9 eV, which corresponds to the
lattice O in Mn2O3 (Figure 1f) [28].

3.2. Comparative Phytotoxicity of MnO-NPs, Bulk KMnO4, and Mn2O3

As of now, the use of nanoscale nutrients in agriculture is limited due to the lack of
information about their toxicity in crops. It has been reported that conventional bulk/ionic
Mn compounds can induce abiotic stress in plants [16]. Figure 2 shows the comparative
results of the antioxidant activity and chlorophyll contents in leaf samples from different
seed priming treatments with MnO-NPs, bulk KMnO4, and Mn2O3. The studied MnO-NPs
seed priming treatments had no considerable impact on chlorophyll contents (Figure 2a).
However, seed priming with its bulk counterpart, Mn2O3, significantly reduced the chloro-
phyll a and b contents in diploid watermelon seedlings (Figure 2a). Conversely, seed
priming with KMnO4 up to 50 mg·L−1 had no influence on chlorophyll a and b contents.
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Figure 1. Characterization of MnO-NPs: (a) X-ray diffraction (XRD) pattern; (b) transmission electron microscopy (TEM)
image; (c) high resolution (HR)-TEM image; (d) X-ray photoelectron spectroscopy (XPS) overview spectrum of MnO-NPs;
(e,f) the narrow scan Mn 2p-electrons and O1s XPS spectrum of MnO-NPs, respectively.
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Figure 2. Comparative phytotoxicity of different seed priming treatments with MnO-NPs, KMnO4, and Mn2O3 in diploid
watermelon seedlings. The effect of MnO-NPs, KMnO4, and Mn2O3 seed priming treatments (25, 50, and 100 mg·L−1) on
chlorophyll contents (a) and antioxidant activity levels in DPPH, ABTS, and PPR leaf disc assays (b). The post hoc test
based significant differences (p < 0.05) among different groups, and assays are presented by different letters and colors.

Mn is an essential micronutrient for plants. It is mainly involved in photosynthesis
as an enzyme cofactor in the water-splitting reaction of photosystem II (PSII), and also
helps to lower the reactive oxygen species (ROS) [29–32]. However, excess Mn can be
toxic, leading to the inhibition of chlorophyll synthesis [33]. Similar to our findings, MnO-
NPs showed less toxicity than their ionic counterparts in lettuce (Lactuca sativa L.) [33].
Moreover, Mn nanoparticles increased photophosphorylation, water splitting by an oxygen-
evolving complex, and nitrogen assimilation in plants compared with its elemental or bulk
counterparts [34,35].

In plants, reactive oxygen species (ROS) production is sensitive to various metallic
nanoparticles [36,37]. The changes in ROS production further affect the enzymatic and
nonenzymatic antioxidant defenses in plants [38]. In plants, Mn toxicity is mitigated by
activating antioxidant defenses. Figure 2b indicates the levels of antioxidant activities
in the leaf samples of diploid watermelon seedlings after seed priming treatments with
MnO-NPs, KMnO4, and Mn2O3 in comparison with controls. Seed priming with different
concentrations of MnO-NPs had no considerable effect on the observed radical scavenging
activities in DPPH and ABTS leaf disc assays. However, the antioxidant activity values in
the ABTS assay were significantly increased in KMnO4 and Mn2O3 seed priming treatments
at concentrations ≤ 50 mg·L−1. Interestingly, we found that the reducing power values
in PPR leaf assays significantly decreased after MnO-NPs, KMnO4, and Mn2O3 seed
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priming treatments (Figure 2b). These results collectively indicate that MnO-NPs have less
phytotoxicity than their bulk counterparts (KMnO4 and Mn2O3).

3.3. Effect of Different MnO-NPs Seed Priming Treatments on Seed Germination, Seedling Growth
Parameters, Photosynthetic Pigments, and Antioxidant Potential

Seed priming is a promising approach to improve germination and seedling develop-
ment by altering the physiological state of the seed [7,8]. Recently, the technique of seed
priming with synthetic nanoparticles, typically called “nanopriming” has also been gaining
importance in improving desired traits in crops [9]. Moreover, nanopriming is a con-
trolled technique, which minimizes the exposure risk of nanoparticles in the environment.
Figure 3a shows the results of mean days to 50% germination of unprimed, hydroprimed,
and different MnO-NPs seed priming treatments in two watermelon varieties. The hy-
dropriming and 10 mg·L−1 MnO-NPs seed priming treatments significantly enhanced the
seed germination compared to unprimed control in the diploid genotype. However, the
above positive effect was not observed in the triploid variety. Seed priming with MnO-NPs
at concentrations ≤ 20 mg·L−1 nonsignificantly reduced seed germination in the diploid
watermelon variety (Figure 3a). A previous study reported that MnO-NPs had no consid-
erable impact on seed germination [33]. However, they improved the seedling growth in
lettuce and increased root growth in Capsicum annuum L. [33,39]. We also investigated the
effects of the different MnO-NPs priming treatments on seedling growth in the diploid
and triploid varieties (Figure S1). All the investigated MnO-NPs priming treatments had
no significant influence on the stem and root lengths. These findings confirmed that seed
priming with MnO-NPs had no considerable phytotoxicity up to the studied concentration
of 80 mg·L−1 in standard phytotoxicity tests such as seed germination and root elongation.

Chlorophyll a is a primary pigment, along with other accessory pigments (chloro-
phyll b), in harvesting light energy [40]. We investigated the effect of MnO-NPs priming
treatments at different concentrations on the synthesis of chlorophyll a and b in the diploid
and triploid watermelon varieties (Figure 3b). Indeed, MnO-NPs priming treatments
dose-dependently affected the chlorophyll a and b levels in triploid watermelon seedlings.
At 20 mg·L−1 MnO-NPs, chlorophyll a and b levels were significantly increased in triploid
watermelon seedlings compared with unprimed and hydroprimed controls. However, in
the triploid variety, MnO-NPs priming treatments below and above 20 mg·L−1 did not
influence the chlorophyll a and b levels. On the other hand, the chlorophyll a and b levels in
diploid watermelon seedlings were nonsignificantly altered in response to different MnO-
NPs priming treatments, demonstrating that chlorophyll synthesis in watermelon seedlings
may be highly sensitive to the concentration of Mn. The genetic makeup and seed mor-
phology may be responsible for the different chlorophyll a and b profiles in the diploid and
triploid varieties [20]. The outcome of any seed priming treatment is generally influenced
by the plant genotype, seed morphology, and physiology. The uptake of nanoparticles
in the various nanopriming treatments is found to differ, and hence their physiological
outcomes in plants vary with size and unique physicochemical properties [41,42].

Figure 3c shows the antioxidant activity levels in DPPH, ABTS, and PPR leaf disc
assays after different MnO-NPs and hydropriming treatments, compared with untreated
control. The MnO-NP treatments had a differential impact on the antioxidant activities
of nonenzymatic antioxidants in diploid and triploid watermelon seedlings. In diploid
watermelon seedlings, nonsignificant changes were observed in the antioxidant activity
levels in DPPH and DPPH leaf assays after all MnO-NPs treatments compared with control
plants. However, in the triploid variety, at higher MnO-NPs concentrations (80 mg·L−1),
antioxidant activity levels in DPPH leaf disc assay were increased. Conversely, at higher
MnO-NPs concentrations (≤40 ppm), the values of reducing power in diploid and triploid
watermelon seedlings leaf samples were significantly reduced in PPR assay compared
with unprimed control. These findings indicate that a higher dose of MnO-NPs may exert
oxidative stress in watermelon plants. The literature also reported that the MnO-NPs
produced oxidative stress and toxic effects at higher concentrations (50–200 mg·L−1) in
deadly nightshade (Atropa belladonna L.) [43].
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Figure 3. Effect of different MnO-NPs seed priming treatments on mean days to reach 50% germination (a), chlorophyll
contents (b), and antioxidant activities (c) in diploid and triploid watermelon seedlings. The post hoc test significant based
differences (p < 0.05) among different groups and assays are shown by different letters and colors.

3.4. Untargeted Metabolomics to Understand the Influence of Priming with Different
Concentrations of MnO-NPs on the Watermelon Leaf Metabolome

Metabolomics can be an effective approach to understand the nature of interactions
between nanomaterials and plants. Herein, principal component analysis (PCA) and partial
least squares discriminant analysis (PLS-DA) multivariate analysis methods were used to
explore the impacts of the different MnO-NPs treatments on the leaf metabolite responses
in diploid and triploid watermelon seedlings. In the PCA scores plots, a clear separation
was observed between the unprimed control and primed samples (Figure 4a,b). However,
the separation between the MnO-NPs priming treatments and the hydroprimed control
was only clearly found in the samples of the triploid watermelon variety (Figure 4b).
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droprimed, and MnO-NPs-primed seedlings of diploid and triploid watermelon varieties, respectively. (c,d) show the
PLS-DA scores plots of leaf tissue metabolomes of diploid and triploid watermelon seedlings after different treatments.

Supervised PLS-DA was further performed to sharpen the variability among the
metabolomes of the hydroprimed and different MnO-NPs-primed samples. As shown
in Figure 4c,d, distinct clusters were found for unprimed, hydroprimed, and different
MnO-NPs-primed samples in PLS-DA scores plots of diploid and triploid varieties. These
findings demonstrated that seed priming with MnO-NPs modulates metabolites in water-
melon plants according to their treatment concentrations.

3.5. Seed Priming with MnO-NPs Altered Phytohormone Profiles Distinctly in Diploid and
Triploid Watermelon Varieties

Plant hormones regulate the growth and development of plants, and they have a
crucial role in the responses of the plants to different stresses. The assessment of the plant
hormones pool provides an overview of the interaction of the plants with external factors.
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In our previous study, plant hormones were affected in watermelon seedlings in response
to iron nanoparticle treatments [20]. The influence of the different MnO-NPs priming
treatments on leaf phytohormone profiles in diploid and triploid watermelon seedlings
is shown in Figure 5. The studied MnO-NPs priming treatments distantly modulate
phytohormone profiles in diploid and triploid varieties of watermelon. Similar to our
results, Iqbal and coworkers also found that different priming agents (i.e., CaCl2, KCl, and
NaCl) distinctly influenced phytohormone profiles of two wheat cultivars [44]. We further
found that the changes in the phytohormone profiles in diploid and triploid varieties were
MnO-NPs concentration-dependent.
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Figure 5. Leaf tissue hormonal profiles in unprimed, hydroprimed, and MnO-NPs-primed diploid and triploid watermelon
seedlings. Letters show significant (p < 0.05) differences based on a post hoc Tukey’s test (ABA, abscisic acid; GA, gibberellic
acid; JA, jasmonic acid; OPDA, 12-oxo phytodienoic acid; SA, salicylic acid; ZA, zeatin). Different letters indicate significant
differences (p < 0.05) among treatments according to Tukey’s multiple-range test and n.d. represents not detected.

In diploid seedlings, MnO-NPs priming treatments significantly modulated the levels
of ABA, JA, and OPDA compared with unprimed and hydroprimed controls. Seed priming
with 20 to 80 mg·L−1 MnO-NPs significantly reduced the level of OPDA, and conversely,
increased the level of JA, demonstrating MnO-NP priming promotes conversion of OPDA
into JA in diploid watermelon seedlings. Previous studies showed that the lowering
of OPDA accumulation might be helpful to break seed dormancy and improve plant
development [45]. However, this was not observed in the triploid watermelon variety.
In our previous study, seed priming with iron oxide nanoparticles also increased the
conversion of OPDA into JA in diploid watermelon seedlings [20].

The observed phyto-ormone profiles of triploid watermelon seedlings in response
to different MnO-NPs priming treatments were distinct from those measured in the leaf
samples of diploid seedlings (Figure 5). The levels of ABA, GA, and JA were significantly
altered in response to different MnO-NP priming treatments in triploid seedlings. In
triploid seedlings, priming with 40 and 80 mg·L−1 of MnO-NPs significantly increased
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levels of ABA and GA, whereas this treatment significantly reduced SA and ZA levels.
Among these hormones, ABA is a stress-responsive hormone [46]. The accumulation of
ABA in triploid seedlings at higher priming concentrations of MnO-NPs demonstrates that
the watermelon plant experienced stress at the higher seed priming concentration.

3.6. Seed Priming with Higher Concentrations of MnO-NPs Modulates Leaf Phenolic Acid Profiles
in the Watermelon Plant

Plants trigger the synthesis of phenolic compounds upon exposure to nanoparticles as
a protective response against oxidative stress [20]. In this study, the levels of plant phenolics
in the watermelon seedling were measured to understand the protective response of the
plant to different treatments of MnO-NPs (Table 1). The MnO-NP priming treatments up
to concentrations of 40 mg·L−1 had no significant impact on the studied phenolic acid
profiles of diploid and triploid watermelon seedlings (Table 1). However, at higher seed
priming concentrations (80 mg·L−1), MnO-NPs significantly increased the accumulation
of trans-cinnamic acid in the leaf tissue of both diploid and triploid varieties (Table 1). It
has been reported that trans-cinnamic acid acts as autotoxin, and it was found to trigger
oxidative stress in cucumber plants [47]. Conversely, the observed protocatechuic acid
content was reduced to below the detectable limit in diploid and triploid seedlings at seed
priming concentration, 80 mg·L−1 (Table 1). Protocatechuic acid is known to have high
chelating strength. In our study, a below-detectable level of protocatechuic acid at higher
concentrations of MnO-NPs may indicate its chelation with MnO-NPs.

Table 1. The levels of certain phenolic acids in leaf tissue samples of unprimed, hydroprimed, and MnO-NPs-primed
diploid and triploid watermelon seedlings. Different letters indicate significance at p < 0.05.

Genotype Treatment

Phenolic Acid Content (mg·g−1 of Fresh Weight)

4-Hydroxy-
Benzoic

Acid
Caffeic Acid Phthalic Acid Protocatechuic

Acid
Trans-Cinnamic

Acid

Diploid

Unprimed 1.54 ± 0.2 a 6.52 ± 1.1 a 8.70 ± 1.5 a 2.46 ± 0.9 a 42.1 ± 2.2 ab
Hydroprimed 2.18 ± 0.4 a 5.08 ± 0.5 ab 6.17 ± 0.8 a 0.69 ± 0.1 a 47.9 ± 5.1 ab

MnONPs—10 mg·L−1 2.05 ± 0.7 a 3.47 ± 0.3 ab 7.06 ± 0.7 a 0.83 ± 0.2 a 36.4 ± 4.6 b
MnONPs—20 mg·L−1 1.71 ± 0.2 a 4.78 ± 0.6 ab 5.03 ± 0.9 a 0.52 ± 0.2 a 44.9 ± 10.0 b
MnONPs—40 mg·L−1 2.08 ± 0.3 a 4.96 ± 0.7 ab 7.71 ± 1.4 a 0.53 ± 0.2 a 42.1 ± 6.0 ab
MnONPs—80 mg·L−1 1.71 ± 0.1 a 2.70 ± 0.2 b 6.98 ± 1.3 a n.d. 68.2 ± 12.8 a

Triploid

Unprimed 1.52 ± 0.1 a 3.57 ± 0.2 a 6.77 ± 1.0 a 0.72 ± 0.2 ab 31.7 ± 5.6 b
Hydroprimed 1.53 ± 0.2 a 2.83 ± 0.2 a 10.36 ± 1.3 a 0.55 ± 0.3 ab 32.1 ± 3.2 b

MnONPs—10 mg·L−1 1.43 ± 0.2 a 3.16 ± 0.3 a 7.08 ± 0.9 a 1.25 ± 0.2 a 43.0 ± 14.6 b
MnONPs—20 mg·L−1 1.60 ± 0.1 a 3.46 ± 0.5 a 7.13 ± 1.6 a 1.01 ± 0.3 a 29.3 ± 3.9 b
MnONPs—40 mg·L−1 1.81 ± 0.1 a 3.45 ± 0.3 a 7.89 ± 0.5 a 0.98 ± 0.2 a 24.9 ± 7.4 b
MnONPs—80 mg·L−1 1.68 ± 0.3 a 3.11 ± 0.6 a 6.86 ± 1.5 a n.d. 90.1 ± 5.9 a

4. Conclusions

In this study, we have shown that onion extract can be efficiently used for the produc-
tion of oval crystalline Mn2O3 nanoparticles (MnO-NPs) of 22–39 nm. Seed priming with
MnO-NPs had less phytotoxicity than the bulk form of Mn present in KMnO4 and Mn2O3.
This study showed that MnO-NPs considerably affect the chlorophyll and antioxidant
profiles at 20 mg·L−1. Conversely, at ≤40 mg·L−1 the priming had a remarkable influence
on leaf phenolic acid and phytohormone profiles in watermelon seedlings. However, the
observed physiological outcomes of MnO-NPs seed priming treatments in watermelon
were genotype-specific and concentration-dependent. The results of the present study
collectively demonstrated that green synthesized MnO-NPs could be a safer seed priming
agent compared to bulk counterparts, KMnO4 and Mn2O3 to improve the productivity
of the watermelon crop at its optimal effective concentration. However, further studies
regarding the exact influence of seed priming with MnO-NPs on overall agricultural output,
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including its role in providing tolerance against various abiotic and biotic stresses to other
horticultural crops, are warranted.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11041016/s1, Figure S1: Effect of seeds priming with different concentrations of MnO-NPs
on the stem and root lengths of eight-day-old diploid and triploid watermelon seedlings.
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