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Abstract: Supercritical CO2 (scCO2) is often used to prepare graphene/metal oxide nanocomposite
anodes for high performance lithium-ion batteries (LIBs) by the assisted solvothermal method due
to its low viscosity, high diffusion, zero surface tension and good surface wettability. However,
the formation mechanism of metal oxides and the combination mechanism between metal oxides
and graphene in this system are superficial. In this work, a cobalt monoxide/graphene (CoO/G)
nanocomposite is fabricated via the scCO2 assisted solvothermal method followed by thermal
treatment. We elucidate the mechanism that amorphous intermediates obtain by the scCO2 assisted
solvothermal method, and then ultrafine CoO nanoparticles are crystallized during the heat treatment.
In addition, scCO2 can promote CoO to be tightly fixed on the surface of graphene nanosheets by
interfacial chemical bonds, which can effectively improve its cycle stability and rate performance.
As expected, the CoO/G composites exhibit higher specific capacity (961 mAh g−1 at 100 mA g−1),
excellent cyclic stability and rate capability (617 mAh g−1 after 500 cycles at 1000 mA g−1) when
applied as an anode of LIB.

Keywords: lithium-ion battery; anode; supercritical carbon dioxide; cobalt monoxide; graphene

1. Introduction

With the increasing demand for recyclable energy, electrochemical energy storage
devices that can effectively store the renewable energy sources of unstable output are in
great demand, where lithium-ion batteries (LIBs) have been recognized as one of the most
promising electrochemical energy storage devices [1,2]. However, the energy density of
commercial LIB has met its bottle neck due to the low theoretical specific capacity of the
commercial graphite anode (372 mAh g−1) [3], so it is urgent to develop anode materials
with high specific capacity and energy density. Transition metal oxides acted as spotlights
in the past decades due to their high theoretical specific capacity, vast choice of metal
sources, and ease in controlling surface morphology [4–8]. Among them, Cobalt monoxide
(CoO) has attracted increasing attention due to its high theoretical capacity (715 mAh g−1),
highly reversible electrochemical reaction, low cost and high thermal stability [9]. How-
ever, the application of the CoO anode in LIBs is hampered by its poor cycling stability
caused by large volume variation during the Li+ insertion/extraction, leading to electrode
pulverization and electrical detachment from the current collector [10]. The mostly used
paradigms to solve the above-mentioned problems are nano-sizing electrode particles
combined with highly conductive buffer fillers [11,12]. Nevertheless, nano-sizing will
lead to re-aggregation during cycling, which calls for tightly anchoring on the conductive
substrate [13–17]. For the later strategy, hybridizing CoO with graphene not only facilitate
electron transfer, but also inhibit the volume expansion of CoO during charge/discharge
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process due to the excellent electronic conductivity and superior mechanical robustness of
graphene [18].

Up to now, many synthetic methods have been applied on preparing CoO/graphene
composites, such as solvothermal [19], chemical reduction [20], solution phase coordina-
tion [17], and so on. Among them, solvothermal (or autoclave) method have been widely
used because of its advantages such as high yield, simple manipulation, easy control, lower
air pollution, and low energy consumption [21]. However, the inorganic particles obtained
by the traditional solvothermal method are easy to agglomerate and are difficult to be
uniformly distributed on graphene, resulting in unsatisfactory cycle stability. Supercritical
CO2 (scCO2) has attracted wide attention due to its chemical inertness, non-toxicity, cost-
effectiveness and environmental friendliness. The unique physical properties of scCO2,
including low viscosity, high diffusion, zero surface tension, and good surface wettability
make it recognizable as a promising alternative to traditional solvents [22–26]. Therefore,
the scCO2 assisted solvothermal method has been widely used to prepare carbon-based
composites for high performance LIB [27–33]. Due to the above unique physical proper-
ties, scCO2 can reduce the polarity of the solvent, so the nano-sized active materials can
be evenly dispersed on the surface of carbon matrix, which greatly improves the cyclic
stability of the nanocomposites. Although the role that scCO2 played in the formation
of monodisperse nanoparticles has been discussed in literature [29,31,34], the formation
mechanism of metal oxides and the combination mechanism between metal oxides and
graphene in this system are vacant.

Herein, CoO/graphene nanocomposites (CoO/G-sc) were prepared by the scCO2
assisted solvothermal method followed by thermal treatment. Compared with the CoO/
graphene composites prepared in air, the ultrafine CoO nanoparticles are uniformly dis-
persed on the surface of graphene nanosheets without agglomeration. In addition, XPS
spectra show that there are more Co-O-C chemical bond in CoO/G-sc, indicating that
the combination of CoO and graphene is more stable. Thus, the cycle stability, reversible
capacity and rate performances of CoO/G-sc anodes are improved when applied as anodes
in LIBs, which provides a reliable theoretical basis for the preparation of high-performance
anode materials for a secondary energy storage system.

2. Materials and Methods
2.1. Reagents and Materials

Cobalt nitrate hydrate (Co (NO3)2·6H2O), graphite oxide powder, and absolute alcohol
were purchased from Aladdin (Shanghai, China), Sixth Element Materials Technology Co.,
Ltd. (Changzhou, Jiangsu Province, China), and Chengdu Kelong Chemical Reagents Co.,
(Chengdu, Sichuan Province, China) respectively. All chemicals were used as received
without further purification.

2.2. Preparation of CoO/Graphene Composites (CoO/G)

Graphene oxide (GO) colloidal was prepared by sonicating graphite oxide powder
in ethanol for 2 h, and Co (NO3)2·6H2O) was added in above solution by 0.4 mol L−1.
Then, as-prepared solution was transferred into a lab-assembled stainless steel autoclave of
50 mL. The autoclave was filled with CO2 up to 12 Mpa and maintained at 200 ◦C for 2 h.
Then, the autoclave was slowly depressurized after it cooled down to room temperature
naturally. The intermediate was filtered and then dried in vacuum at 80 ◦C for 6 h. For the
sintering process, the obtained intermediate was calcined in a tube furnace under Ar at
450 ◦C for 2 h, which was denoted as CoO/G-sc. For comparison, samples also prepared
without CO2, which was designated as CoO/G-a (a represents air).

2.3. Characterization

X-ray diffraction (XRD) patterns were recorded on a Rigaku (Smart lab III) using
Cu Kα radiation within 2θ = 10–75◦. Thermogravimetric analysis (TGA) was carried
out on a TGA-Q50 (TA Instruments Co, Ltd., New Castle, DE, USA) at a heating rate
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of 10 ◦C min−1 from 30 ◦C to 800 ◦C under the air atmosphere. X-ray photoelectron
spectroscopy (XPS) was conducted on an Escalab 250Xi X-ray photoelectron spectrometer
(Thermo, Waltham, MA, USA). The morphology and microstructure were characterized
from field emission scanning electron microscopy (FESEM, Quanta FEI, Hillsboro, OR,
USA) and transmission electron microscopy (TEM, Tecnai FEI, Hillsboro, OR, USA). The
chemical bond information was confirmed by Fourier-transform infrared spectrometer
(FT-IR, Thermo, Waltham, MA, USA).

2.4. Electrochemical Measurements

The anodes were prepared by mixing CoO/G composites with acetylene black carbon
and polyvinylidene fluoride (PVDF), at a weight ratio of 8:1:1, in the solvent of N-methyl-
2-pyrrolidone (NMP). The obtained slurry was uniformly cast onto a copper foil and
dried at 120 ◦C in a vacuum for 12 h. Then, the working electrodes were punched to
diameter of 14 mm discs with about 1 mg active materials. Subsequently, CR 2032 coin-
type cells were assembled in an argon-filled glove box. Lithium foil was used as the
counter electrode, a porous polypropylene film (Celgard 2325, Charlotte, NC, USA) was
used as separator and 1 mol L−1 LiPF6 dissolved in 1:1 (vol/vol) mixture of ethylene
carbonate and dimethyl carbonate was used as the electrolyte. Galvanostatic charge-
discharge measurements were done at various current densities in the voltage range of
0.1–3 V (vs. Li/Li+) using an automatic battery tester system (Land CT2001A, Wuhan,
Hubei Province, China). Cyclic voltammetry (CV) tests were performed in the potential
range of 0.1–3 V (vs. Li/Li+) with a scan rate of 0.2 mV s−1, and electrochemical impedance
spectroscopy (EIS) measurements were carried out by applying an AC voltage of 5 mV
in the frequency range of 100 kHz to 0.01 Hz using VMP3 electrochemical workstation
(Biologic Science Instruments, Paris, France).

3. Results

XRD measurements were employed to characterize the intermediate and final product
prepared with and without scCO2. As illustrated in Figure 1a, intermediate synthesized
without scCO2 shows a crystal phase of cubic CoO (JCPDS No. 75–0393). The other two
peaks at 12.5◦ and 22.9◦ correspond to GO and graphene, respectively. While for the one
prepared with scCO2, no crystalline diffraction peaks are found, suggesting an amorphous
nature, which may be related with amorphous coordination complex containing CO3

2−

and NO3
− [35]. After sintering, both samples are good agreement with the cubic phase

CoO, and the characteristic peak of graphene (24.2◦) can also be found, as depicted in
Figure 1b. Average crystalline grain sizes are calculated as 8.5 and 11.5 nm for CoO/G-sc
and CoO/G-a by applying Scherrer equation, suggesting that sample prepared with scCO2
has smaller grain size and crystallinity. Thermogravimetric analysis (TGA) was performed
to evaluate fraction of CoO, as illustrated in Figure 1c. As shown, 25 wt% of the initial
weight is lost in the temperature range 300–500 ◦C for both samples, which mainly derived
from decomposition of graphene. Thus, the content of CoO can be calculated as 75 wt%
for both samples. FT-IR patterns displayed in Figure 1d provide further information for
understanding the forming mechanism of the two intermediates. Compared with CoO/G-a
Intermediate, CoO/G-sc Intermediate shows stronger absorption between 500–1600 cm−1.
The peaks at 1538 and 1225 cm−1 (red line) correspond to the asymmetrical vibration
of ν4(−OCO2) and symmetric vibration of ν1(−OCO2) [36]; and peaks at 1384, 1325 and
1048 cm−1 (blue line) correspond to the asymmetrical vibration of ν4(-ONO2), asymmetrical
vibration of ν1(−ONO2) and in-plane asymmetrical stretching vibration of ν2(−ONO2),
respectively; the adsorption peaks marked as black lines centered at 830 and 650 cm−1

are related with out-plane bending vibration of ν8(−OCO2) and ν6(−ONO2) and in-plane
symmetrical bending vibration of ν6(−OCO2) and ν3(−ONO2) [22,37–40]. In addition, the
absorption peak of CoO/G-sc intermediate at 3950 cm−1 is stronger than that of CoO/G-a
intermediate, which is attributed to the vibration of ν (H2O) [39]. It can be clearly found that
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there is a large amount of CO3
2− in the CoO/G-sc intermediate, but not in the CoO/G-a

intermediate, which may be the reason that the CoO/G-sc intermediate is amorphous.

Figure 1. X-ray diffraction (XRD) patterns of (a) intermediates and (b) CoO/G-sc and CoO/G-a; (c) Thermogravimetric
analysis (TGA) results of CoO/G-a and CoO/G-sc (d) FT-IR spectra of CoO/G-sc and CoO/G-a intermediates.

XPS was carried out to examine components and valence states of elements in synthe-
sized samples. Similar patterns are displayed for CoO/G-a and CoO/G-sc in Figure 2a,
with only the existence of C, O and Co. As shown in Figure 2b, the C 1s peaks of both
samples can be fitted with three components: C-C/C=C (284.7 eV), C-O (286.2 eV) and C=O
(288.8 eV), on which the latter two are related to the resident functional groups on graphene.
The Co 2p2/3 (780.4 eV) and Co 2p1/2 (796.5 eV) peaks can be found in XPS spectra of Co
2p (Figure 2c), confirming the formation of CoO [17,41]. The O 1s peak also can be split
into three components at 530.0, 531.7 and 533.4 eV, which related to the Co-O bond in CoO,
residual oxygen on graphene and Co-O-C bonds between CoO and graphene, respectively.
The existence of the Co-O-C covalent bond indicates a strong interaction between CoO and
graphene [42–44]. The content of Co-O-C bonds in CoO/G-sc can be calculated as 48.6%,
which is much higher than that of CoO/G-a (39.5%). This result strongly suggests that
more CoO particles can be fastened tightly on the surface of graphene nanosheets with the
help of scCO2. The massive Co-O-C bonds can facilitate fast transport of electron and Li+

between graphene and CoO particles, and stabilize CoO during charge/discharge cycles,
ensuring that superior electrochemical performance of the CoO/G-sc electrode.
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Figure 2. (a) X-ray photoelectron spectroscopy (XPS) spectra of CoO/G-sc and CoO/G-a; High-resolution (b) C 1s, (c) Co
2p and (d) O 1s XPS spectra of CoO/G-sc and CoO/G-a.

Figure 3a shows the surface morphology of the CoO/G-a intermediates, where the
CoO particles agglomerate very seriously. After heat treatment, the agglomeration of
CoO particles become more serious, and many large isolated CoO agglomerated particles
are formed. For the CoO/G-sc intermediates, ultrafine particles are adhered uniformly
on surface of graphene, as shown in Figure 3c. Even after heat treatment, there is no
aggregation in CoO/G-sc sample (Figure 3d). The TEM image (Figure 3e) clearly shows
that CoO nanoparticles with a size of about 10 nm are uniformly distributed on the
graphene surface, and the SAED results indicate that CoO has good crystallinity. From
the above results, we can conclude that scCO2 plays a crucial role in the formation and
uniform distribution of monodisperse CoO nanoparticles during the solvothermal process.
The probable reaction mechanisms [31,35] are proposed and illustrated in Figure 4. First
of all, due to the unique physical properties of scCO2, the mixed solvent can completely
infiltrate the graphene oxide nanosheets, thus ensuring that the Co2+ can be fully and
uniformly dispersed around the nanosheets, which is the prerequisite for achieving uniform
nucleation of the precursor on the graphene [23]. Secondly, CO3

2− generated by the reaction
of scCO2 with water participates in the coordinated sedimentation and nucleation growth
of Co2+, forming long-range disordered amorphous particles with low free energy on the
surface of graphene, so can avoid the self-aggregation effectively [35]. Finally, after heat
treatment, uniformly dispersed ultrafine CoO nanoparticles are formed on the surface of
the graphene nanosheets.
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Figure 3. SEM images of (a) the intermediate and (b) final product of CoO/G-a; (c) the intermediate
and (d) final product of CoO/G-sc; (e) Transmission electron microscopy (TEM) image and (f) Selected
areal electron diffraction (SAED) pattern of CoO/G-sc.

Figure 4. Schematic diagram of the formation mechanism of CoO/G-sc.
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CV and galvanostatic charge/discharge measurements were tested to investigate the
electrochemical performance of the CoO/G-sc and CoO/G-a. Figure 5a shows the CV
curves of CoO/G-sc with a scan rate of 0.2 mV s−1 between 0.1 and 3 V vs Li+/Li. In the
first cathodic scan, two reduction peaks are observed centered at 1.0 V and 0.6 V, which
are characters typical of CoO-based anodes. The peak at 1.0 V is attributed to the insertion
of Li+ into CoO and the partial reduction of CoO (CoO + xLi+ + xe−→LixCoO) and the
latter one could be related to the formation of metallic Co (LixCoO + (2x)Li+ + (2x)e−→Co
+ Li2O) and the formation of solid electrolyte interfaces (SEI) [45–47]. In the successive
CV cycles, these reduction peaks move to a higher potential of 0.95 and 1.34 V because
of smaller cathodic polarization [48]. In the first anodic scan, a broad peak located at
2.06 V appears, which can be attributed to the re-oxidation of Co to form CoO [46]. In
addition, a pair of redox peaks could be found near 0 V, which could be the result of Li+

intercalation/extraction of graphene (C + xLi+ + xe−↔ LixC). From the second scan cycle,
the cathodic and anodic peaks reproduce very well, indicating that an excellent cyclic
stability of the CoO/G-sc. For comparison, the CV curves of CoO/G-a (Figure S1a) show
similar electrochemical reactions during the charge/discharge process but with inferior
cyclic stability.

Galvanostatic charge/discharge curves of CoO/G-sc and CoO/G-a at a current density
of 100 mA g−1 between 0.1–3 V vs Li+/Li are displayed in Figure 5c and Figure S1b,
respectively. It can be observed that both electrodes show a discharge plateau around 1.0
and 0.7 V in the first discharge process, which is in accordance with CV results. In the
following first charge process, a Co oxidation charge plateau located at 2.1 V is observed
for both samples. The initial discharge and charge capacities of CoO/G-sc are 1294 and
887 mAh g−1, which are much higher than that of CoO/G-a (1113 and 810 mAh g−1).
The higher specific capacity would be attributed to the nano-size of CoO particles, which
brings more reaction site for Li+ storage. On the other hand, the nano-sizing brings a larger
surface contact area between the electrolyte and the electrode, which leads to the formation
of more SEI, resulting more irreversible capacity. Therefore, the initial coulombic efficiency
of CoO/G-sc (68.6%) is lower than that of CoO/G-a (72.8%). Up to the 20th cycle, the
specific discharge capacity remains about 919 mAh g−1 with a capacity retention of 71.0%,
which is much higher than CoO/G-a (685 mAh g−1).

As depicted in Figure 5c, for the second cycle, the coulombic efficiency of CoO/G-sc
is as high as 98.72%, and it remains stable in the following cycles. It is striking to note that
the specific discharge capacity gradually increases in the following cycles, which is related
to a reversible formation of a gel-like polymer membrane [45,49,50]. After 100 cycles, the
reversible specific capacity reaches 961 mAh g−1, which is much higher than that of CoO/G-
a (535 mAh g−1). For the CoO/G-a, the reversible specific capacities fading is associated
with the repeat expansion and shrink of CoO aggregates. What is more, the large number
of Co-O-C bonds in CoO/G-sc make CoO nanoparticles firmly anchored on the graphene
surface, resulting in excellent cycle stability even at high current densities. Such cycle
stability can also be demonstrated by SEM image after cycle, as negligible size change and
agglomeration could be found (Figure S2) when compared with fresh sample. Therefore,
the CoO/G-sc electrode can maintain a reversible specific capacity of 617 mAh g−1 after
500 cycles at a current density of 1 A g−1, which is 11.4 times that of the CoO/G-a electrode
(Figure 5d). Moreover, the CoO/G-sc exhibits enhanced rate performance, as shown in
Figure 5e. The specific capacity is maintained at values as high as 507 mAh g−1 even
at 2 A g−1, and the capacity can be restored to 969 mAh g−1 when the current densities
return to 100 mAh g−1, which indicates superior cycle stability and rate performances. The
capacity retentions between high current density and initial 100 mA g−1 are calculated
and illustrated in Figure 5f. Higher capacity retention is suggested for CoO/G-sc when
compared with CoO/G-a in any current density. Even in a high current density of 2 A g−1,
the value is 54% for CoO/G-sc, while the latter one is only 12%. We further compared the
electrochemical performance of CoO/graphene composite electrodes reported in recent
years. As shown in Table S1, the electrochemical behavior of our CoO/G-sc is significantly
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better than other CoO/graphene composites, which is mainly due to the uniform dispersion
of ultrafine CoO and the large number of Co-O-C bonds with graphene.

Figure 5. (a) cyclic voltammograms (CV) at a scan rate of 0.2 mV s−1 and (b) galvanostatic charge/discharge profiles
of CoO/G-sc; Cycle stability and Coulombic efficiency of CoO/G-a and CoO/G-sc at specific current of (c) 100 mA g−1

and (d) 1 A g−1; (e) rate performance and (f) capacity retention ratio relative to 100 mA g−1 of CoO/G-a and CoO/G-sc
electrodes.

The transport kinetics of the electrode were characterized by electrochemical impedance
spectroscopy (EIS) measurements. Figure 6a and Figure S3 show the Nyquist plots of the
two electrodes before and after 5 cycles, respectively. The semicircle for CoO/G-sc in the
high/medium frequency range is much smaller than that of the CoO/G-a, indicating a
lower contact and charge-transfer resistances for the CoO/G-sc electrode. The equivalent
circuit is shown in the inset of Figure 6a, where Re is the ohmic resistance, Rct and CPE
represent the charge–transfer resistance and the double layer capacitance, respectively,
and Zw is the Warburg impedance, which corresponds to the diffusion of the lithium
ion into the bulk electrode. By applying equivalent circuits on the impedance data, the
fitting results are displayed in Table 1. It can be observed that Rct and Zw of CoO/G-sc
are 96.1 Ω and 45.64 Ω s−1/2, which are clearly smaller than those of CoO/G-a (207.3 Ω
and 462.8 Ω s−1/2), indicating better transmission for electrolyte and Li+, thus prompts
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good rate performances. The Li+ diffusion coefficient (DLi) could be calculated by applying
Equation 1 [51,52], and the relationships between Z’ and ω−1/2 of two samples are shown
in Figure 6b. Thus, the DLi of CoO/G-sc can be calculated as 3.10 × 10−13 cm2 s−1, which
is 2 orders of magnitude higher than CoO/G-a (7.68 × 10−15 cm2 s−1).

Figure 6. (a) Nyquist plots for CoO/G-a and CoO/G-sc after 5 cycles (inset: Equivalent circuit used to fit the experimental
data), (b) Z’ vs. ω−1/2 plot in the low frequency region of CoO/G-a and CoO/G-sc electrodes.

Table 1. Values of equivalent resistance used for fitting the experimental data.

Sample Re (Ω) Rct (Ω) CPE (µF) Zw (Ω s−1/2)

CoO/G-a 5.79 207.3 9.5 462.8
CoO/G-sc 3.70 96.1 49.90 45.64

4. Conclusions

In summary, a solvothermal treatment with the assistance of scCO2 followed by a
calcination process has been adopted to prepare a CoO/graphene nanocomposite. The
formation mechanism of ultrafine nano-CoO was analyzed by FTIR, XPS, SEM, etc. The
presence of scCO2 can control the deposition and nucleation of Co2+, so that CoO nanopar-
ticles can be uniformly distributed and fixed on the graphene nanosheets by means of
interfacial chemical bonds. When applied as an anode of LIB, the CoO/G-sc electrode
exhibits a higher reversible capacity, excellent rate performance and cycling stability. The
reaction route described herein offers a facile and green strategy for preparation of CoO/G
composites as promising anode material for LIBs, which can also be applied to prepare
many other graphene-based composite materials for energy storage applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/2079
-4991/11/3/694/s1, Figure S1: (a) Cyclic voltammograms at a scan rate of 0.2 mV s−1 and (b)
galvanostatic charge/discharge profiles of CoO/G-a, Figure S2: SEM images of CoO/G-sc after 100
cycles at 100 mA g−1, Figure S3: Nyquist plots of CoO/G-a and CoO/G-sc before cycling, Table S1:
Lithium storage performance comparison of CoO/graphene composite anodes from references.
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