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Abstract: The further deployment of silicon-based anode materials is hindered by their poor rate and
cycling abilities due to the inferior electrical conductivity and large volumetric changes. Herein, we
report a silicon/carbon nanotube (Si/CNT) composite made of an externally grown flexible carbon
nanotube (CNT) network to confine inner multiple Silicon (Si) nanoparticles (Si NPs). The in situ
generated outer CNTs networks, not only accommodate the large volume changes of inside Si NPs
but also to provide fast electronic/ionic diffusion pathways, resulting in a significantly improved
cycling stability and rate performance. This Si/CNT composite demonstrated outstanding cycling
performance, with 912.8 mAh g~! maintained after 100 cycles at 100 mA g~!, and excellent rate
ability of 650 mAh g~ at 1 A g~ ! after 1000 cycles. Furthermore, the facial and scalable preparation
method created in this work will make this new Si-based anode material promising for practical
application in the next generation Li-ion batteries.

Keywords: silicon; yolk—shell structure; anode; lithium-ion batteries

1. Introduction

Silicon (Si) is the most promising anode candidate in lithium-ion batteries (LIBs) due
to its high theoretical specific capacity (~4200 mAh g~!) and cut-price [1-4]. However, the
large volume changes (over 400% expansion after full lithiation) induced poor structural
stability and continuous breaking and regenerating of the solid-electrolyte interphase
(SEI) cause’s short working life for Si-based anodes [5-7]. Moreover, the low electrical
conductivity of the Si limits its rate performance under high current densities [8-10]. Up
till now, introducing a reserved void space and conductive framework into silicon-based
materials has been regarded as the most effective strategy to fundamentally improve the
electrochemical behavior of Si-based anodes [11-13]. The introduced reserved space can
buffer the huge changes in volume of Si during cycling, leading to the enhanced structural
integrity and cycling stability [14-16]. Additionally, the conductive framework within the
composites increases the overall conductivity of the electrodes, resulting in the high-rate
capacities under high current densities [17-20].

Among various Si-based composites, the yolk-shelled Si/carbon (Si/C) composites
are the most promising candidate because of their distinctive advantages over the existing
Si-based composites in terms of cycling stability and rate behavior [21-24]. Many previous
reports confirmed the effective structure [25-27]. For these yolk-shelled Si/C composites,
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the Si-yolk was encapsulated within a hollow C-shell with reserved space between the Si-
yolk and the C-shell. Therefore, the volume changes of inner Si-yolk can be accommodated
by the void space and confined within the hollow C-shell, leading to increased structural
stability and limited formation of the outer generated SEI film [25-27]. However, the
introduced void space limits the conductive contact between Si-yolk and C-shell and
further decreases the tap density of the composite [28-30]. Carbon nanotubes (CNTs)
with excellent mechanical properties and high electrical conductivity are regarded as
another hopeful carbon matrix to increase the overall behavior of Si-based materials [31-36].
Currently, most of the reported Si/CNT anodes are synthesized by directly using expensive
commercialized CNTs to mix with Si nanoparticles (5i NPs), causing increased production
cost [37-39]. Moreover, it is difficult to achieve the uniform distribution between CNTs and
Si NPs due to their large surface area [40,41]. Currently, new Si/CNT anodes composites
have been developed via a chemical vapor deposition (CVD) process, which provides
distinguished structural stability and electrochemical performance, enhances the overall
conductivity of the electrode, and increases the safety of the battery [32,42]. Moreover, it
is remaining a great challenge to prepare promising Si/CNT composites with low-cost
methods while preserving the unique volume change containment functionality of Si/C
yolk—shell structures.

Herein, we overcome these obstacles by developing new Si/CNTs anodes (Scheme 1).
Si NPs were successively double-coated with rigid carbon and silica layers (Si@C@SiO;) to
better encapsulate the incorporated multiple Si NPs to realize good safety levels. Further-
more, the SiO, coating layer on the outer surface of Si@C@SiO; further provided active
position for in situ CNTs grown via a CVD method, resulting in a new Si/CNT composite.
For this new Si/CNT, the flexible CNT networks were grown on the surface of Si@C@SiO,
particles. Therefore, the aggregation for both the CNTs and Si NPs can be significantly
suppressed due to the external in-situ grown CNTs networks. Additionally, compared
with the traditional yolk-shell structure, the CNT networks and the carbon coating shell
effectively increase the conductive contact, not only between the inner Si-yolks and CNT
networks but also among different Si/CNT microparticles, leading to increased electronic
conductivity and rate capacities. Moreover, the overall structural stability and integrity of
this new Si/CNT can also be enhanced by flexible porous CNT networks and rigid carbon
coating [42].
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Scheme 1. Schematic illustration of the preparation of the Si@C@v@CNTs.

2. Materials and Methods
2.1. Synthesis of Si NPs

All reagents in this paper were purchased from Sinopharm Co (Shanghai, China). The
nano-sized silica (SiO;) spheres were firstly synthesized by the well-established Stober
method. In the following magnesiothermic reduction (MR) process, Mg powders (99%)
and the obtained SiO; spheres were uniformly mixed and placed in one side of a crucible
boat. After that, a certain amount of NaCl (AR) (SiOp:NaCl = 1:10) was placed in the
other side of the crucible boat. The crucible boat was then placed in the center of the tube
furnace (OTF-1200X, Shenzhen kejing-zhida Co, Shenzhen, China) and increased to 700 °C
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under an Ar/H; (95:5 vol. %) flow and retained for 6 h. After cooling down to normal
condition, the obtained sample was dispersed in 1 M HCl for several hours to remove NaCl
and byproduct MgO. The final porous Si NPs powders were obtained after a wash and
vacuum dry.

2.2. Synthesis of SI@QRF@S5i0O;

The above prepared Si NPs were modified with 3-aminopro-pyltrimethoxysilane
(APTES) (AR) to positively charge the surfaces. In total, 0.4 g Si NPs were uniformly
dispersed in 300 mL ethanol (AR), containing 4 mL of APTES, and stirred for 5 h to obtain
APTES-Si NPs. The above APTES-Si NPs was re-dispersed in an alkaline mixture of 150 mL
deionized water and 30 mL ethanol, containing 1 mL of aqueous ammonia (AR) under
magnetic stirring for 30 min. After that, 0.6 g resorcinol (AR) and 0.8 mL formaldehyde
(AR) were separately added to the reaction system and continued stirring for 10 h to
form a homogeneous phenolic resin (RF) coating layer under room temperature. The
Si@RF powders were obtained via centrifugation treatment of the reaction solution. For
the SiO;-coated Si@RF composite (named Si@RF@Si0O,), 400 mg Si@RF was mixed with
1.5 mL tetraethyl orthosilicate (TEOS) (AR) hydrolysis under alkaline condition to form
SiO; coating layer on the outer surface of Si@RFE.

2.3. Synthesis of SI@C@QU@CNTs

Carbon nanotubes were grown in situ via a CVD method using Iron(Ill) nitrate
nonahydrate (AR) as the catalyst (Fe) and acetylene (5%) as carbon precursors at 900 °C for
2 h under Ar/Hj; in a tube furnace. The catalyst was loaded on the precursor microspheres
of SiI@RF@SiO; prior to the deposition procedure to ensure that the CNTs could be grown
in situ on the active positions during the CVD process. Finally, the SiO; coating layer
was removed with dilute hydrofluoric acid (AR) solution and followed by centrifugation
treatment and ethanol washing. After removing the SiO; sacrificial coating layers, the
final composite was named Si@C@v@CNTs (“v” stands for “void”). For comparison
purposes, the SieC@v@C (“v” stands for “void”) without in-situ grown CNTs was also
synthesized via the same CVD method but in the absence of a Fe(NOs3)3-9H,O catalyst,
and the Si@v@CNT without an inner carbon layer was also synthesized via the same CVD
method in the absence of the RF-layer.

2.4. Characterizations

The XRD patterns of samples were obtained via a DX-2007 X-ray diffraction (XRD)
experiment apparatus (A = 1.5418 A) (Dandong Haoyuan Instrument Co, Dandong, China)
to confirm the phases and crystallinity. The Si content of composites was characterized
by a thermogravimetric analyzer (TGA4000) (NSK LTD, Tokyo, Japan) at a heating rate
of 10 °C min~! in air atmosphere. The nitrogen adsorption/desorption isotherm curves
were obtained via a Micromeritics ASAP-2020M nitrogen adsorption/desorption apparatus
(Best Instrument Technology Co, Beijing, China) to confirm the porosity character. The
micro-structures and morphologies of the materials were collected via a JSM-6700F scan-
ning electron microscope (SEM) (JEOL, Tokyo, Japan) with an IE300X energy-dispersive
X-ray spectrometer and a JEM-2100F transmission electron microscope (TEM) (JEOL, Tokyo,
Japan). X-ray photoelectron spectroscopy (XPS) curves were obtained by applying an elec-
tron spectrometer (ESCALab250) (Thermo Fay, Boston, MA, USA) to analyze the surface of
composites. Raman spectra was collected with a Raman spectrometer (JobinYvon HR800)
(Renishaw, London, UK).

2.5. Electrochemical Measurements

The CR2016 coin-type cells were assembled in the glove box under inert atmosphere
conditions without water and oxygen to test the electrode performance by using polypropy-
lene films as separators (the thickness of the separator was 25 um) to separate the working
and counter electrodes (lithium wafer) in an electrolyte. The electrolyte was the 1 M LiPFg
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dissolved in the solvent of ethylene carbonate and dimethyl carbonate (the amount of
the electrolyte used in assembling the coin-type cell was 70 pL). The working electrode
was made by coating the slurry of the above active materials containing a proportional
conductive carbon black and polyvinylidene fluoride (PVDF) binder on the copper foil
(the mass loading of the electrode was about 1.2 mg cm~2), which was then dried under a
120 °C vacuum oven for 14 h (the thickness of the active electrode layer was about 20 um).
Finally, the copper foil was cut into wafers with a uniform size of 1 cm. The galvanostatic
cycling measurements were conducted by a CT 2001A battery tester at determinate voltage
windows. Cyclic voltammogram (CV) tests were performed by using an electrochemical
workstation within a fixed voltage range and scan rate.

3. Results and Discussions

Figure S1 shows the XRD patterns of reduced Si NPs, Si@RF, and Si@RF@SiO,. Three
sharp diffraction peaks, which are located at 20 values of 28.4, 47.2, and 56.1°, were
attributed to the planes of (111), (220), and (311) for the crystal Si phase, respectively (JCPDS
NO. 27-1402), indicating that the amorphous SiO; synthesized by the well-established
Stober method were fully reduced to crystalline Si in the MR process [43]. Another broad
peak at ~25° corresponded with the amorphous carbon and silica coming from the double
coat with RF and silica layers. As shown in Figure 1a, for Si@C@v@CNTs and Si@v@CNTs,
after the CVD process, CNT grown in situ across Si-CNPs and the diffraction peak at ~25°
was observed, corresponding to the (002) plane of the crystalline carbon [40]. Figure 1b
displays the Raman spectra of Si@C@v@CNTs, Si@v@CNTs, and Si@C@v@C. The sharp
peak at about 500 cm~! could be appointed to the Si peaks. Additionally, the weak
peaks at about 1345 cm ™! (D-band) and 1595 cm ™! (G-band) could be associated with
the vibration modes of sp3-bonded carbon atoms in amorphous carbon and sp?-bonded
carbon atoms in typical graphite, respectively [44]. As calculated, the Ip/I; was 0.98, 0.96,
0.95 for SieC@veC, Si@v@CNTs, and Si@eC@v@CNTs, respectively. Si@C@v@CNTs had
a relatively higher graphitization degree due to the microcrystalline structure of CNTs.
Thermogravimetric analysis (TGA) was tested to confirm the proportion of carbon and
silicon for the samples (Figure 1c). The weight losses occurred from 500 to 800 °C were
ascribed to the carbon combustion and calculated to be 54.3%, 70.6%, and 85.9% for
SieCeveC, Si@v@CNTs, and Si@C@v@CNTs, respectively. As the temperature continued
to rise, Si NPs were further oxidized, leading to a weight increase in the TGA curves. The
Si content in the three samples were 45.7%, 29.4%, and 14.1% for Si@C@v@C, Si@v@CNTs,
and Si@C@v@CNTs, respectively. Compared with the other two samples, high C and CNT
content in SiI@C@v@CNTs provided more electric contact between particles, thus enhanced
overall electronic conductivity and superior performance could be expected. The elemental
compositions and valence states in the composites were determined by X-ray photoelectron
spectroscopy (XPS) spectra. Figure 1d reveals the whole spectrum of Si@C@v@CNTs,
confirming the coexistence of Si, C, and O. The high-resolution spectrum of Si 2p is shown
in Figure 1le. Three peaks of Si-Si (98.6 eV), Si-C (101.6 eV), and Si-O (102.98 eV) originated
from monatomic Si, residual silica, or slight oxidation of the Si NPs [45]. In addition, the
high-resolution C 1s and O 1s in Figure S2 shows that the peak at 283.75 eV was related
to the graphite-like sp? hybridized carbon and another peak at 283.3 eV was assigned to
C-O. The O 1s peak at 537 eV may be attributed to adsorbed oxygen and the residual silica
layer [46].

The Brunauer—Emmett—Teller (BET) specific surface area and pore volume for the
samples are illustrated in Table S1. Compared with Si@C@v@C, the Si@C@v@CNTs had
a relatively higher BET specific surface area of 106.98 m? g~!, with a pore volume of
0.3212 cm? g~ 1. We believe that the higher surface area was mainly due to the existence of
reserved void space and in-situ grown CNT networks. The nitrogen adsorption—-desorption
isotherm curve of the samples is displayed in Figure 1f. All the curves had a distinct
hysteresis loop, suggesting the existence of a mesoporous structure [47]. The pore size
distribution curve (Figure S3) shows a diverse pore structure between 2 and 10 nm, which
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incorporate a series of micro- and mesopores derived from CNT networks [48]. Further-
more, these multiple pore structures not only afford fast and shortened electronic/ionic
diffusion pathways but also absorb the huge expansion in volume inside Si NPs during cy-
cling, resulting in a significantly enhanced overall structural integrity and electrochemical
performance.
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Figure 1. XRD patterns (a), Raman spectra (b), and thermogravimetric analysis (TGA) curves
(c) of Si@C@v@C, Si@v@CNTs, and Si@C@v@CNTs; X-ray photoelectron spectroscopy (XPS) of
Si@C@v@CNTs (d), High-resolution XPS spectrum of Si 2p (e), and N, adsorption-desorption
isotherms curves of Si@C@v@C, Si@v@CNTs, and Si@C@v@CNTs (f).

Figure 2 shows the scanning electron microscopy (SEM) images of the structural
evolution of SiI@C@v@CNTs at different synthesis stages. The SEM image of SiO, spheres
firstly synthesized by the well-established Stober method is shown in Figure 2a. The
pristine SiO, spheres present a monodispersed spherical shape with a uniform diameter of
approximately 300 nm. After the Mg-reduction process, porous Si NPs with well-preserved
monodispersed spherical morphology were successfully prepared (Figure 2b). Figure 2¢,d
show the SEM images of Si@RF and Si@RF@SiO,. The diameters of as-prepared Si@RF and
Si@RF@SiO, precursors were increased to 400 nm and 500 nm, respectively, indicating the
successful coating of RF and SiO, layers on the Si cores, resulting in Si@C@SiO, particles.
Figure 2e,f reveals a large amount of tangled CNTs with various diameters in the range of
50-100 nm externally grown in situ across the Si@C@SiO, particles. The multiple Si NPs
were well supported by the in-situ generated flexible porous CNTs networks, contributing
to better electric contact, not only between the inner Si-yolks but also among the Si-CNT
microparticles. Figure 2g reveals the uniform elemental distribution of the Si, C, and Fe in
Si@C@v@CNTs. It is clearly observed the Si-yolks were well coated by the outer C-shell
and distributed across the flexible CNT networks. Figure S4 shows the SEM images of
Si@C@v@C. The observed wrinkles over the entire surface confirm the full encapsulation
of Si@C@SiO; by the carbon layer. The SEM images of Si@v@CNTs in Figure S5 reveal the
similar tangled CNTs with Si@C@v@CNTs.

Figure 3a—c shows the transmission electron microscopy (TEM) images of homemade
Si0; and reduced Si NPs. The high-resolution TEM image (HRTEM), taken from one of the
Si NPs, reveals that the obtained Si NPs had high crystallinity [49,50]. The TEM images
of Si@RF and Si@RF@SiO;, as shown in Figure 3d—e, confirm that the Si NPs were well
wrapped by the RF carbon-5iO, double coating layers. The TEM and HRTEM images of
Si@C@v@CNTs presented in Figure 3f-i confirm CNTs grown in situ on the outer layer of
the Si@RF NPs with a void between the two. The carbon layer derived from RF was about
5 nm and could accelerate electron transfer between Si NPs and CNTs, leading to enhanced
structural stability. The void generated due to the etching of SiO, could effectively alleviate
the expansion of the inner Si NPs. According to the TEM images of a single CNT shown in
Figure S6, the outer diameter of this single CNT was approximately 35 nm and the tube
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wall was 12 nm. The TEM image of Si@C@v@C in Figure S7 shows that the Si NPs were
well wrapped with double carbon layers. The TEM images of Si@v@CNTs in Figure S8
confirms that existence of similar CNTs grown to Si@C@v@CNTs but without of a carbon
layer on the Si NPs.

Figure 2. SEM images of SiO, nanoparticles (NPs), synthesized by the well-established Stober
method (a), reduced Si NPs in the magnesiothermic reduction (MR) process (b), SEM images of the
in-process samples: Si@RF (c), Si@RF@SiO; (d), Si@eC@v@CNTs (e f). (g) the elemental mapping
results of SI@C@v@CNTs.

(¢) Silicon
dy;;=0.31nm

Figure 3. Transmission electron microscope (TEM) images of SiO, NPs synthesized by the well-
established Stober method (a), reduced Si NPs in the MR process (b), high resolution TEM (HRTEM)
images of 5i NPs (c), TEM images of Si@RF (d), Si@RF@SiO, (e), and Si@C@v@CNTs (f-h), and
HRTEM images of Si@C@v@CNTs (i).
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The cyclic voltammetry (CV) curve of Si@C@v@CNTs exhibited the typical electro-
chemical properties of Si-based anode materials (as shown in Figure 4a). In the first
cathodic branch (lithiation), a distinct broad peak between 0.5 and 0.8 V was ascribed to
the generated solid-electrolyte interphase (SEI) film. However, this peak disappeared after
the first lithiation, suggesting the generation of the firm and stable films during the first
cycle [51]. The lithiation peak at 0.18 V can be appointed to the lithiation process of Si.
In the following anodic branch (delithiation), the peaks located at 0.34 and 0.5 V were
ascribed to the dealloying process from LixSi to amorphous Si [52]. Figure 4b shows the
initial charge-discharge profiles of the materials at 100 mA g~!. The disappearance of the
voltage plateaus between 0.5 and 0.8 V after the first cycle also confirms the generation of
stable SEI films, which is in accordance with the CV results in Figure 4a [44]. The initial
discharge and charge capacities were 2698.4 and 1684.2 mAh g~! for Si@C@v@C, 2546.5
and 1760.6 mAh g~ for Si@v@CNTs, and 2350.1 and 1787.0 mAh g~ for Si@C@v@CNTs
at 100 mA g~ !, corresponding to the initial coulombic efficiencies (ICE) of 62.41, 69.14,
and 76.04%, respectively. Figure S9 shows the galvanostatic charge—discharge curves of
Si@C@v@CNTs during the first five cycles at 100 mA g~ 1. After the first cycle, the CE
increased to 92.73% in the following cycling test and reached 96.04% after the fifth cycle.
Most importantly, the voltage plateaus during the cycling test was well-maintained, sug-
gesting improved electrochemical utilization of the active electrode materials. The cycling
behavior in Figure 4c shows the charge capacities at 100 mA g~! for Si@C@v@C.
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Figure 4. Electrochemical properties: cyclic voltammetry for the first three cycles of Si@C@v@CNTs
at a scan rate of 0.1 mV s~ ! between 0-2.0 V (a), the initial discharge—charge curves at 100 mA g~!
(b), cycling performances at 100 mA g~ ! (c), the rate performances (d) of Si@C@v@C, Si@v@CNTs,

and Si@C@v@CNTs.

Si@v@CNTs and Si@C@v@CNTs were 598.7, 736.1, and 912.8 mAh g’1 after 100
cycles, respectively, indicating that the Si@C@v@CNTs were endowed with the best cycling
behavior. Therefore, the outer in-situ grown CNT networks can significantly improve the
cycling behavior and structural integrity of the inside-coated Si NP anodes. Figure 4d
shows the rate performances of Si@C@v@C, Si@v@CNTs, and Si@C@v@CNTs performed
at a series of different current densities. As expected, SI@C@v@CNTs present the best rate
ability, even at high current densities. Very high reversible capacity of 907.7 mAh g~! was
maintained when the current density was back to 100 mA g~ !, suggesting an excellent rate
ability of Si@C@v@CNTs. Furthermore, a high reversible capacity of 650 mAh g~! was
retained for SI@C@v@CNTs at high 1 A g~ ! after 1000 cycles (Figure 5a). Therefore, it can
be concluded that the introduced void space and porous CNT networks can absorb the
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huge volume expansion inside Si NPs, leading to enhanced overall structural stability and
integrity [52-54]. In addition, the CNT networks and inner rigid carbon coating provided
more sufficient conductive contact to fast electronic/ionic diffusion pathways, resulting in
significantly improved cycling stability and rate performance [55-57]. Figure 510 shows the
SEM images of Si@C@v@CNTs after 1000 cycles at 1 A g~!. No cracking can be detected for
Si@C@v@CNTs, and all the active materials were still well adhered to the current collector
without exfoliation (Figure 510a,b). In addition, the morphology was well maintained in
Si@C@v@CNTs after the long cycling test. (Figure S10c). Figure 5b shows the schematic
illustration of lithiation and delithiation processes.
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Figure 5. Cycle performance of Si@C@v@CNTs at a current density of 1000 mA g~! (a) and a
schematic illustration of lithiation and delithiation processes (b).

Moreover, we fabricated a full cell with our SiI@C@v@CNTs as the anode and LiNig ¢
Cop2Mng 0, (NCM622) as the cathode (Si@C@v@CNTs/ /NCM622). The voltage profiles
of NCM622 are shown in Figure S11. The NCM622 cathode exhibited a stable reversible
capacity of 160 mAh g~! with a flat charging/discharging plateau at about 3.5 V. Referring
to the voltage profiles of the SI@C@v@CNTs anode and the NCM622 cathode from half
cells, the working potential range for the full cell was set between 2 and 4 V. The cycling
performance of Si@C@v@CNTs//NCM622 is shown in Figure S12. The full cell displays
a reversible capacity of 92 mAh g~! at 100 mA g~! after 100 cycles, indicating potential
cycling stability for commercial viability.

4. Conclusions

In summary, we synthesized a yolk-shelled structured silicon/carbon nanotube com-
posite for high performance lithium storage application. This novel Si-based anode was
made of an external grown flexible CNT network to confine the inner multiple Si NPs. The
in-situ generated outer CNT networks not only accommodated the huge changes in volume
space inside Si nanoparticles but also provided fast electronic/ionic diffusion pathways,
resulting in markedly improved cycling stability and rate ability. Furthermore, the facial
and scalable preparation method created in this work could make this new Si-based anode
material promising for practical application in next generation Li-ion batteries.
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-4991/11/3/699/s1. Figure S1: XRD patterns of reduced Si NPs in the MR process, Si@RF, and
Si@RF@SiO,. Figure S2: XPS spectrum of Cls (a) and Ols (b) of Si@C@v@CNTs. Figure S3: The pore
size distribution curve of Si@C@v@C, Si@v@CNTs, and Si@C@v@CNTs. Figure S4: SEM images of
Si@C@v@C. Figure S5: SEM images of Si@v@CNTs. Figure S6: TEM images of a single CNT. Figure S7:
TEM images of Si@C@v@C. Figure S8: TEM images of Si@v@CNTs. Figure S9: The first five discharge-
charge curves of SI@C@v@CNTs at current density of 100 mA g~!. Figure S10: Digital photograph (a),
SEM image of Si@C@v@CNTs after the cycling test at 1.0 A g~ (b,c). Figure S11: Charge/discharge
profiles of NCM626 between 2.0-4.3 V. Figure S12: The electrochemical performance of the full cell
using Si@C@v@CNTs as anode and LiNig ¢Cog,Mng 0, (NCM622) as cathode at the current density
of 100 mA g~!. Table S1: The Brunauer-Emmett-Teller (BET) surface area, pore volume and average
pore size of the samples.
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