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Abstract: The development of high-quality flexible surface-enhanced Raman spectroscopy (SERS)
substrates is crucial for developing rapid SERS analysis in situ. Silver nanowire membranes as novel
flexible substrates could benefit from the high collection efficiency of analytes by wrapping complex
surfaces or wiping the surfaces of samples. However, their low SERS performance impedes further
applications of silver nanowire membranes in analyte detection. Herein, we report an ultra-high-
sensitivity silver nanowire membrane synthesized by a simple and time-saving cyclic voltammetry
(CV) method. After CV treatment, a part of the silver nanowires on the silver nanowire membrane
turned into small nanoparticles and nanorods. This nanostructure’s reconstitution increased the ana-
lytical enhancement factor of silver nanowire membranes by 14.4 times. Scanning and transmission
electron microscopy, UV-vis spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy
were employed to investigate the transformation in the membrane nanostructure. The CV-treated
substrates exhibited high surface-enhanced Raman activity and good temporal stability. The limits
of detection (LODs) for p-aminothiophenol, crystal violet, tetramethylthiuram disulfide, sodium
perchlorate, malachite green, fluoranthene, and potassium nitrate are 3.7 × 10−12 M, 5.1 × 10−11 M,
5.4 × 10−11 M, 6.3 × 10−9 M, 0.00693 ng, 0.0810 ng, and 0.0273 ng on this substrate, respectively. Ad-
ditionally, the developed substrate is feasible for the detection of crystal violet in real samples. These
results certify that CV-treated substrates possess broad application prospects in on-site SERS analysis.

Keywords: surface-enhanced Raman spectroscopy; nanostructures reconstitution; silver nanowires;
cyclic voltammetry; swabbing extraction

1. Introduction

Surface-enhanced Raman spectroscopy (SERS) has been widely used to detect trace
biological and chemical compounds since it was discovered. Nowadays, SERS plays an
increasingly important role in various fields such as life sciences, environmental monitoring,
and medical diagnosis [1–3]. The cornerstone of SERS detection is the fabrication of high-
quality SERS substrates. Generally, gold or silver plasmonic nanostructures are used to
fabricate SERS substrates because they can generate high local electromagnetic fields,
owing to the localized surface plasmon resonance (LSPR) effect. Thus, these substrates
enhance the Raman signals of molecules on the surface of substrate through electromagnetic
enhancement mechanisms [4]. The activity of a SERS substrate is strongly correlated with
the morphology of its constituent plasmonic nanostructures [5–10]. A variety of SERS
substrates have been customized to suit various SERS applications. In particular, flexible
substrates have attracted special attention for the practical application of SERS because
they can be deformed to better fit the surfaces of interest and collect hazardous materials
effectively by wrapping or wiping during on-site detections [11–18]. Moreover, these
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flexible substrates can be easily cut into specimens of different sizes and shapes as required
and can be easily integrated with other devices [19–21]. Common flexible SERS substrates
mainly include plasmonic nanostructures and flexible substrates, such as polymer films,
carbon nanotubes, graphene, cellulose, and filter paper [22].

As novel flexible substrates, membranes of silver nanowires have attracted increas-
ing attention because silver nanowires with a certain aspect ratio can be easily loaded
onto a filter membrane to generate a flexible SERS substrate without complex fabrication
processes [23–28]. The assembled silver nanowire membranes have a three-dimensional
multilayer configuration and produce a strong electromagnetic field enhancement effect
(SERS hot spots) at the cross points of silver nanowires [29]. Therefore, SERS hot spots exist
in a minority of regions of the silver nanowire membrane, and there is still a big potential to
obtain a higher density of hotspots in the membrane. Although silver nanowire membranes
have been used in many fields for chemical analysis, the low density of SERS hot spots
still impedes their widespread applications. There have been numerous research studies
to increase the density of SERS hot spots on silver nanowires, including the fabrication
of gold nanoparticle/silver nanowire heterostructures, and the conversion of disordered
silver nanowires into ordered ones at the oil–water–air interface [29,30]. However, these
processes are tedious and time-consuming, and they hinder further applications of silver
nanowire membranes.

Electrochemical cyclic voltammetry (CV), a simple and commonly used method, can
reform the plasmonic nanostructures of SERS substrates through electrocorrosion and
electroplating processes to improve the sensitivity of SERS substrates [31,32]. Herein,
electrochemical CV is used to treat silver nanowire membranes to transform a part of
the silver nanowires into silver nanorods and nanoparticles. The treated substrates show
strong surface plasmon resonance absorption and high surface-enhanced Raman activity,
revealing that the electrochemical treatment can significantly increase the density of hot
spots of such substrates. The analytical enhancement factor (AEF) of the substrate reaches
a value of 1.24 × 109 on average, which is 14.4 times higher than that of the untreated
substrate. In this study, the limits of detection (LODs) for p-aminothiophenol, crystal
violet, tetramethylthiuram disulfide, sodium perchlorate, malachite green, fluoranthene,
and potassium nitrate are 3.7 × 10−12 M, 5.1 × 10−11 M, 5.4 × 10−11 M, 6.3 × 10−9 M,
0.00693 ng, 0.0810 ng, and 0.0273 ng on this substrate, respectively. Moreover, the feasibility
of the developed substrate for crystal violet detection in real samples is also demonstrated.
This highly sensitive and flexible SERS substrate may find more applications in the on-site
detection of analytes in the future.

2. Materials and Methods
2.1. Chemicals and Materials

Silver nitrate (99.8%), polyvinylpyrrolidone K-30 (PVP, Mw = 55000, GR), glycerol
(99%), sodium chloride (99.8%), sodium diethyldithiocarbamatre (DDTC, AR) and sodium
borohydride (AR) were purchased from Sinopharm Chemical Reagent Co. Ltd. (Shang-
hai, China). Ethanol (99.7%) was purchased from Tianjin Fuyu Fine Chemical Co., Ltd.
(Tianjin, China). p-Aminothiophenol (PATP, 98%), crystal violet (99%), sodium perchlorate
(AR), tetramethylthiuram disulfide (thiram, 99%), malachite green (AR), potassium nitrate
(AR), fluoranthene (AR), 1-propanethiol (99.5%), and methanol (99.9%) were obtained
from Aladdin Chemicals (Shanghai, China). Ag/AgCl reference electrode and electrode
clamp (Platinum plate, PTFE) were purchased from Wuhan GaossUnion Technology Co.,
Ltd. (Wuhan, China) Titanium sheet (99.99%) was obtained from Jinbu Titanium Nickel
Manufacturing Co., Ltd. (Baoji, China). The quantitative filter paper (Model: 203) was
purchased from Shanghai Leigu Instrument Co., Ltd. (Shanghai, China). Ultrapure water
(18.25 MΩ·cm−1) was used in all steps.
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2.2. Instrumentation

The morphology of the silver nanowires was characterized using a field-emission
scanning electron microscope (JSM-6700F, Japan Electronics Corporation, Tokyo, Japan)
equipped with an energy-dispersive spectroscope (Oxford INCA X sight instrument, Ox-
ford Instruments GmbH, Wiesbaden, Germany). The X-ray diffraction (XRD) patterns
were recorded on a Bruker D8 advanced X-ray diffractometer (Bruker AXS, Karlsruhe,
Germany) equipped with graphite monochromatized Cu-Kα radiation (λ = 1.5418 Å). XPS
was performed on a Thermo Fisher scientific ESCALAB 250 spectrophotometer (Thermo
Fisher Scientific Inc., Waltham, MA, USA). The UV-vis and diffuse reflection spectroscopy
was conducted on a Hitachi U-4100 (Hitachi, Ltd., Tokyo, Japan). All Raman measurements
were performed with an Ocean Optics QE65000 spectrometer (Ocean Optics, Dunedin, FL,
USA), except for the temporal stability test. The excitation wavelength was 785 nm and the
input laser source of the instrument was operated at 50 mW. The diameter of the focused
laser beam was about 158 µm. A 7.5 mm objective lens was used, and the integration time
was 1 s for recording the SERS spectra. Electrochemical experiments were performed on a
Princeton PARSTAT3000A electrochemical workstation (AMETEK Scientific Instruments,
Princeton, NJ, USA). The temporal stability was examined using a DXR2 confocal Raman
microscope (Thermo Fisher Scientific Inc., Waltham, MA, USA) with a 785 nm laser and a
10× objective lens (NA/0.25). The excitation power is 10 mW and the acquisition time of
each spectrum was 1 s. The interval of data recording was 5 s.

2.3. Preparation of Silver Nanowires

Silver nanowires were synthesized by a water-modulated solvothermal polyol pro-
cess [33]. Typically, 3.52 g of PVP-K30 was added to 116 mL glycerol in a 250 mL round-
bottom flask and stirred gently at 85 ◦C until the solid dissolved completely. Then, silver
nitrate (0.868 g) was added to the solution after cooling it to room temperature. Subse-
quently, a glycerol solution (4 mL) containing 35.4 mg of sodium chloride and 0.15 mL of
water was added to the solution. Then, the flask was immersed in an oil bath and stirred
with a polytetrafluoroethylene magneton. Then, the solution was heated to 210 ◦C for
20 min. Once the temperature of the solution reached 210 ◦C, the solution was allowed to
cool spontaneously to room temperature. Then, 120 mL of water was added to the flask
with gentle stirring, and the product was allowed to precipitate over 48 h. Thereafter, the
precipitate was collected and washed thrice with water. The as-obtained silver nanowires
were finally dispersed in 100 mL of ethanol.

2.4. Preparation of CV Treated Silver Nanowire Membranes

A silver nanowire membrane was developed by filtering 2 mL of ethanolic dispersion
of the silver nanowires through a quantitative filter paper (diameter = 25 mm, maximum
aperture diameter: 10–15 µm). Next, the membrane was immersed in 1% (mass fraction)
newly prepared sodium borohydride solution for 5 min and dried naturally to remove the
PVP ligands [34]. Then, the membrane was cut into 10 mm × 5 mm rectangles and used
as working electrodes. An electrolytic cell with three electrodes was used for treating the
membrane and recording the current–voltage curves. An Ag/AgCl electrode was used
as the reference electrode; a 100 mL beaker filled with 100 mL of 0.1 mol·L−1 hydrogen
chloride solution was used as the electrolytic cell, and a titanium sheet covering the
inner curved surface of the beaker was used as the auxiliary electrode. Then, the cut
membrane was fixed on the platinum electrode holder to maintain good contact between
the silver nanowires membrane and platinum sheet. Additionally, the area immersed in the
electrolyte is 5 mm × 5 mm. During the experiment of treating the membrane in different
scanning cycles at constant temperature, the experiment method was cyclic voltammetry;
the potential scan rate was 0.025 V·s−1; the potential scan range was from −0.1323 to
0.2677 V; the number of scans was set at 5, 10, 15, 20, and 25, respectively; the beaker
was immersed in a water bath at 20 ◦C. During the experiment of treating the membrane
in constant different scanning cycles at different constant temperature, the experiment
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method, the potential scan rate and the potential scan range were not changed; the number
of scans was set at 15; the water bath was set at 16, 18, 20, 22, and 24 ◦C, respectively. Every
time before starting the CV scan, the temperature of the beaker was ensured to reach the
preset value and kept constant for 5 min. After the treatment, the treated substrates were
washed with ultrapure water for 3 times and then dried naturally.

2.5. SERS Performance of CV Treated Silver Nanowire Membranes

The SERS detections of p-aminothiophenol, crystal violet, tetramethylthiuram disul-
fide, and sodium perchlorate were achieved by immersing the substrate in a large volume
of aqueous solution with specific concentrations for 2 h. Then, these substrates were dried
in air for detection. The signals of p-aminothiophenol, crystal violet, and tetramethylthi-
uram disulfide were collected and used directly without normalization. Substrates were
decorated with DDTC by immersing them in a 10 mM aqueous DDTC solution for 2 h
before detecting sodium perchlorate, and the SERS signals were normalized by Raman
peak at 1271 cm−1 of DDTC [12].

The swabbing extraction SERS detection of malachite green, fluoranthene [35], and potas-
sium nitrate [12] were achieved by swabbing them on clean glass, polyethylene packaging
bag, and aluminum sheet, respectively. The substrates were wet with methanol when swab-
bing fluoranthene and infiltrated with water while swabbing malachite green and potassium
nitrate. The signals of malachite green were collected and used directly without normalization.
Briefly, for the malachite green detection, 10 µL of 10−8–10−3 M of malachite green aqueous
solution were dropped on a clean glass and left to dry naturally. Then, the optimized substrate
soak with water was used to gently swab the glass surface to collect the residue of the analytes.
One gentle swabbing is sufficient. Substrates were decorated with propyl mercaptan by
immersing them in a 10 mM ethanolic propyl mercaptan solution for 2 h before detecting
fluoranthene and the SERS signals obtained were normalized by Raman peak at 1025 cm−1

of propyl mercaptan. Briefly, 10 µL of 10−7–10−3 M of fluoranthene ethanolic solution were
dropped on a polyethylene packaging bag and left to dry naturally. Then, the optimized
decorated substrate soak with ethanol was used to gently swab the bag surface to collect
the residue of the analytes. One gentle swabbing is sufficient. Before detecting potassium
nitrate, the substrate must be modified with DDTC by the infiltration in a 10 mM DDTC
aqueous solution for 2 h. Then, the SERS signals obtained were normalized by Raman peak
at 1271 cm−1 of DDTC. Briefly, 10 µL of 10−8–10−3 M of potassium nitrate aqueous solution
were dropped on an aluminum sheet and left to dry naturally. Then, the optimized decorated
substrate soak with water was used to gently swab the sheet surface to collect the residue of
the analytes. One gentle swabbing is sufficient. During all the SERS detections, the excitation
wavelength was 785 nm and the input laser source of the instrument was operated at 50 mW,
and the integration time was 1 s.

2.6. Simulations

The simulations were carried by DDSCAT 7.3 [36]. It was written in Fortran by
Draine and Flatau from Princeton University and runs on Linux. DDSCAT 7.3 is a freely
available Fortran-90 open-source software that uses the discrete dipole approximation
(DDA) to calculate the electromagnetic wave scattering and absorption of targets with
arbitrary geometric shapes and complex refractive index. The complex permittivity values
in simulations are referred from Palik [37].

3. Results and Discussion
3.1. Characterization of CV-Treated Silver Nanowire Membrane

Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and
energy-dispersive X-ray spectrometry (EDS) were employed to characterize the structure
and morphology of silver nanowires and their membranes. The SEM images of the un-
treated silver nanowire membrane at different magnifications are shown in Figure 1c,d.
As-prepared silver nanowires were observed to have a smooth surface, a length of few
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microns to tens of microns, and a relatively uniform diameter of ≈60 nm, which was also
confirmed by the TEM images (Figure S1). The membranes based on filter paper packed
randomly with silver nanowires have a dense structure and tiny pores.
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Figure 1. Optical photos of flexible silver nanowire membrane (a,b). (c) Low- and (d) high-magnification SEM images of
a silver nanowire membrane. XRD patterns of the silver nanowire membrane before and after cyclic voltammetry (CV)
treatment (cycle number: 15; temperature: 20 ◦C) (e) and the XPS of the silver nanowire membrane before and after CV
treatment (cycle number: 15; temperature: 20 ◦C) (f).

The Uv-vis absorption spectrum of the silver nanowire aqueous colloidal dispersion
is shown in Figure S2. There are two peaks at 354 nm and 384 nm.

The XRD patterns of the silver nanowire membrane before and after subjecting to CV
are shown in Figure 1e. The peaks marked with spades in the patterns are attributed to
silver-3C (JCPDS No. 87-0597). The comparatively weak characteristic peaks marked with
clubs, which appear both in the spectra of untreated and treated silver nanowire mem-
branes, could be assigned to chlorargyrite (JCPDS No. 85-1355). These results are consistent
with previous reports wherein silver chloride species are formed at the very beginning
of the synthesis and serve as crystal nuclei for the growth of silver nanowires. After CV
treatment, silver chloride still exists on the surface of the silver nanowire membrane. It
can also be observed that the peaks of silver-3C weaken after CV treatment, indicating
that the crystallinity of the silver nanowire membrane decreases after CV treatment. The
decrease in the crystallinity of silver nanowires can be attributed to the transformation of
some silver nanowires into silver nanoparticles and nanorods.

The X-ray photoelectron spectra (XPS) of the silver nanowire membranes before and
after CV treatment are shown in Figure 1f. The peak positions of silver did not change
significantly (≤0.05 eV) after CV treatment, indicating that the chemical state of silver on
the substrate did not change after the CV treatment.

The EDS of the silver nanowire membrane treated by CV with 15 cycles at 20 ◦C is shown
in Figure S3. It can be learnt from the figure that the element Ag and Cl are distributed evenly
on the substrate surface. The content of Ag is 97.7% and that of Cl is 2.3%.

3.2. Effect of Electrochemical Conditions on the Silver Nanowires Membrane

Electrochemical treatment of the silver nanowire membrane was carried out by CV.
CV is often used to reform precious metal materials to increase the performance of SERS
substrates [38–40]. In this method, the scanning voltage within a certain potential range is



Nanomaterials 2021, 11, 672 6 of 16

applied repeatedly when the silver nanowire membrane used as the working electrode in a
three-electrode system alternately undergoes oxidation and reduction reactions multiple
times. As shown in Figure S4, the current–potential curve, current–time curve, charge–time
curve, and potential–time curve were recorded at the potential scan rate of 0.025 V·s−1;
the potential scan range was from −0.1323 to 0.2677 V, the number of scans was 15, and
the temperature at which the measurement was carried out was 20 ◦C. The substrate,
which is the silver nanowire membrane, underwent cyclic oxidation and reduction during
the applied potential range. The main reactions occurring during this potential scan are
depicted in Equations (1) and (2).

Oxidation step: Ag + Cl− − e− → AgCl (1)

Reduction steps: AgCl + e− → Ag + Cl− (2)

As the reaction system contains a low concentration of chloride ions, elemental silver
is oxidized to silver chloride in the oxidation step (Equation (1)), and silver chloride is
reduced to elemental silver in the reduction step (Equation (2)). Thus, the plasmonic
nanostructures on the silver nanowire membrane can be refactored by the CV process. It
should be noted that the current and charge decreased gradually with each cycle, which
suggests that the overall resistance of the membrane increased slowly, which might be due
to the conversion of silver nanowires into silver nanoparticles and nanorods.

The SEM images of the silver nanowire membrane subjected to different CV cycles
(20 ◦C) are shown in Figure 2. It is clear that with an increase in the cycle number, the silver
nanowires turned into small nanoparticles and nanorods. Nanoparticles and nanorods
appeared on the substrate when the cycle number was 5, and the number of nanoparticles
and nanorods increased up to the cycle number of 15. However, with a further increase
in the cycle number, the number of nanoparticles and nanorods ceased to increase, and
the sizes of nanoparticles and nanorods increased instead. In the first 15 cycles, the silver
atoms being electrolyzed mainly originated from silver nanowires in the oxidation step,
and the released silver ions recrystallized to form silver nanoparticles and nanorods. With
a further increase in the number of CV cycles, the silver ions first deposited on the surface
of the pre-existing silver nanoparticles and silver nanorods owing to the high nucleation
energy barrier for the formation of new nanoparticles. It should be noted that appropriately
sized silver nanoparticles and silver nanorods will produce a strong SPR in the visible
region, especially when they form nanoscale gaps among one another. As abundant silver
nanoparticles and nanorods partially substitute the silver nanowires on the surface of the
membrane, a significant increase in the density of hotspots and the SERS performance of
the silver nanowire membrane are expected.

Further, silver nanowire membranes treated at different temperatures (15 cycles) were
also investigated, and the corresponding SEM images are illustrated in Figure S5. Different
surface morphologies were observed when the temperature was changed. When treated at
high temperatures (>20 ◦C), the silver nanoparticles and nanorods tended to aggregate and
grow into larger particles (Figure S5a–c). Meanwhile, a smaller number of nanoparticles
and nanorods were produced at low temperatures (<20 ◦C, Figure S5d–e). Neither of these
two situations led to the creation of many hotspots to maximize the SERS performance of
silver nanowire membrane.

As the SPR depends strongly on the shape and size of the plasmonic nanostructure,
diffuse reflection spectroscopy was performed to analyze the SPR of substrates and to
characterize the change in the surface nanostructures after CV treatment. The diffuse
reflection spectra of the silver nanowire membranes are shown in Figure 3a (after different
CV cycles) and Figure 3c (CV performed at different temperatures). Differences in the
absorption between the untreated and treated substrates basically represent the light
absorption by the newly generated nanostructures after CV treatment. Substrates prepared
under different conditions may have different surface morphologies. In order to achieve a
sharper contrast between the spectra of treated and untreated samples, a series of spectra
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were obtained by subtracting the absorption spectra of the treated substrates with that of
the untreated one. As shown in Figure 3b,d, the absorption band between 400 and 500 nm
may be attributed to the characteristic absorption of silver nanoparticles. The absorption
band ranging from 600 to 1000 nm might arise from the long-axis absorption of silver
nanorods. Figure 3 indicates that the substrate has a comparatively high SPR absorbance
between 400 and 500 nm when the CV cycle number is 15 and the temperature is 20 ◦C.
Combined with the results of SEM images shown before (Figure 2d and Figure S5c), the
optimum conditions for treating the substrates were deemed to be 15 CV cycles at 20 ◦C.
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3.3. SERS Performance of the Electrochemically Treated Silver Nanowire Membrane

Before carrying out the experiments about SERS performance, a detailed SERS spec-
trum of the as-prepared substrate should be collected. Figure S6 shows the SERS spectra of
raw substrate (red) and substrate washed by sodium borohydride (blue). The black line
is background. It can be seen that the interference of impurities is greatly reduced after
adding sodium borohydride. All the substrates used in the next experiment were washed
by sodium borohydride [34].

p-Aminothiophenol (PATP) was chosen as the probe molecule to evaluate the SERS
activity of the silver nanowire substrates subjected to different scanning cycles (5, 10, 15, 20,
and 25 CV cycles) at a scan rate of 0.025 V·s−1 at 20 ◦C. As shown in Figure 4a, the SERS
signal of PATP increases gradually as the CV scan cycle increases up to the 15th cycle and
then decreases. In addition, the temperature of the electrolyte during the CV experiment
was also found to affect the SERS performance of the prepared substrate. In order to
investigate the relationship between the temperature and Raman activity, substrates treated
by CV at different temperatures (16, 18, 20, 22, 24, and 26 ◦C) were immersed in 10−6 M
PATP for 2 h. The SERS spectrum of each substrate is shown in Figure 4b. The SERS
performance of the substrate increases at first and then decreases with a further increase
in the temperature, with the optimal performance being achieved at the temperature of
20 ◦C. Therefore, 15 CV cycles at 20 ◦C were chosen as the optimal conditions for treating
the silver nanowire membrane. Figure 4c,d show the SERS intensities at 1077 cm−1 as a
function of the cycle number and treatment temperature.

The AEF that was used to evaluate the SERS performance of the substrate is defined
as follows [41]:

AEF =
ISERS
IRaman

× CRaman
CSERS

. (3)

Here, ISERS is the SERS intensity of 10−6 M PATP on the substrate; IRaman is the Raman
intensity of PATP; CRaman is the concentration of PATP that participates in the normal
Raman process; CSERS is the concentration of PATP that participates in the SERS process.
The AEF values of the substrates prepared at different temperatures were evaluated from
the intensity of the characteristic peak of PATP at 1076 cm−1 on each type of substrate. As
shown in Tables S1–S3, CV treatment significantly increased the enhancement factor of
the substrates; the maximum AEF is 1.24 × 109, which is 14.4 times higher than that of the
untreated substrate (8.6 × 107).

To evaluate the SERS activity of the silver nanowire membrane treated under the
optimal CV conditions, the substrates were exposed to different concentrations of PATP
(10−7–10−11 M); The corresponding SERS spectra are shown in Figure 5a. The positions of
the peaks are basically consistent with those reported in the literature [42]. As is shown
in the insect of Figure 5a, taking SERS intensities at 1077 cm−1 into consideration, the
SERS signal intensities linearly decrease with the increasing of negative logarithm of PATP
concentration within this concentration range. The linear equation was given in the inset
of Figure 5a within the range of 10−11–10−9 M and the limit of detection (LOD) of the
PATP concentration was discovered to be 3.7167 × 10−12 M (LOD = 3δ/S, where δ is the
blank standard deviation and S is the slope of the calibration curve) [43]. The conventional
Raman spectrum of PATP is displayed in Figure S10a for comparison.
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In order to confirm the reproducibility of the SERS sensor, PATP was detected in five
replicate samples with a standard sample concentration of 10−6 M. As shown in Figure 5b,
the SERS intensity distribution at 1077 cm−1 shows a low relative standard deviation (RSD)
of 0.99%, indicating that the SERS intensity change of the proposed SERS sensor is very small.
The temporal stability of the SERS substrate was investigated by collecting the spectra of
PATP on the SERS substrates exposed to air and under continuous laser irradiation. The SERS
intensity stability of the substrate was investigated. The SERS intensities of 10−6 M PATP
with fresh substrate and old (exposed to air for 7 days) substrate were recorded (Figure 5c).
The substrate exhibited good time stability. Furthermore, as shown in Figure 5d, there is no
significant change in the spectra within 240 s. Taking the peak intensity at 1077 cm−1 as the
reference, the RSD was calculated to be 3.4%. Thus, the substrates showed high sensitivity
and reliable stability, which could facilitate rapid SERS analysis with this substrate.
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The homogeneity of the SERS substrate was investigated by sampling in five locations
and intensity mapping. As shown in Figure S7, the RSD of sample points was calculated to
be 4.0%, which conveys that the substrate exhibits a good homogeneity on a larger scale. It
is shown in Figure S8 that the substrate is still relatively uniform on the micron scale.

3.4. SERS Detection of Simulated Aqueous Samples

Crystal violet is an alkaline triphenylmethane disinfectant that has a significant bacte-
ricidal effect, especially against fungal infections and parasitic diseases in fish [44]. The
results of recent studies show that crystal violet can be metabolized into fat-soluble stealth
crystal violet through biotransformation after entering the fish body and has potential
side effects such as carcinogenesis and mutagenesis [45]. Therefore, it is significant to
detect the residue of crystal violet in cultured water. Since the crystal violet molecules are
easily adsorbed on the silver surface, the substrates were immersed in 10−5 M to 10−10 M
crystal violet aqueous solutions, and their corresponding SERS spectra were recorded.
The Figure 6a shows the SERS spectrum of crystal violet with different concentrations on
the surface of the silver nanowire membrane treated by CV and the illustration is of the
molecular structure. The conventional Raman spectrum of crystal violet is exhibited in
Figure S10b for comparison. The characteristic peaks of crystal violet are 425, 527, 726,
801, 915, 1175, 1392, and 1618 cm−1. Among them, the peak at 421 cm−1 is attributed to
benzene–C–benzene out-of-plane deformation vibration; peaks at 527 and 915 cm−1 are
owing to the aromatic ring skeleton vibration; the peaks at 726 and 1175 cm−1 originate
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from the radial plane aromatic ring carbon–hydrogen bond bending vibration; the peaks
at 1618 cm−1 arise from C–C in-plane stretching vibration [46]. It can be seen from the
Figure 6a that the characteristic peak intensity of crystal violet gradually increases with
an increase in its concentration, and the linear equation was given in Figure S9a within
the range of 10−10–10−8 M, and the LOD of the crystal violet concentration was found to
be 5.1 × 10−11 M. Table S4 exhibits a comparison of performance of the developed SERS
substrate with other sensors reported in literature for the detection of crystal violet.
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Tetramethylthiuram disulfide (thiram) is a highly efficient and low-toxic pesticide,
which is widely used in the prevention and control of crop diseases. However, the excessive
residues of thiram in the crops will pose a serious threat to human health, and therefore,
the detection of thiram is very important [47]. Figure 6b shows the SERS spectra of thiram
in different concentrations on the electrochemically treated silver nanowire film. The
illustration is of the molecular structure of thiram. The characteristic peaks of thiram are
439, 563, 928, 1149, 1229, 1392, and 1510 cm−1. Among them, the peak at 563 cm−1 is
owing to the stretching vibration of the S-S bond; the peak at 928 cm−1 is attributed to the
stretching vibration of CH3N; the peak at 1149 cm−1 arises from the stretching vibration
of the C–N bond and CH3 plane; peaks at 1382 and 1510 cm−1 originate from the C–N
stretching vibration and CH3 deformation vibration [48]. As is displayed in Figure 6b, the
characteristic peak intensity of thiram increases with the increasing of its concentration. In
addition, the linear equation was displayed in Figure S9b within the range of 10−10–10−8 M,
and the LOD of the thiram concentration was calculated to be 5.4 × 10−11 M.

Some inorganic salt anions are relatively common pollutants in the environment.
Among them, perchlorate is a typical toxic chemical substance. It is used extensively in
rocket fuel and spreads into the environment upon fuel burning, which is harmful to
humans and other species. Perchlorate can interfere with the synthesis and secretion of
thyroxine, affect the body’s normal metabolism, and hinder growth and development [49].
Therefore, the detection of perchlorate is of great significance to human health. Figure 6c is
the SERS spectra of different concentrations of sodium perchlorate (normalized by Raman
peak at 1271 cm−1 of DDTC). Since perchlorate ions cannot be directly adsorbed on the
surface of the substrate, DDTC was chosen as a modifier to enrich the perchlorate on the
surface of the silver nanowire film by electrostatic action to achieve trace detection [50]. The
inset is the structural formula of a perchlorate ion. It can be learnt from the figure that the
characteristic peak intensity of perchlorate gradually is a proportional to its concentration.
The linear equation was given in Figure S9c and the dynamic range was from 10−9 to
10−7 M. The LOD of the thiram concentration was discovered to be 6.3 × 10−9 M.

To further estimate the feasibility and applicability of the data obtained with the CV treated
SERS substrate, pond water from nearby was spiked with various concentrations of crystal violet
using the standard addition method. Combining the working curve of crystal violet obtained
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above (Figure S9a), the concentrations of samples were calculated. The relative standard
deviation was calculated with five replicates of the test. As is shown in Table S5, recoveries
range from 88.07% to 101.5%; RSDs range from 1.30% to 5.99%. The results demonstrated that
the developed substrate is capable of testing trace crystal violet in real sample.

3.5. Swabbing Extraction-Based SERS Detection of Simulated Solid Samples

Malachite green, both a dye and a fungicide, is a synthetic poisonous triphenylmethane
chemical substance that is widely used in the textile and aquaculture industry. Since
triphenylmethane substances have significant carcinogenic effects, they can enter the
human body through bioaccumulation [51]. Malachite green is prone to being adsorbed on
substrate material, the trace amount of malachite green was swabbed for SERS detection.
Figure 7a is the SERS spectra of malachite green. The conventional Raman spectrum of
malachite green is shown in Figure S11a for comparison. The inset shows the molecular
structure of malachite green. The Raman characteristic peaks of malachite green are 801,
918, 1173, 1220, 1296, 1368, 1397, 1594, and 1618 cm−1 [52]. As is illustrated in Figure 7a, the
characteristic peak intensity and the content of malachite green are positively correlated.
The linear equation was exhibited in Figure S9d within the dynamic range of 0.0365–3.65 ng.
Additionally, the calculated LOD of the malachite green mass was 0.00693 ng.
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Polycyclic aromatic hydrocarbons (PAHs) are a common environmental and food
organic pollutant with carcinogenic and teratogenic characteristics [53]. Such substances
tend to accumulate in the human body and organisms and ultimately affect their health. In
SERS detection, PAHs are rarely adsorbed near the surface of the SERS substrate. Therefore,
it is difficult to detect PAHs using traditional methods. Mercaptans, common modifier
materials, are relatively easy to form a molecular layer on the surface of precious metals,
which can adsorb hydrophobic molecules such as polycyclic aromatic hydrocarbons in the
vicinity of its surface in water and then achieve SERS detection [54]. Propyl mercaptan
was selected as a surface modification molecule to enrich fluoranthene molecules during
the swabbing extraction experiment. The trace amount of fluoranthene on the surface of a
clean polyethylene packaging bag was collect by wiping and extracting for SERS detection.
Figure 7b is the SERS spectra of fluoranthene on propyl mercaptan (normalized by Raman
peak at 1025 cm−1 of propyl mercaptan). The conventional Raman spectrum of fluoranthene
is displayed in Figure S11b for comparison. The characteristic peaks at 701 cm−1, 895 cm−1,
1025 cm−1, and others unmarked are attributed to propyl mercaptan [54]. The inset shows
the molecular structure of fluoranthene. The characteristic peaks of fluoranthene are
802, 1104, 1270, and 1608 cm−1. Among them, 802 cm−1 is the C–H stretching vibration
peak; 1104 and 1270 cm−1 are the C–H in-plane stretching vibration; 1608 cm−1 is the
C–C stretching vibration peak [54]. The characteristic peak intensity of fluoranthene is
proportional to its mass. As is displayed in Figure S9e, the linear equation was given within
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the dynamic range from 0.0202 to 2.02 ng. In addition, the LOD of the fluoranthene mass
turned out 0.0810 ng.

Nitrate, a common oxidant in explosives, can be prone to explosion when it comes in
contact with most organic substances. The presence of nitrate is a potential threat to public
safety. The detection of nitrate can be equivalent to the detection of nitrate ion. As nitrate
ions cannot be directly adsorbed on the surface of the substrate, the substrate modified
with DDTC was used again to accumulate nitrate ion in swabbing extraction [12]. In this
experiment, the trace amount of potassium nitrate on the clean aluminum sheet was collect
by wiping and extracting for SERS detection. Figure 7c is the SERS spectra of potassium
nitrate (normalized by the Raman peak at 1271 cm−1 of DDTC). The conventional Raman
spectrum of potassium nitrate is shown in Figure S11c for comparison. The characteristic
peak intensity of nitrate is proportional to the content of it. As illustrated in Figure S9f, the
linear equation was computed, and the dynamic range is from 0.0110 to 1.10 ng. Moreover,
the LOD of the fluoranthene mass was calculated to be 0.0273 ng.

3.6. DDA Simulations

In order to further confirm that the electromagnetic enhancement effect of the CV-
treated silver nanowire membrane is stronger than that of the untreated, theoretical sim-
ulation was carried under these two situations. In essence, the silver nanowire film is a
stack of a large number of silver nanowires. After the CV treatment, some silver nanowires
on the membrane surface may dissolve and crystallize into silver nanoparticles or silver
nanorods on other silver nanowires surfaces. Based on this, the following models was
established, which are shown in Figure 8a,b. Figure 8c,d shows the DDA simulations of the
electric field on untreated (c) and treated (d) silver nanowire membranes. These simulated
images indicate that not only the number of hot spots increases but also the electric field
enhancement factor of the hot spots get higher in the CV-treated silver nanowire mem-
brane. Therefore, the enhancement capability of the silver nanowires membrane is greatly
improved after CV treatment, which is in agreement with the experimental results.
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4. Conclusions

In this study, a highly sensitive flexible SERS substrate was developed by electrochem-
ically treating a silver nanowire membrane. The process is both simple and time-saving.
After CV treatment, silver nanoparticles and nanorods were formed on silver nanowires
on the surface of the membrane, creating a high density of hot spots. The analytical en-
hancement factor of the substrate reached 1.24 × 109 on average, which was 14.4 times
higher than that of the untreated one. The substrate showed good stability when exposed
in air for a period of time and continuously irradiated with a laser. PATP, crystal violet,
thiram and sodium perchlorate were detected on this substrate with concentrations as low
as 10−11 M, 10−10 M, 10−10 M, and 10−8 M in solution, respectively. The SERS substrate
also can be used to swab analytes from the solid surface, and the detection limits are 0.0365,
0.2, and 0.01 ng for malachite green, fluoranthene, and potassium nitrate, respectively. The
LODs of PATP, crystal violet, thiram, sodium perchlorate, malachite green, fluoranthene,
and potassium nitrate were calculated to be 3.7 × 10−12 M, 5.1 × 10−11 M, 5.4 × 10−11 M,
6.3 × 10−9 M, 0.00693 ng, 0.0810 ng, and 0.0273 ng, respectively. In addition, the detection
on real sample of crystal violet was proven to be feasible. This versatile SERS substrate
could find more applications in the on-site inspection.

Supplementary Materials: The following are available online at https://www.mdpi.com/2079-499
1/11/3/672/s1, Figure S1: TEM images of silver nanowires at different magnifications. Figure S2:
UV-Vis absorption spectrum of silver nanowires in water. Figure S3: Energy-dispersive X-ray
spectrometry (EDS) mapping of silver nanowire membrane treated by CV with 15 cycles at 20 ◦C.
SEM of the CV-treated silver nanowire membrane (a). The element distribution of Ag (green) and
Cl (red) in this area (b,c). EDS spectrum of silver nanowire membrane treated by CV with 15
cycles at 20 ◦C (d). Figure S4: The current–potential curve (a), potential–time curve (b), current–
time curve (c), and charge–time curve (d) of the silver nanowire membrane during electrochemical
treatment. Figure S5: SEM images of silver nanowire membranes treated electrochemically at different
temperatures: 16 ◦C (a), 18 ◦C (b), 20 ◦C (c), 22 ◦C (d), 24 ◦C (e), and 26 ◦C (f). Figure S6: SERS
spectra of raw substrate (red) and substrate washed by sodium borohydride (blue). The black line
is background. Table S1: The AEF of substrates prepared at different temperatures with the probe
molecule of PATP. Figure S7: SERS intensities of PATP on the treated substrate at 1077 cm−1 form
sampling in five locations. Figure S8: SERS intensity mapping of PATP on the treated substrate at
1077 cm−1 (right) and optical microscope image of the sampling area (left). Figure S9: The calibration
curve of the detection of crystal violet (a), tetramethylthiuram disulfide (b), perchlorate (c), malachite
green (d), fluoranthene (e), and nitrate (f). Figure S10: The conventional Raman spectrum of crystal
violet and PATP. Figure S11: The conventional Raman spectra of malachite green (a), fluoranthene
(b), and potassium nitrate (c). Figure S12: SERS spectra of treated (cycle number: 15; temperature:
20 ◦C) and untreated substrate when detecting crystal violet (a), thiram (b), sodium perchlorate (c),
malachite green (d), fluoranthene (e), and potassium nitrate (f). Table S1: The AEF of substrates
prepared in 15 cycles at different temperatures with the probe molecule of PATP. Table S2: The AEF
of substrates prepared in different CV cycles at 20 ◦C with the probe molecule of PATP. Table S3:
The AEF of substrates prepared in 15 cycles at 20 ◦C on detecting different analytes. Table S4: A
comparison of performance of the developed SERS substrate with other sensors reported in the
literature for the detection of crystal violet. Table S5: Determination of crystal violet in various spiked
pond water samples using the developed SERS substrate.
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