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Abstract: Carbonic anhydrases are enzymes capable of transforming carbon dioxide into bicarbonate
to maintain functionality of biological systems. Synthetic isolation and implementation of carbonic
anhydrases into membrane have recently raised hopes for emerging and efficient strategies that could
reduce greenhouse emission and the footprint of anthropogenic activities. However, implementation
of such enzymes is currently challenged by the resulting membrane’s wetting capability, overall
membrane performance for gas sensing, adsorption and transformation, and by the low solubility
of carbon dioxide in water, the required medium for enzyme functionality. We developed the next
generation of enzyme-based interfaces capable to efficiently adsorb and reduce carbon dioxide at
room temperature. For this, we integrated carbonic anhydrase with a hydrophilic, user-synthesized
metal–organic framework; we showed how the framework’s porosity and controlled morphology
contribute to viable enzyme binding to create functional surfaces for the adsorption and reduction of
carbon dioxide. Our analysis based on electron and atomic microscopy, infrared spectroscopy, and
colorimetric assays demonstrated the functionality of such interfaces, while Brunauer–Emmett–Teller
analysis and gas chromatography analysis allowed additional evaluation of the efficiency of carbon
dioxide adsorption and reduction. Our study is expected to impact the design and development of
active interfaces based on enzymes to be used as green approaches for carbon dioxide transformation
and mitigation of global anthropogenic activities.
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1. Introduction

Self-sustainable carbon dioxide (CO2) atmospheric removal strategies that have high
efficiency and feasibility for large-scale implementation as well as good environmental
compatibility [1,2] are needed to circumvent ecological [3,4] and human [5,6] effects and to
reduce or prevent dangerous anthropogenic interferences [7]. Current technologies for CO2
mitigation rely on postcombustion and CO2 sequestration, or amine-based scrubbing [8–11].
However, the drawbacks of such technologies are the high energy requirements needed for
CO2 desorption, reduced regeneration of the adsorbent [3,4] or, for amine-based strategies,
the loss of amine functionality [12,13]. Attempts to use alternative strategies based on ionic
liquids [14–16], piperazine [17,18], and organic solvents [19,20] were considered; however,
the high corrosiveness [21,22], volatility [18,23], and parasitic energy consumption of such
processes [1,24] precluded their large-scale implementation.

Carbonic anhydrases (CAs; EC 4.2.1.1) are a family of metalloenzymes known to
catalyze the reversible conversion of CO2 into bicarbonate in the human body, all with
ultrahigh turnover of up to 105 s−1 [25]. Isolated CAs used in synthetic assays were
shown to allow evaluation of a range of disorders from edema, to glaucoma, cancer, and
osteoporosis [26–29], just to name a few. CAs were also proved to play critical roles in
the proliferation, survival, and differentiation of pathogens such as protozoa, fungi, and
bacteria [30,31], with differences in the infected host relative to the uninfected habitat being
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evaluated for the potential development of novel therapeutic agents [32]. Furthermore,
due to their involvement in reversible hydration/dehydration and pH homeostasis gluco-
neogenesis, lipogenesis, and ureagenesis [33,34], respectively, CAs have been considered as
candidates for biosensors applications [35–38]. Moreover, their capability to enhance CO2
capture and sequestration has been recently explored for the development of industrial
applications based on membranes [39–41] to be used for contactors [39,40] and for supports
of ionic liquid membranes [41]. Current active technologies rely on gas adsorption mem-
brane (GAM) units [39,40] where the gas and liquid phases are spatially separated by a
hydrophobic entity, with CA being immobilized on the liquid phase side. In such systems,
the wetting relationship between the membrane and liquid solvent has proved critical
for defining the overall membrane’s performance for CO2 adsorption [42,43]. However,
low CO2 solubility in water, the active solvent maintaining enzyme’s functionality, con-
tinues to lead to intricate restrictions when large scale implementation of such CA-based
systems [40,44] is considered. Moreover, challenges exist when aiming to identify any mass
transfer limitations at its interface to thus relate the overall membrane’s transformation
ability to its scale-up and operational stability [45].

We hypothesized that nanoporous interfaces with hydrolytic stability could not only
allow for user-controlled CA immobilization but could also ensure enzyme’s activity
and its stability retention for subsequent CO2 adsorption, all at ambient conditions. To
test our hypothesis, we synthesized and used metal–organic frameworks (MOFs), a type
of porous crystal materials constructed by linking metal node (metal ions or clusters)
and organic linkers together through bond coordination, as scaffolds for both enzyme
immobilization and interfaces functionality demonstration. Studies in our group and
others have previously showed that such frameworks are suitable for enzyme surface
immobilization because of their customizable synthesis [46], large surface area which
allows for increased enzyme loading [47,48], and tunable surface features which permit
hydrophilic or hydrophobic residues implementation [48–50]. We and others have also
showed that resulting MOF–enzyme conjugates [46] preserved enzymes’ functionality to a
larger extent than conjugates formed upon enzymes immobilized on other materials such
as polyurethane foam [51], magnetic [52] and silica-based materials [53], or zeolites [54],
respectively. Our proof-of-principle demonstration integrated in a lab-built bioreactor
provides a functional interface for efficient CA functionality at ambient pressures and
temperatures while allowing the study of kinetics efficiency, as well as system’s operational
stability in user-set-up conditions. Lastly, our demonstration provides a customizable
interface for large-scale implementation with functionality determined by both the enzyme
and MOF distribution, respectively.

2. Materials and Methods
2.1. Materials

The compounds 2,5-furandicarboxylic acid (FDCA, 98%, Thermo Fisher Scientific
Chemicals, Inc., Ward Hill, MA, USA), aluminum chloride hexahydrate (99%, Acros Or-
ganics, Fair Lawn, NJ, USA), and sodium hydroxide (extra pure, Across Organics, Fair
Lawn, NJ, USA) were used for metal–organic frameworks (MOFs) (i.e., MIL-160) synthesis.
Aluminum oxide (Al2O3) filters with diameters of 13 mm and pore size of 20 nm were
purchased from Separation Processes, Inc., Carlsbad, CA, USA and used as supports for
membrane formation. Tris(hydroxymethyl) aminomethane (99%, Alfa Aesar, Fair Lawn,
NJ, USA) was used for buffer preparation (Tris buffer, pH 7.5, 50 mM). Carbonic anhydrase
(CA) from bovine erythrocytes (E.C.4.2.1.1) was purchased from Sigma-Aldrich Inc., St.
Louis, MO, USA. Para-nitrophenol acetate (p-NPA, Across Organics, Fair Lawn, NJ, USA)
was used as substrate for enzyme activity assessment. Bicinchoninic acid assay (BCA)
kit (Thermo Fisher Scientific Chemicals, Inc., Ward Hill, MA, USA) was used to evaluate
enzyme loading onto the surfaces. Acetonitrile (Thermo Scientific Chemicals, Inc., Ward
Hill, MA, USA) was adopted as a solvent for p-NPA, while a mixture of nitrogen and
carbon dioxide (Airgas, 95% N2 and 5% CO2, Morgantown, WV, USA) gases was used
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to evaluate the CO2 adsorption performance at the synthesized membrane interface. All
chemicals were commercially available and used without further treatment.

2.2. Preparation of MIL-160/Al2O3 Hybrids

FDCA-modified Al2O3 filters were used for synthesis of MIL-160/Al2O3 hybrids.
For this, 10 mL of 5 mM FDCA solution in deionized water was first dosed onto the
Al2O3 filters contained in a Teflon-lined stainless steel autoclave and subsequently heated
at 50 ◦C for 24 h. Secondly, such modified filters were subsequently dosed in a Teflon-
lined stainless steel autoclave in a solution of FDCA, aluminum chloride hexahydrate, and
sodium hydroxide dissolved in deionized water (final concentrations of 55, 55, and 100 mM,
respectively) at 100 ◦C for 12 h. After cooling to room temperature, the functionalized filter
was taken out, washed extensively with deionized water to remove any of the unreacted
species, dried overnight and at room temperature, and stored for further usage.

2.3. Characterization of MOFs and Resulting Hybrids

The morphologies of the Al2O3, FDCA functionalized Al2O3 (FDCA/Al2O3) filters,
and MIL-160/Al2O3 hybrids were investigated by field emission scanning electron mi-
croscopy (FESEM) performed on a S-4700 (Hitachi, Santa Clara, CA) with a cold field
emission gun operating at 4 kV and 10 JA. Energy-dispersive X-ray spectroscopy (EDS)
mapping was conducted for evaluating the elemental composition of the samples. Phase
purity and crystallinity of the synthesized MOFs were confirmed by X-ray diffraction
(XRD), with powders of MOFs being analyzed using a Bruker D8 ADVANCE X-ray diffrac-
tometer (Westborough, MA, USA) with CuKa radiation operating at 40 kV and 40 mA.
XRD patterns were recorded in reflection mode, at room temperature, and under ambient
conditions. Chemical composition of the Al2O3 and functionalized Al2O3 filters were eval-
uated in dried conditions by Fourier-transform infrared spectroscopy (FTIR) on a Digilab
FTS 7000 (Digilab, Inc., Hopkinton, MA, USA) equipped with a diamond attenuated total
reflection (ATR). Scans were collected in the range of 400–4000 cm−1 at a resolution of
4 cm−1; a total of 128 scans were co-added to form the final spectrum of each sample
investigated. Experiments were performed in triplicates. The surface areas of Al2O3 filter
and MIL-160/Al2O3 hybrids were determined from N2 adsorption analysis conducted
on a Micromeritics Instrument sorption analyzer (ASAP 2020, Micromeritics Instrument
Corporation, Norcross, GA, USA) using liquid nitrogen at 77 K. An atomic force micro-
scope (AFM, Asylum Research, Goleta, CA, USA) and Si tips (AC240TS, 50 kHz, Asylum
Research, Goleta, CA, USA) were used to investigate the morphology of the samples in
AC mode. Scans of 20 µm × 20 µm area or lower were acquired in air; order 3 image
flattening was applied. Height evaluation were performed using the Asylum software
(Asylum Research, Goleta, CA, USA), with subsequent MATLAB analysis.

2.4. CA/MIL-160/Al2O3 Membrane Preparation

The CA/MIL-160/Al2O3 membrane was prepared by loading CA onto the MIL-
160/Al2O3 hybrids. For this, the hybrids were immersed in a 2 mL solution containing
different enzyme concentrations (1.0, 0.5, and 0.1 mg/mL, respectively) in Tris buffer
(50 mM and pH 7.5) and in a covered glass vials (Fisher Scientific, Ward Hill, MA, USA),
with the mixture being shaken at room temperature and 100 rpm. After 2 h, the resulting
(now) membrane was removed and used for the activity assay and CO2-related tests,
respectively. Control experiments have also been performed using Al2O3 filters and
incubating them with the above known representative concentrations of enzyme.

2.5. Enzyme Loading Assessment

Standard BCA assay was performed to evaluate enzyme loading or the amount of
enzyme loaded per the membrane. Briefly, 1 mL of the working reagent containing 50 parts
of reagent A with 1 part of reagent B (reagents were provided stock with the BCA assay
kit) was mixed with 50 µL of the remaining solution, i.e., solution used for the membrane
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or filter and containing the different enzyme concentrations (see above), and subsequently
incubated at 37 ◦C for 30 min. Absorbance at 562 nm was recorded for each sample using
an UV−VIS spectrophotometer (UV2600 Shimadzu) and compared to a calibration curve
of known concentrations of the CA suspended in the working reagent. Every experiment
was repeated at least 3 times. Loadings were calculated using Equation (1):

Enzyme loading (mg/mg) = C0V0 − C1V1 (1)

where C0 and V0 were the initial concentration and volume of CA solution, and C1
and V1 were the concentration and volume of CA solution after the immobilization
process, respectively.

2.6. Enzyme Activity at the Designed Interfaces

The specific activity of CA (i.e., activity of the free, immobilized onto the membrane,
or the control filters, respectively) was assessed by monitoring the hydrolysis of p-NPA
at 400 nm [47]. For the free enzyme, 0.1 mL of free CA was mixed with 0.8 mL Tris
buffer and 0.1 mL of p-NPA (2.0 × 10−2 M in acetonitrile). For the immobilized enzyme,
CA/MIL-160/Al2O3 membranes or CA/Al2O3 filters were immersed directly in mixture of
0.9 mL Tris buffer solution and 0.1 mL of p-NPA (2.0 × 10−2 M in acetonitrile) with varying
concentrations of the substrate p-NPA (i.e., 1.0, 2.5, 5.0, 10, 20, and 40 mM, respectively).
The absorbance was monitored every 2 min over a total period of 10 min. Additional
blank experiments were conducted to estimate the self-dissociation of p-NPA in each of the
solutions being used. Every experiment was repeated at least 3 times.

2.7. Assessment of Enzyme-Based Conjugates

Chemical composition of the CA-based samples was evaluated by FTIR. For this,
all of the CA-based samples were prepared by suspending the supports (Al2O3 and
MIL-160/Al2O3) in CA-Tris (pH 7.5) solutions with the concentration of 0.1 mg/mL for
2 h under 100 rpm shaking conditions and at room temperature. After drying the samples
at room conditions, they were tested using FTIR as described above. Controls of dried CA
was also used. Scans were collected in the range of 400–4000 cm−1 at a resolution of 4 cm−1;
a total of 128 scans were co-added to form the final spectrum of each sample. Experiments
were performed in triplicates. AFM using Si tips were used to investigate the morphology
of the samples containing immobilized enzyme, all in AC mode. Scans of 20 µm × 20 µm
area or lower were acquired in air with subsequent order 3 image flattening. Height
evaluation were performed using the Asylum software with subsequent MATLab analysis.

2.8. Performance of the CA/MIL-160/Al2O3 Membrane or CA/Al2O3 Filters

Performance of as prepared CA/MIL-160/Al2O3 membrane or CA/Al2O3 filters
used as controls for CO2 adsorption was evaluated using a modified method reported by
Hou et al. [41]. Briefly, an in-house platform (Supplementary Materials Scheme S1) com-
posed of a membrane module, a gas chromatography unit (GC; Inficon, Micro GC Fusion,
East Syracuse, NY, USA), mass flow meters, and pipelines was used. The membrane mod-
ule was assembled from one right-angle flow rectangular manifold, three sets of stainless
steel vacuum coupling O-ring (VCO) and stainless steel female nuts, and two stainless
steel Swagelok tube fittings (Swagelok, Columbus, OH, USA). The GC unit was used for
monitoring the CO2 concentration of the output gases, while the flow meters were used for
controlling the content of the feeding gas. Herein, the feeding gas contained a mixture of 5%
CO2 and 95% N2, with a controlled constant flow rate of 10 mL/min. This gas balance was
chosen to mimic conditions in which the target molecule, i.e., CO2, corresponds to physical
scenarios that are representative of current challenges in gas separation technologies [55,56],
with carbon capture and storage (CCS) processes [55,57–62], for instance, targeting uptake
of CO2 at dilute concentrations in power plants and chemical refineries [56,58,63–65]. The
self-made membrane module also comprised a gas chamber for gas flow and liquid cham-
ber for removing any product being released. The synthesized membrane was mounted
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in the self-built module with the CA/MIL-160 side in direct contact with the gas phase
and the Al2O3 substrate side facing the liquid chamber. The overall and the specific CO2
adsorption rate were determined by the difference of the CO2 concentrations between the
feeding and the output gas as shown in Equations (2) and (3), respectively:

xco2 =
Cin,co2 − Cout, co2

Cin, co2

× 100% (2)

Xco2 =
xco2

mCA
× 100% (3)

where Cin, co2 was the concentration of the feeding gas and Cout, co2 was the concentration
of the output gas, while mCA was the effective mass of enzyme used. Control experiments
using free CA (0.1 mg/mL) were also performed. For this, 3 mL of 0.1 mg/mL CA solution
was suspended into a glass reactor (Supplementary Materials Scheme S2); the reactor was
subsequently connected to the feeding gas and the rest of the configuration described
above and used for evaluating the CO2 concentration changes. As above, the flow rate was
maintained at 10 mL/min; experiments were performed in triplicates.

3. Results and Discussion
3.1. Synthesis and Characterization of the Components and the BioMembrane

We hypothesized that hydrophilic metal–organic Framework (MOF) MIL-160 can be
used as a porous scaffold to increase functionality of carbonic anhydrase (CA) enzyme
for its subsequent usage in carbon dioxide (CO2) gas adsorption. MIL-160s were selected
based on their demonstrated capability to serve as flexible and hydrated “bridges” that
ensure proton transfer to maintain enzyme functionality [46].

To demonstrate our hypothesis, we first synthesized the MIL-160/Al2O3 hybrids
using a user-controlled hydrothermal method. Briefly, Al2O3 filters with uniform pore sizes
(20 nm in diameter) were chosen as supports for MIL-160 “decorates”, with Al2O3 filters
expected to allow coordination with 2,5-furandicarboxylic acid (FDCA), the known MIL-
160 linker [46,66], through its Al metal ions [67,68]. It was expected that direct modification
of the Al2O3 filter with FDCA would lead to controlled formation of MIL-160 onto the
filters interface [69,70]. The hypothesis is supported by previous studies demonstrating
that metal oxides can be used as metal sources for ZIF-8 formation [71], while ZrO2 can
be used for UiO-66 [72] synthesis, as well as other reports [67,73] that showed the ability
of porous Al2O3 filters to be modified with organic chemicals such as dopamine through
a hydroxide-induced covalent reaction [67]. Furthermore, previous studies showed that
a filter’s well-developed porosity and relatively high surface area, large pore volume,
and abundant weak Lewis acid sites are essential to promote direct attachment of active
molecules [74,75] (here, the FDCA). Such active molecules were further able to incorporate
and disperse well into the individual filters’ channels to thus serve as active catalytic
species [76]; such species are all needed for the MIL-160 formation.

Surface modification was confirmed by scanning electron (SEM) [77] and atomic
force (AFM) [78] microscopy analysis. For the first, changes in Al2O3 thickness after
FDCA functionalization were confirmed via cross-sectional SEM (Figure 1a), all relative
to Al2O3 control (Figure 1b). For the second, morphology evaluation showed that FDCA
functionalization led to changes in the 3D profiles of the Al2O3 filter surfaces (inserts,
Figure 1a,b), as well as changes in the overall height profile distributions, with analysis
revealing average height increases of about 4.7 times after filters modification with FDCA
(Supplementary Materials Figure S1).
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Figure 1. (a) SEM micrograph, cross-section of FDCA/Al2O3 functionalized filter; Insert: atomic force microscope (AFM)
surface roughness; (b) SEM micrograph, cross-section of Al2O3 filter used as control; Insert: AFM surface roughness;
(c) FTIR spectra of FDCA/Al2O3 functionalized filter relative to control.

FDCA functionalization was further confirmed via Fourier-transform infrared spec-
troscopy (FTIR; Figure 1c), with analysis identifying characteristic peaks associated with
the C=O at 1727 cm−1, C-O at 1228 cm−1, C=CH at 827 and 770 cm−1, C=C at 1577 and
1413 cm−1, and -OH at 3414 cm−1, respectively [79], all relative to the control FDCA
(Supplementary Materials Figure S2). Peaks shifts were also visible and confirmed the
coordination reaction. Indeed, previous analysis [46] showed that the peaks at 1674 and
1275 cm−1 associated with C=O and C−O bonds of FDCA disappeared in the spectra
of MOFs, while the characteristic peaks at 1581 and 1414 cm−1 associated with the C=C
bond of the furan ring and peaks at 962 and 825 cm−1 assigned to the C−H bond, re-
spectively, were weakened relative to those of the FDCA used as control. Furthermore,
energy-dispersive X-ray spectroscopy (EDS) analysis revealed concentration changes of
the C, O, and Al elements for the functionalized FDCA/Al2O3 filters relative to the bare
ones (Supplementary Materials Table S1), with C and O increasing from 8.59 ± 0.36% to
12.45 ± 0.08% and 37.48 ± 0.19 % to 44.45 ± 0.11%, while the concentration of Al decreased
from 53.93 ± 0.21% to 43.11 ± 0.09%, respectively.

FDCA/Al2O3 functionalized filter was subsequently used as support for the growth of
MIL-160 under user-controlled hydrothermal method [46]. Formation of MIL-160 particles
was confirmed by SEM analysis, with Figure 2a showing a representative image of the
hybrids displaying clear edges and uniform distribution onto the filter. Control MIL-160
grown on Al2O3 filter (i.e., without any FDCA pretreatment) were edgeless and smaller
in size and had poor uniformity (Figure 2a insert). The cross-section view of the hybrid
indicated a continuous monolayer coverage with edge distribution resulting in an overall
thickness changes of 13% to 15% relative to the thickness of the FDCA functionalized filter.
Moreover, SEM analysis allowed particle size quantification, with the MIL-160 size in the
hybrids being about 14.8 ± 0.9 µm while onto the filters, i.e., without FDCA pretreatment,
being about 2.5 times smaller. AFM analysis also confirmed the edge distribution of the
hybrids (Figure 2b). EDS mapping (Figure 2c) further demonstrated the formation of
MIL-160/Al2O3 hybrids with layered distributions of C and O elements in the upper
and Al in lower layer configuration, respectively. X-ray diffraction (XRD) confirmed the
monophasic crystal nature of synthesized MOFs (Supplementary Materials Figure S3), with
characteristic peaks recorded at 8.4◦ 9.4◦, 11.98◦, 15.2◦, 18.8◦, 22.8◦, and 27◦. Peaks were
assigned to the planes (020), (011), (220), (031), (022), (051), and (502), respectively [80].
Lastly, the N2 adsorption analysis (Figure 2d) revealed Brunauer–Emmett–Teller (BET) and
Langmuir surface area of MIL-160/Al2O3 hybrids of 214.58 and 264.70 m2/g, respectively,
significantly larger than that of Al2O3 filters, which were 7.40 and 9.3 m2/g.
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Figure 2. (a) Morphology of MIL-160/Al2O3 hybrid prepared upon FDCA surface modification of the
Al2O3 filter; Insert: surface morphology of control MIL-160/Al2O3 hybrid prepared without FDCA
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and sharp edges; (c) EDS mapping of the MIL-160/Al2O3 hybrid; (d) N2 adsorption isotherms of
Al2O3 filter and MIL-160/Al2O3 hybrid.

3.2. Functionality of the CA Enzyme at the BioMembrane Interface

Synthesized MIL-160/Al2O3 hybrids were subsequently used as supports for enzyme
surface immobilization [46]. Immobilization was confirmed by FTIR and standard colori-
metric assay. For the first, CA immobilized at the membrane interface showed broader
peaks (1458–1735 cm−1) relative to the peaks of free enzyme, i.e., 1625 and 1523 cm−1

(Supplementary Materials Figure S4), presumably due to C=N stretching and N-H bending
vibration [46,81] known to occur upon enzyme immobilization at interfaces. Additionally,
control CA immobilized onto Al2O3 displayed narrower peaks relative to free enzyme
in solution, most likely due to the enzyme’s deformation at such a filter interface [46].
The colorimetric assay confirmed enzyme loading at about 0.101 ± 0.006 mg per mem-
brane, which was lower than that for the control filter that showed an average loading
of 0.124 ± 0.006 mg, values recorded when both were offered 0.2 mg of enzyme during
interfaces’ preparation. The higher enzyme loading observed for the CA/Al2O3 rela-
tive to CA/MIL-160/Al2O3 was presumable due to the porous structure of the Al2O3
filter; specifically, filter pore sizes of 25 nm could potentially allow entrapment of CAs
(which are known to have individual diameters of ~4.5 nm [46]). Indeed, previous studies
showed entrapment of enzymes in spaces as small as 3.0 and 4.1 nm when, for instance,
microperoxidase-11 (MP-11) was interfaced with Tb-TATB [82], or in 9 and 15 nm in a
periodic mesoporous organosilicas (PMOs) used for lipase immobilization [83], respectively.
Considering that the porosity of MIL-160 is only 0.5 nm [84], such small pores are expected
to provide additional space for gas adsorption analysis (as supported by BET evaluations)
but, however, should not be prone for confinement of immobilized enzymes.

Activity evaluations (Figure 3a) and Michaelis–Menten kinetics of the CA/MIL-
160/Al2O3 and CA/Al2O3 control were performed using the hydrolysis of para-nitrophenol
acetate (p-NPA). Analysis showed that the enzyme immobilized at the membrane interface
had a higher activity, higher Vmax (5.66 ± 0.57 mM/mg enzyme/min.), and lower Km
(31.98 ± 4.46 mM) relative to the enzyme immobilized directly onto the filter (Vmax of
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4.16 ± 0.27 mM/mg enzyme/min and Km of 39.97 ± 4.09 mM, respectively). The recorded
surface-dependent activity and kinetic behavior was presumably due to enzyme defor-
mation or enzyme entrapment (Figure 3b) at the two interfaces. In particular, the sharp
edges and higher curvatures of MIL-160 framework could had led to a lower enzyme
deformation and higher retained activity than the lower curvature of the Al2O3 used
as control. This hypothesis is supported by previous work that showed that MIL-160
hydrophilicity does not only allow for a higher activity of immobilized enzymes, but
further, their flexible and hydrated nature provide “bridges” to ensure proton transfer
at their interfaces and lead to improved kinetic behavior [46]. Previous studies [85–88]
also showed that supports with higher local curvatures were more beneficial for retain-
ing enzyme activity, with Tadepalli et al. [85] demonstrating, for instance, higher activity
for horseradish peroxidase absorbed on gold nanoparticles known to have higher sur-
face curvature. Campbell et al. [87] also reported that the power density of an enzymatic
biofuel cell could be 10-fold greater when glucose oxidase and bilirubin oxidase used
to form enzymatically active anodes and cathodes, respectively, were immobilized onto
graphene-coated single-wall carbon nanotube gels known to possess higher curvature
than controls gold/multiwall carbon nanotube fiber paddles. In addition, our previous
work [86] confirmed this principle by revealing a higher activity for soybean peroxidase
immobilized onto carbon nanotube as opposite to the enzyme immobilized onto graphene
oxide sheets. Lastly, complementary previous analysis showed that the functionality of
the enzymes entrapped in porous matrices/supports was affected significantly by the sub-
strate diffusion limitation to enzyme’s active site [89,90], with authors indicating that such
diffusion limitations were due to the steric hindrances that the confined spaces imposed.
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Figure 3. (a) Michaelis–Menten kinetics of CA/MIL-160/Al2O3 membrane relative to control
CA/Al2O3 functionalized filter used as control; (b); proposed mechanism of binding and deformation
of the CA at the membrane or filter interfaces, respectively; (c) CO2 concentration changes at the
CA/MIL-160/Al2O3 and CA/Al2O3 interface and operational stability tested for 250 min; (d) CO2

changes in concentration at the CA/MIL-160/Al2O3 membranes interfaces (three tested systems
prepared in the same conditions) and at different CA loadings; (e) specific CO2 adsorption efficiency
(i.e., relative to the reported enzyme loading) for the CA/MIL-160/Al2O3 membranes.

CO2 adsorption and reduction at the CA/MIL-160/Al2O3 membrane (i.e., changes
in the CO2 concentration upon gas interaction with the user-formed membrane as well as
changes in operational stability of the membrane upon extended gas exposure) were evalu-
ated using an “in-house” platform (Supplementary Materials Scheme S1). The CA/MIL-
160/Al2O3 membrane was sealed in a tunnel-like chamber, with the CA-loaded side
towards the feed gas and the other side being maintained in direct contact with stirred
water. A membrane contactor was aimed to allow direct contact of the target gas (CO2)
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with the enzyme, while the MIL-160 porosity provided a hydrophilic microenvironment to
retain immobilized enzyme’s activity. This lab-designed platform was thus hypothesized
to directly assist with membrane hydration while also ensuring CO2 direct adsorption
at the CA active site and eliminating the CO2 solvation [91] limitations. The mechanism
of CO2 adsorption at the CA active site was previously described, with report showing
that CO2 binds near the Zn ions [92] to lead to a Zn-coordinated transformation of bound
CO2 into bicarbonate to be followed by the direct release of such product into the media
(Supplementary Materials Equations (S1)–(S3)) [25].

CO2 concentration changes at the membrane interface were evaluated by monitor-
ing the concentration of CO2 in the output gas (i.e., after its exposure to the CA interface)
through the gas chromatograph (GC); CO2 concentration in the feeding gas was maintained
constant. The CO2 changes in concentration are shown in Figure 3c; specifically, analysis
revealed about 5% change on average in the output CO2 concentration relative to the
concentration used during membrane’s feeding. The concentration plateaued after about
54 ± 7.8 min of continuous membrane operation in the CO2 flow. In contrast, the changes at
the CA-Al2O3 filter interface decreased drastically after only 50 min operation from an ini-
tial maximum of 1.4% to 0.5% and then subsequently plateaued after about 76.3 ± 3.2 min
of operation. Controls Al2O3 and Al2O3/MIL-160 membranes showed no CO2 adsorp-
tion under the same conditions (Supplementary Materials Figure S5a,b), thus eliminating
concerns about possible absorbance of the gas at any of the two interfaces. Furthermore,
free CA suspended in a lab-build bioreactor (Supplementary Materials Scheme S2) at the
same concentration as the immobilized CA showed a totally irregular CO2 change in
concentration (Supplementary Materials Figure S5c). Such patterns were presumably trig-
gered by the Brownian motion and the molecular diffusion of the individual CA molecules
suspended in water and their subsequent collision with CO2 at the gas-liquid phases.

Observed changes in the CO2 concentration at the CA/MIL-160/Al2O3 membrane
interface relative to both free CA and CA/Al2O3 controls, respectively, were endowed
by the design of the nanoscale hierarchical structure based on the MIL-160 and enzyme
adsorption at such interfaces, respectively. Specifically, framework flexibility and intrinsic
regular porosity not only provided a favorable microenvironment for both enzyme loading
and functionality, but they also allowed for an active and viable transfer for both the
reactant and the product to occur at the immobilized enzyme’s active site. These are
supported by our previous study and our herein included BET and microscopy analysis
showing that MIL-160 has high hydrophilicity and highly porous crystalline structure
with defined square-shape sinusoidal channels of ~5 Å in diameter [84]. Moreover, water
molecules played critical roles in maintaining CA activity since the framework, through its
endowed hydrophilic and porous characteristics, served as a “bridge” for proton transfer
for the enzyme regeneration step (Supplementary Materials Equations (S1)–(S3)) to ensure
CO2 hydration [46].

We also varied the concentration of CA offered during the immobilization process; anal-
ysis showed that even though enzyme loading increased from 0.115 to 0.403 mg/membrane
when the CA amount in the feeding solution increased by 10 times for instance, the catalytic
performance of the membrane did not change (Figure 3d). We thus hypothesize that what
dictates efficiency is the enzyme packing/arrangement at the MOF interface. Indeed, the
specific CO2 change in adsorption (Figure 3e) at the CA/MIL-160/Al2O3 membrane pre-
pared using a CA concentration of 0.1 mg/mL reached the highest value of 1.26 mmol/mg
CA/min. This was 1.6 and 5.0 times that of CA/MIL-160/Al2O3 membranes prepared
under the CA concentrations of 0.5 and 1.0 mg/mL with effective enzyme loading being
0.042 ± 0.0003 and 0.117 ± 0.024 mg/membrane, respectively. Herein, the effective enzyme
loading is referred to the amount of the accessible enzyme for CO2 adsorption as dictated
by the enzyme–support specific interface. Such reduced enzyme efficiency was probably
due to the intramolecular interaction of multilayered immobilized enzymes shown previ-
ously to cause activity losses at given interfaces [46,92]. Moreover, a larger enzyme loading
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could also result in mass transfer limitations due to the multilayer coverage to again lead
to reduced overall efficiency of the immobilized enzymes [93,94].

Our results are superior to previous results from Hou et al. [95] or Wang et al. [96]
(Supplementary Materials Table S2), with the higher CO2 adsorption achieved by the design
CA/MIL-160/Al2O3 membrane being presumably due to the advantages of the design itself
which allows for both direct contact of CO2 with the enzyme as well as hydrophilic wetting
through MIL-160. Specifically, Hou et al. [95] reported CO2 changes at a CA integrated Janus
membrane (i.e., carbonic anhydrase (CA)-1H,1H,2H,2H-peruorododecyltrichlorosilane
(FTCS)-carbon nanotubes (CNTs)-polyvinylidene fluoride (PVDF)) with authors studying
the CO2 hydration performance when the enzyme was integrated into the hydrophobic
polypropylene (PP) hollow fiber membranes. They showed a CO2 hydration rate of about
62% of the one achieved in this study while their effective membrane area was over 67 times
larger than the one used herein [40]. Furthermore, Wang’s group achieved high efficiency
of CO2 absorption flux of 2.5 × 10−3 mol·m−2·s−1, which is considerably reduced when
compared to the one achieved in our study. Moreover, in their study the authors immobi-
lized CA onto a polydopamine (PDA)/polyethylenimine (PEI)-polyvinylidene fluoride
(PVDF) composite hollow fiber membrane through a crossing linking method [96], which
provides limited scalable capabilities.

Our results demonstrated the potential of a user-designed membrane to be used
as a bioreactor to provide a viable platform for efficient CO2 adsorption and reduction
specifically considering that our previous analysis [46] that showed that thermal stability
(investigated upon applying heat treatment to the conjugates, under various temperatures,
for 30 min) is enhanced relative to the thermal stability of the free enzyme stored under the
same conditions. In particular, we have previously shown [46] that CA-MIL-160 conjugates
retained all of their original activity after heating treatment at 60 ◦C and only lost about
7% of their original activity after heating treatment at 70 ◦C. Our analysis demonstrated
that the flexibility of the MOF interface protects the enzyme from rigid multiattachment
and leads to cooperative enhancement of water affinity [97] with the excellent heat storage
capacity of MIL-160 [80,84] further enhancing the high temperature tolerance of the immo-
bilized CA relative to its free forms. Furthermore, our results indicate that such a bioreactor
could possibly be used to evaluate CO2 hydration, with such process to be controlled by
the functionality of the immobilized enzyme. Moreover, our study hints at the ability
of the membrane to allow for evaluation of CO2 benign transformation, through direct
measurement of bicarbonate product. Lastly, our analysis allows for complete integration
and extension of the CO2 adsorption and transformation system through a parallel configu-
ration of the membrane bioreactor design to thus allow for flow control and transformation
in a modular geometry.

4. Conclusions

We developed an interface based on biocatalyst CA and a hydrophilic MOF, MIL-160,
to be used for CO2 adsorption in synthetic environment and at room temperature. Our
study successfully showed that membrane’s design and functionality depend on the
materials characteristics, i.e., MIL-160 porosity and its ability to ensure a hydrophilic
environment for the CA-driven reaction. We further demonstrated that enzyme’s efficiency
is function of the geometry and morphology of the interface itself; we envision extension
of such CA-based technology to industrial conditions upon adopting reactor design and
modular implementation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11041008/s1, Scheme S1: Schematic illustration of platform used for the membrane per-
formance evaluation; Scheme S2: Schematic illustration of the reactor used for CO2 hydration of free
carbonic anhydrase; Figure S1: height profile of surface of the FDCA modified Al2O3 (FDCA/Al2O3)
filter and Al2O3 filter; Figure S2: FTIR spectra of FDCA; Figure S3: XRD spectra of the MOF; Table S1:
elemental composition of Al2O3 and FDCA/Al2O3 membrane; Figure S4: FTIR analysis of membrane
and controls; Equations (S1)–(S3): established mechanism for CO2 transformation by the enzyme;
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Figure S5: CO2 adsorption at the Al2O3 filter, MIL-160/Al2O3 hybrid and free CA in deionized
water interfaces; Table S2: Comparison of the CO2 hydration efficiency of the user synthesized
CA/MIL-160/Al2O3 relative to other reports.
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