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Abstract: In this study, phosphorus-modified alumina with large pore size was synthesized through
a coprecipitation method. The carbon-covered, phosphorus-modified alumina with large pores
was prepared by impregnating with glucose and carbonizing to further improve the adsorption of
organic dyes. The morphology and structure of these composites were characterized by various
analysis methods, and Rhodamine B (RhB) adsorption was also examined in aqueous media. The
results showed that the specific surface area and pore size of the phosphorus-modified alumina
sample AP7 (prepared with a P/Al molar ratio of 0.07) reached 496.2 m2·g−1 and 21.9 nm, while
the specific surface area and pore size of the carbon-covered phosphorus-modified alumina sample
CAP7–27 (prepared by using AP7 as a carrier for glucose at a glucose/Al molar ratio of 0.27) reached
435.3 m2·g−1 and 21.2 nm. The adsorption experiment of RhB revealed that CAP7–27 had not only
an equilibrium adsorption capacity of 198 mg·g−1, but also an adsorption rate of 162.5 mg·g−1 in
5 min. These superior adsorption effects can be attributed to the similar pore structures of CAP7–
27 with those of alumina and the specific properties with those of carbon materials. Finally, the
kinetic properties of these composites were also studied, which were found to be consistent with a
pseudo-second-order kinetic model and Langmuir model for isothermal adsorption analysis. This
study indicates that the prepared nanomaterials are expected to be promising candidates for efficient
adsorption of toxic dyes.

Keywords: modified alumina; carbon-covered phosphorus-modified alumina; pore size; adsorption;
Rhodamine B

1. Introduction

Rhodamine B (RhB) is a cationic dye that has attracted much attention due to its
color and toxicity [1,2]. Currently, RhB is mainly used in the fields of paper-making,
preparation of various coatings and lacquers, preparation of textiles, production of leather,
and industrial dyeing; these industries are among the main sources of water pollution.
When dye effluents from textiles are released into the water, the dyes impede the invasion
of sunlight into the water environment, adversely compete with the oxygen transfer, and
prohibit the re-oxygenation scope of the receiving water. Ultimately, this occurrence results
in the shrinkage of biological movement [3]. At present, many treatment technologies
for dye wastewater are available, including coagulation-flocculation [4,5], electrochemical
oxidation [6,7], photocatalytic degradation [8–10], biological degradation [11–13], and
adsorption. Compared with the aforementioned methods, adsorption treatment is one of
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the most promising methods for industrial wastewater treatment due to its low cost, high
efficiency, good stability, and easy operation [14–21].

Alumina has been extensively applied in adsorbents, catalysts, humidity sensors, and
optical materials due to its large surface area and unique pore structure [22]. Typically,
alumina is positively charged on its surface in a neutral or alkaline aqueous solution,
leading to its poor adsorption efficiency on cationic dyes. Therefore, alumina-based
adsorbents are mainly used to remove anions and anion dyes [22,23]. However, cationic
dyes also play a key role in organic dye wastewater, such as RhB. For instance, Lin et al. [24]
found that the adsorption capacity of RhB on alumina was just only 3.6 mg·g−1. Meanwhile,
carbon materials have great adsorption capacity and are commonly used for the adsorption
of several organic dyes, but also have slow adsorption rates due to their poor microporous
structure [25].

Consequently, composite materials were prepared to enhance adsorption performance
for cationic dyes because such materials have the potential to combine the advantages
of each pristine material. For example, the composite material formed by carbon and
alumina can have high a specific surface area, large pore size, and other properties of
alumina materials, and can also achieve an adsorption capacity equivalent to that of carbon
materials [24]. Therefore, carbon-covered, phosphorus-modified alumina was synthesized
by glucose impregnation, and achieved high adsorption capacity for the cationic dye, RhB.

In this work, based on the study reported by Song [26] and Lin [24], different acidic
aluminum and alkaline aluminum sources were used to synthesize alumina with large
pore size. This process was followed by impregnating with glucose and carbonizing in a
tube furnace to obtain carbon covered alumina. The morphology, structure, and adsorption
properties of RhB were subsequently characterized by well−established analytical and
testing methods. Relevant parameters, including adsorbent dose, contact time, and initial
RhB concentrations, were optimized for the best adsorption performance of the composite.
The adsorption capacity of CAP is comparable with that of compounds reported in the
literature, as shown in Table 1. Furthermore, the kinetics and adsorption isotherms were
also investigated.

Table 1. Comparison of maximum adsorption capacity for RhB onto various carbon adsorbents.

Adsorbent Adsorption Capacity (mg·g−1) References

Alumina 3.6 [24]

Carbon-Covered alumina 47.9 [24]

Adsorbent of wheat flour 142.3 [25]

Magnesium silicate/carbon composite 244 [27]

Graphene oxide/silicalite-1 composite 57.0 [28]

Carbon nanotubes 69.0 [29]

Zn/Co ZIFs-derived carbon 116.2 [30]

Fe3O4/rGO 142.9 [31]

Carbon-Covered phosphorus-modified alumina 198.0 This work

2. Materials and Methods
2.1. Materials

Sodium sulfate (Na2SO4), aluminum hydroxide (Al(OH)3), sodium hydroxide (NaOH),
aluminum chloride hexahydrate (AlCl3·6H2O), disodium hydrogen phosphate dodecahy-
drate (Na2HPO4·12H2O), and glucose (C6H12O6) were purchased from Xilong chemical
company (Shantou, GD, China). All of the materials were of analytical grade.

2.2. Synthesis of Phosphorus-Modified Alumina

First, three solutions were separately prepared. The preparation of sodium aluminate
solution was as follows: 16.26 g of NaOH, 22.02 g of Al(OH)3, and 20.80 g of deionized
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water were put into a Teflon-lined stainless autoclave and stirred at a speed of 30 r·min−1

for 2 h at 160 ◦C. The preparation of aluminum chloride solution was as follows: 27.77 g of
AlCl3·6H2O was dissolved in 300.0 g of deionized water, and the mixture was stirred until
it formed a clear solution. The preparation of disodium hydrogen phosphate solution was
as follows: 21.30 g of Na2HPO4·12H2O was dissolved in 200.0 g of deionized water [32].

Aluminum chloride solution was added dropwise to the sodium aluminate solution
at room temperature and stirred to achieve the desired pH (8.0–10.0). The suspension
was transferred into a Teflon-lined stainless autoclave and then heated at 90 ◦C for 20 h.
The mixture was filtered, washed with water and ethanol, and then dried at 80 ◦C to
obtain boehmite. Different solution conditions were used to study the effects of different
phosphorus contents brought by the disodium hydrogen phosphate solution, and the
boehmite samples were named P0, P1, P3, P5, P7, P9, and P11 based on different P/Al
molar ratios (0, 0.01, 0.03, etc.). Further, the boehmite samples were calcined at 550 ◦C
for 2 h to obtain phosphorus-modified alumina, and the phosphorus-modified alumina
samples were noted as AP0, AP1, AP3, AP5, AP7, and AP9 according to P0, P1, P3, P5, P7,
and P9, respectively.

2.3. Synthesis of Carbon-Covered Phosphorus-Modified Alumina

Boehmite samples were mixed with glucose aqueous. The obtained mixture was
dried at 80 ◦C for 12 h and calcined in a tube furnace at 550 ◦C for 2 h under N2 flow
(20 mL·min−1). The molar ratio of Al and glucose was varied to study the effects of different
glucose contents. The carbon-covered phosphorus-modified alumina synthesized from
AP7 were noted as CAP7–23, CAP7–25, CAP7–27, CAP7–30, and CAP7–32 according to
different molar ratios of Glu/Al (0.23, 0.25, 0.27, etc.).

2.4. Material Characterization

X-ray diffraction analysis was performed using XRD-6100AS (SHIMADZU, Kyoto,
Japan) with a Cu anode operating at 40 kV and 40 mA. Data were collected for 2θ values
ranging from 5◦ to 80◦, and the goniometer velocity was 5◦·min−1. Specific surface areas
and pore sizes of the samples were measured on a Micromeritics apparatus, the TriStar II
3020 (MICROMERITICS, Norcross, GA, USA), by nitrogen adsorption at 77 k. The samples
were degassed under vacuum for 8 h at 300 ◦C, and the specific surface areas were obtained
according to the Brunauer-Emmett-Teller (BET) method. The microstructure was analyzed
using a high-resolution transmission electron microscopy JEM-2100 (JEOL, Mitaka, Japan).
Zeta potential results were obtained using a ZEN3600 (MAIVERN, Malvern, UK). The
sample was dispersed into 0.01 M KNO3 solution; the isoelectric point (IEP) was the pH
when the zeta potential of the sample was zero, by adjusting with 0.01 M HNO3 solution
or 0.01 M KOH solution.

2.5. Adsorption of RhB

To identify the best adsorption capacity of phosphorus-modified alumina (AP), 20 mg
of AP1, AP3, AP5, AP7, and AP9 were separately added to the RhB solution with an initial
concentration of 200 mg·L−1 for 24 h. Furthermore, the best adsorption capacity of carbon-
covered phosphorus-modified alumina (CAP) was determined with the same experimental
conditions. Exploring the initial pH effect for adsorption capacity is usually required,
because the solution pH influences both surface binding sites of the adsorbent and aqueous
chemistry. Herein, the effect of pH on RhB removal was researched by adjusting the initial
pH from 3.5 to 9.5 with 0.01 M HCl or 0.01 M NaOH.

To determine the adsorption kinetics of RhB, 20 mg adsorbent was added to 100 mL
RhB solution with a concentration of 200 mg·L−1 for various adsorption times, ranging
from 5 min to 1140 min. All adsorption experiments were carried out in beakers at 308 K
on a multipoint magnetic stirrer with a shaking speed of 300 r·min−1.
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After adsorption, the solution with residual RhB was collected by filtration and then
evaluated using an ultraviolet spectrophotometer (UV-2600, SHIMADZU, Kyoto, HI, Japan)
at 554 nm.

The adsorption capacity of RhB qe (mg·g−1) at equilibrium was calculated by the
following Equation (1):

qe =
(C0 − Ce)× V

m
(1)

The adsorption capacity of RhB qt (mg·g−1) at time (t) was calculated by the following
Equation (2):

qt =
(C0 − Ct)× V

m
, (2)

The removal efficiency of RhB was determined by the following Equation (3):

R =
C0 − Ct

C0
× 100. (3)

where C0 (mg·L−1) is the initial concentration of RhB, Ce (mg·L−1) is the equilibrium
concentration of RhB, Ct is the concentration of RhB at time t (min), V(L) is the total volume
of the solution, and m (mg) is the mass of adsorbent.

3. Results
3.1. Characterizations of Carbon-Covered Phosphorus-Modified Alumina

Figure 1 depicts the X-ray diffractograms (XRD) of AP7 and CAP7–27, respectively.
The XRD pattern of AP7 does not show obvious diffraction peaks assignable to the alumina
crystalline phases, implying that the alumina is of low crystallinity. Two broad peaks at
approximately 45◦ and 67◦, respectively, are indicated by the pattern and are characteristic
peaks of the γ-alumina phase [33,34]. The XRD pattern of CAP7–27 is similar to that of
AP7, besides a broad diffraction peak at approximately 25◦, which is consistent with the
(002) reflection of the graphite lattice [23].
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Figure 1. XRD patterns of phosphorus-modified alumina and carbon-covered phosphorus-modified
alumina.

Nitrogen adsorption-desorption isotherms were used to investigate the pore texture
of the samples. Table 2 shows a summary of the phosphorus-modified alumina. As shown
in Table 2, AP7 had the largest, most probable aperture among these samples. The most
probable aperture of AP7 increased to 21.9 nm when the P/Al molar ratio increased from
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0 to 0.07. The latter adsorption results suggest that AP7 also had the best adsorption
efficiency among these samples.

Table 2. The data of nitrogen adsorption of phosphorus-modified alumina.

Sample Specific Surface Area
(m2·g−1)

Pore Volume
(cm3·g−1)

Most Probable Aperture
(nm)

AP0 307.4 0.96 11.8
AP1 356.1 1.17 16.9
AP3 453.6 2.88 20.1
AP5 467.8 3.01 21.2
AP7 496.2 3.03 21.9
AP9 517.9 2.99 21.0

Nitrogen adsorption-desorption isotherms of samples are shown in Figure 2, and both
graphs display type IV isotherms. The results showed that all of the samples exhibited
isotherms with obvious hysteresis loops. When the glucose impregnation amount was
lower than its monolayer dispersion threshold, a uniform thin layer of carbon was formed
to cover the alumina surface [35]. However, when the impregnation amount was higher
than the monolayer dispersion threshold, it formed not only a uniform carbon thin layer,
but also carbon particles which further accumulated to form small pore structures. Figure 3
and Table 3 indicate that the most probable aperture of CAP7 was 21.0 nm. There were no
new distribution peaks, indicating that the amount of glucose did not exceed the monolayer
dispersion threshold.

Table 3. The data of nitrogen adsorption of carbon-covered phosphorus-modified alumina.

Sample Specific Surface Area
(m2·g−1)

Pore Volume
(cm3·g−1)

Most Probable Aperture
(nm)

CAP7–23 470.1 2.65 21.3
CAP7–25 440.0 2.46 21.2
CAP7–27 435.3 2.43 21.2
CAP7–30 436.3 2.37 21.3
CAP7–32 441.9 2.34 21.0
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Figure 4 shows the HRTEM images of the sample AP7 and CAP7–27, respectively. It
can be seen in Figure 4 that the morphology of AP7 was a pleated-sheet structure. Carbon
particles could not be seen in the HRTEM images of CAP7–27, and the pore volume of
CAP7–27 decreased from 3.03 cm3·g−1 of AP7 to 2.43 cm3·g−1, suggesting that the carbon
was uniformly dispersed on independent sheets that were stacked on top of each other to
form a thicker structure.
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In the Raman spectrum, the G peak is characteristic of single-crystal graphite at around
1575 cm−1. With the increase of graphite lattice defects, edge disordered arrangement, and
low symmetry carbon structure, the D peak will appear near 1360 cm−1, which represents
the disorder degree of carbon material structure. As can be seen in Figure 5, an obvious
G peak was observed on the CAP7–27 at 1575 cm−1, indicating that the glucose on the
sample surface had been carbonized into graphite.

3.2. Characterizations of Carbon-Covered Phosphorus-Modified Alumina

As shown in Figure 6, AP7 had the maximum adsorption capacity of RhB (89.7 mg·g−1).
Decreasing the isoelectric point could reduce the effect of electrostatic repulsion, thereby
increasing the adsorption capacity of RhB.

As seen in Figure 7, all the samples had higher adsorption capacities of RhB than
AP7 under the same condition as the CAP7–27 sample, reaching the highest equilib-
rium adsorption capacity of 197.3 mg·g−1. The molecular size of RhB is approximately
1.5 nm × 1.2 nm × 0.5 nm, and the dimers of RhB are larger [36]. Because RhB molecules
have a large size, the adsorption of RhB was suppressed by the microporous nature of the
adsorbent.
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Various adsorbents of RhB reported in previous studies were compared, as shown
in Table 1. It is indicated that the samples of AP7 and CAP7–27 have great potential,
with high adsorption capacity. Both AP7 and CAP7–27 have higher adsorption capacity
than the reported alumina adsorbents and modified alumina adsorbents. Compared with
other carbon materials and graphene materials, they still held an advantage in adsorption
capacity and low cost. Compared with magnesium silicate/carbon composite [27], CAP7–
27 had a faster adsorption rate in the first 5 min due to its larger pore size. Compared with
Gg-cl-P (AA-co-AAm)/Fe3O4 nanocomposite [37], both AP7 and CAP7–27 have a simpler
preparation process and lower cost.

3.3. Adsorption Kinetic Studies

Figure 8 shows the RhB removal capability of CAP7–27 with different contact times at
a temperature of 303 K and an initial RhB concentration of 200 mg·L−1. The adsorption
capacity was 162.5 mg·g−1 at 5 min, which was 82.4% of the equilibrium adsorption
capacity of 197.3 mg·g−1. The adsorption capacity of RhB increased rapidly between
0−30 min, reaching 174.8 mg·g−1 at 30 min, which was 88.6% of the equilibrium adsorption
capacity. At 360 min, the adsorption rate was equal to the desorption rate, reaching the
equilibrium state. The initial rapid adsorption was due to the existence of large pores.
When a sample has a large pore size, RhB can quickly reach active sites at the beginning
of adsorption, resulting in a faster adsorption rate [38–41]. Our results reported here, in
addition to the literature [42–45], prove that porous materials have many applications,
from antipollution to solid-state lighting and electronics.
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A pseudo-first-order equation is usually defined as follows:

ln
(
qe − qt

)
= lnqe − k1t, (4)

A pseudo-second-order equation is usually defined as follows:

dqe
dt

= k2
(
qe − qt

)2, (5)

After integration and variation by using boundary conditions of t = 0 min, qt = 0 mg·g−1,
the Equation (6) can be arranged as follows:

dqe
dt

= k2
(
qe − qt

)2 . (6)
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where qe (mg·g−1) is the adsorption capacity of RhB at equilibrium and qt (mg·g−1) is the
adsorption capacity of RhB at time t. k1 (min−1) is the kinetic constant of pseudo-first-order,
and k2 (g·mg−1·min−1) is the kinetic constant of pseudo-second-order.

Table 4 shows that the adsorption of sample CAP7-27 was consistent with the pseudo-
second-order kinetic equation with a linear correlation coefficient R2 of 0.99971. The
adsorption rate was affected by the square of the number of empty active sites on the
surface of sample CAP7–27.

Table 4. Parameters of kinetics simulation for adsorption on CAP7–27.

Adsorbent
qe

(mg·g−1)

Pseudo-First-Order Model Pseudo-Second-Order Model

k1
(min−1) R2 k2

(g·mg−1·min−1) R2

CAP7–27 197.3 0.0075 0.9574 0.0017 0.9997

3.4. Adsorption Isotherm Studies

Figure 9 indicates that the equilibrium adsorption capacity of CAP7–27 reached
123.6 mg·g−1 with an initial RhB concentration of 50 mg·L−1. At equilibrium, the concen-
tration of RhB (Ce) was 0.56 mg·L−1, and the RhB removal efficiency reached 98.9%.

Nanomaterials 2021, 11, x FOR PEER REVIEW 10 of 12 
 

 

 

Figure 9. RhB removal capabilities of carbon−covered phosphorus-modified alumina. 

The adsorption isotherm data of samples were fitted to the Langmuir isotherm 

model Equation (7) and the Freundlich isotherm model Equation (8) to study the ad-

sorption mechanism. The two models are generally defined as follows: 

Langmuir: 

qe =
qmKLCe

1+KLCe
, (7) 

Freundlich: 

qe = KFCe

1
n⁄
. (8) 

where qe (mg·g−1) is the adsorption capacity of RhB at equilibrium, qm (mg·g−1) is the 

maximum adsorption capacity of RhB, Ce (mg·L−1) is the concentration of RhB at equilib-

rium, KL is the Langmuir constant, and KF is the Freundlich constant. 

Table 5 indicates that the adsorption model of CAP7−27 was consistent with the 

Langmuir isotherm adsorption model with a linear correlation coefficient R2 of 0.9983, 

indicating that the adsorption of the sample CAP7−27 was a monolayer and homogene-

ous adsorption process. 

Table 5. Parameters of adsorption isotherms for adsorption on CAP7−27. 

Adsorbent 

Langmuir Isotherm Model Freundlich Isotherm Model 

qm 

(mg·g−1) 

KL 

(L·mg−1) 
R2 

KF 

(mg·g−1)(L·mg−1)1/n 
1/n R2 

CAP7−27 195.3 1.28 0.9983 8.298 
0.130

8 
0.9513 

4. Conclusions 

Phosphorus−modified alumina with a pore size of 21.9 nm was synthesized using a 

coprecipitation method. The carbon−covered, phosphorus-modified alumina CAP7−27 

was prepared by impregnating it with glucose and carbonizing it. The specific surface 

area and pore size of CAP7−27 reached 435.3 m2·g−1 and 21.2 nm. The RhB adsorption 

experiment revealed that CAP7−27 had not only an equilibrium adsorption capacity of 

198 mg·g−1, but also an adsorption rate of 162.5 mg·g−1 in 5 min. The kinetics study also 

showed that the adsorption process was consistent with the pseudo−second−order ki-

netics and Langmuir isotherm adsorption model. Carbon−covered phosphorus-modified 

Figure 9. RhB removal capabilities of carbon-covered phosphorus-modified alumina.

The adsorption isotherm data of samples were fitted to the Langmuir isotherm model
Equation (7) and the Freundlich isotherm model Equation (8) to study the adsorption
mechanism. The two models are generally defined as follows:

Langmuir:

qe =
qmKLCe

1 + KLCe
, (7)

Freundlich:
qe = KFC

1
n
e . (8)

where qe (mg·g−1) is the adsorption capacity of RhB at equilibrium, qm (mg·g−1) is the max-
imum adsorption capacity of RhB, Ce (mg·L−1) is the concentration of RhB at equilibrium,
KL is the Langmuir constant, and KF is the Freundlich constant.

Table 5 indicates that the adsorption model of CAP7–27 was consistent with the
Langmuir isotherm adsorption model with a linear correlation coefficient R2 of 0.9983,
indicating that the adsorption of the sample CAP7–27 was a monolayer and homogeneous
adsorption process.
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Table 5. Parameters of adsorption isotherms for adsorption on CAP7–27.

Adsorbent
Langmuir Isotherm Model Freundlich Isotherm Model

qm
(mg·g−1)

KL
(L·mg−1) R2 KF

(mg·g−1)(L·mg−1)1/n 1/n R2

CAP7–27 195.3 1.28 0.9983 8.298 0.1308 0.9513

4. Conclusions

Phosphorus−modified alumina with a pore size of 21.9 nm was synthesized using a
coprecipitation method. The carbon-covered, phosphorus-modified alumina CAP7–27 was
prepared by impregnating it with glucose and carbonizing it. The specific surface area and
pore size of CAP7–27 reached 435.3 m2·g−1 and 21.2 nm. The RhB adsorption experiment
revealed that CAP7–27 had not only an equilibrium adsorption capacity of 198 mg·g−1, but
also an adsorption rate of 162.5 mg·g−1 in 5 min. The kinetics study also showed that the
adsorption process was consistent with the pseudo-second-order kinetics and Langmuir
isotherm adsorption model. Carbon-Covered phosphorus-modified alumina is a potential
highly efficient nanomaterial for the removal of RhB from wastewater.
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