

Supplementary Materials

Serum Lowers Bioactivity and Uptake of Synthetic Amorphous Silica by Alveolar Macrophages in a Particle Specific Manner

Martin Wiemann ^{1,*}, Antje Vennemann ¹, Cornel Venzago ², Gottlieb-Georg Lindner ³, Tobias B. Schuster ² and Nils Krueger ²

- ¹ IBE R&D Institute for Lung Health gGmbH, Mendelstr. 11, D-48149 Münster, Germany; vennemann@ibems.de
- ² Evonik Operations GmbH, Rodenbacher Chaussee 4, 63457 Hanau-Wolfgang, Germany; cornel.venzago@evonik.com (C.V.); tobias.schuster@evonik.com (T.B.S.); nils.krueger@evonik.com (N.K.)
- ³ Evonik Operations GmbH, Brühler Straße 2, 50389, Wesseling, Germany; gottliebgeorg.lindner@evonik.com (G.-G.L.)
- * Correspondence: martin.wiemann@ibe-ms.de; Tel.: +49 251 9802340

Calculation of Mean Cellular Particle Burden as used in Figure 8

To calculate the mean cellular burden under the conditions of the macrophage model the totally applied dose of particles per well of a 96-well plate is calculated from the particle concentration per mL multiplied by 0.2, divided by the initial number of cells in the vial, which is 3×10^5 cells/well und serum-free conditions. Provided that the material is taken up completely by the cells, the concentration range of 11.25, 22.5, 45 and 90 µg/mL, may then be converted to a mean cellular burden of 7.5, 15, 30 and 60 pg/cell, respectively. To obtain the cellular burden shown in Figure 8 (abscissa values) each mean cellular burden was multiplied by the percentage of ingested particles found for the lowest concentration only. Importantly, this concentration was non-toxic (10% FCS added) or nearly non-toxic (protein-free). A direct measurement of the particle load over the whole concentration range would have caused progressive cell lysis, counteracting the isolation of particle-laden cells and subsequent measurements of cell-associated silica. The calculation used here circumvents this problem but should be understood as an approximation.

			Hydrodynamic Diameter [nm]							
Material	Fluid	% FCS	Mean ± SEM	Mode ± SEM	d10 ± SEM	$d50 \pm SEM$	d90 ± SEM			
AEROSIL® 380 F	H_2O	0	n.d.	n.d.	n.d.	n.d.	n.d.			
	KRPG	0	$151.7 \hspace{0.2cm} \pm \hspace{0.2cm} 0.6$	$104.0 \hspace{0.1 in} \pm \hspace{0.1 in} 2.7$	$90.3 \hspace{0.2cm} \pm \hspace{0.2cm} 1.5$	$135.7 \hspace{0.2cm} \pm \hspace{0.2cm} 0.4$	$223.8 \hspace{0.2cm} \pm \hspace{0.2cm} 3.2$			
	KRPG	10	$163.2 \hspace{0.2cm} \pm \hspace{0.2cm} 1.5$	$112.8 \ \pm \ 1.3$	$99.5 \hspace{0.2cm} \pm \hspace{0.2cm} 0.7$	$132.3 \hspace{0.2cm} \pm \hspace{0.2cm} 1.7$	$256.7 \hspace{0.2cm} \pm \hspace{0.2cm} 3.0$			
	F-12K	0	$168.5 \hspace{0.2cm} \pm \hspace{0.2cm} 2.3$	$134.2 \ \pm \ 9.6$	$110.2 \ \pm \ 2.2$	$154.3 \hspace{0.2cm} \pm \hspace{0.2cm} 2.1$	$230.8 \hspace{0.2cm} \pm \hspace{0.2cm} 7.3$			
	F-12K	10	$436.3 \hspace{0.2cm} \pm \hspace{0.2cm} 5.4$	$457.7 \hspace{0.2cm} \pm \hspace{0.2cm} 30.3$	$247.6~\pm~6.8$	$442.0 \hspace{0.2cm} \pm \hspace{0.2cm} 9.6$	593.3 ± 14.1			
AEROSIL® OX50	H ₂ O	0	$184.0 \hspace{0.2cm} \pm \hspace{0.2cm} 1.8$	$178.1 \ \pm \ 7.2$	$122.5 ~\pm~ 1.2$	$170.9 \hspace{0.2cm} \pm \hspace{0.2cm} 2.4$	247.2 ± 5.1			
	KRPG	0	367.5 ± 12.4	365.5 ± 37.6	218.9 ± 14.8	363.2 ± 13.8	$493.9 \hspace{0.2cm} \pm \hspace{0.2cm} 5.7$			
	KRPG	10	$214.8 \hspace{0.2cm} \pm \hspace{0.2cm} 0.6$	200.6 ± 12.8	$140.8~\pm~1.0$	$201.0 \hspace{0.2cm} \pm \hspace{0.2cm} 3.9$	$287.5 \hspace{0.2cm} \pm \hspace{0.2cm} 2.8$			
	F-12K	0	$198.4 \hspace{0.2cm} \pm \hspace{0.2cm} 0.6$	159.7 ± 5.0	$135.3 \ \pm \ 0.7$	$182.8 \hspace{0.2cm} \pm \hspace{0.2cm} 0.7$	263.8 ± 1.3			
	F-12K	10	$217.8 \hspace{0.2cm} \pm \hspace{0.2cm} 2.2$	$190.0 \hspace{0.1 in} \pm \hspace{0.1 in} 8.0$	$145.9~\pm~4.5$	$202.9 \hspace{0.2cm} \pm \hspace{0.2cm} 1.2$	$290.6 \hspace{0.2cm} \pm \hspace{0.2cm} 2.4$			
SIPERNAT® 50	H ₂ O	0	$238.7 \hspace{0.2cm} \pm \hspace{0.2cm} 3.3$	$172.4 \hspace{0.1 in} \pm \hspace{0.1 in} 2.3$	$147.2 \ \pm \ 2.1$	$200.9 \hspace{0.2cm} \pm \hspace{0.2cm} 4.1$	$373.3 \hspace{0.2cm} \pm \hspace{0.2cm} 6.8$			
	KRPG	0	$227.6 \hspace{0.2cm} \pm \hspace{0.2cm} 5.5$	$174.9 \ \pm \ 3.4$	$138.4 \hspace{0.2cm} \pm \hspace{0.2cm} 3.5$	$190.0 \hspace{0.2cm} \pm \hspace{0.2cm} 5.5$	$363.2 \hspace{0.2cm} \pm \hspace{0.2cm} 11.4$			
	KRPG	10	$248.0 \hspace{0.2cm} \pm \hspace{0.2cm} 0.9$	$181.9 \ \pm \ 7.3$	$157.0 \ \pm \ 3.8$	$212.8 \hspace{0.2cm} \pm \hspace{0.2cm} 2.2$	$378.7 \hspace{0.2cm} \pm \hspace{0.2cm} 0.6$			
	F-12K	0	$251.3 \hspace{0.2cm} \pm \hspace{0.2cm} 0.7$	$164.7 \hspace{0.1 in} \pm \hspace{0.1 in} 0.3$	$146.6~\pm~1.2$	$217.5 \hspace{0.2cm} \pm \hspace{0.2cm} 4.5$	$410.1 \hspace{0.2cm} \pm \hspace{0.2cm} 12.7$			
	F-12K	10	$258.2 \hspace{0.2cm} \pm \hspace{0.2cm} 2.6$	$185.1 \hspace{0.1 in} \pm \hspace{0.1 in} 6.8$	$154.4 \ \pm \ 2.4$	$216.9 \hspace{0.2cm} \pm \hspace{0.2cm} 4.3$	$419.6 \hspace{0.2cm} \pm \hspace{0.2cm} 2.5$			
SIPERNAT® 160	H ₂ O	0	$212.5 \hspace{0.2cm} \pm \hspace{0.2cm} 0.8$	$146.4 \ \pm \ 3.4$	$127.6~\pm~0.7$	$180.5 \hspace{0.2cm} \pm \hspace{0.2cm} 2.1$	$325.8 \hspace{0.2cm} \pm \hspace{0.2cm} 2.0$			
	KRPG	0	269.2 ± 11.1	$188.1 \hspace{0.1 in} \pm \hspace{0.1 in} 3.6$	$165.5 ~\pm~ 6.1$	241.3 ± 11.7	415.4 ± 18.0			
	KRPG	10	$276.9 \hspace{0.2cm} \pm \hspace{0.2cm} 6.0$	$194.7 \hspace{0.2cm} \pm \hspace{0.2cm} 10.0$	$165.5 \ \pm \ 3.2$	$248.5 \hspace{0.2cm} \pm \hspace{0.2cm} 2.9$	$421.1 \hspace{.1in} \pm \hspace{.1in} 6.8$			
	F-12K	0	$226.2 \hspace{0.2cm} \pm \hspace{0.2cm} 5.3$	173.7 ± 11.0	$138.6 \ \pm \ 1.8$	$194.6 \hspace{0.2cm} \pm \hspace{0.2cm} 5.6$	344.4 ± 14.6			
	F-12K	10	235.6 ± 3.9	182.2 ± 5.5	$141.0~\pm~2.5$	$202.5 \hspace{0.2cm} \pm \hspace{0.2cm} 3.7$	356.7 ± 12.6			

 $\label{eq:stable} \textbf{Table S1.} Hydrodynamic diameter of SAS in H_2O and cell culture media.$

Footnote to Table S1. Values for d10, d50, d90 describe the cumulative particle size distribution at 10%, 50% and 90% of the maximum value. Particle concentration was 9 μ g/mL in all measurements. n.d.: particles not detectable.

	Effects of SAS Treatment								
Matarial	Serur	n-free	10 % Serum						
Material	cells/mL	% dead cells	cells/mL	% dead cells					
Control Cells	345,000	3.6	490,000	1.5					
SIPERNAT® 160	420,000	9.4	632,500	1.2					
SIPERNAT® 50	480,000	7.3	630,000	2.4					
AEROSIL® OX50	400,000	4.2	592 <i>,</i> 500	2.5					
AEROSIL® 380 F	447,500	10.6	662,500	1.5					

 Table S2. Trypan Blue exclusion test and cell numbers of SAS-treated cells used for mass spectrometric determination of the cell-associated SiO2 mass.

Footnote to Table S2. Values are means from values measured in duplicates.

Table S3. Numerical values from in vitro tests with the Alveolar Macrophage Mod
--

	LDH [% pos. Control]		. Control]	GLU [% pos. Control]				H ₂ O ₂ [µg/mL]				TNFα [pg/mL]				
Material	[µg/mL]	w/o FCS		10 % FCS	w/o FCS		10 % FCS		w/o FCS		10 % FCS		w/o FCS		10 % FCS	
AEROSIL® 380 F	0	13.4 ± 2.7		14.5 ± 3.0	1.7 ± 0.5		1.7 ± 1.7		0.9 ± 0.2		0.8 ± 0.1		14.3 ± 14.7		16.7 ± 8.9	
	11.25	32.5 ± 2.9 *	***	13.2 ± 2.3	4.1 ± 0.7	*	1.6 ± 0.6		1.2 ± 0.1		0.8 ± 0.2		42.5 ± 11.1		13.1 ± 7.0	
	22.5	86.4 ± 3.2 *	***	13.5 ± 1.9	12.9 ± 1.1	***	2.0 ± 0.5		1.2 ± 0.1		0.6 ± 0.5		132.5 ± 17.2	***	17.0 ± 7.3	
	45	103.9 ± 6.4 *	***	16.8 ± 1.5	18.8 ± 0.9	***	3.1 ± 0.7		1.4 ± 0.1		0.9 ± 0.2		140.1 ± 36.7	***	20.0 ± 5.8	
	90	100.8 ± 5.1 *	***	24.5 ± 2.8 **	19.1 ± 0.7	***	7.5 ± 0.9	***	1.9 ± 0.2	***	0.9 ± 0.2		126.1 ± 44.7	***	43.7 ± 5.0	
AEROSIL® OX50	0	13.4 ± 2.7		14.5 ± 3.0	1.7 ± 0.5		1.7 ± 1.7		0.9 ± 0.2		0.8 ± 0.1		14.3 ± 14.7		16.7 ± 8.9	
	11.25	12.6 ± 2.3		13.0 ± 2.2	1.6 ± 0.4		1.4 ± 0.6		1.0 ± 0.2		0.9 ± 0.1		15.6 ± 13.5		14.6 ± 6.1	
	22.5	17.9 ± 3.2		14.6 ± 2.4	2.2 ± 0.4		1.3 ± 0.9		1.2 ± 0.0		1.0 ± 0.2		20.3 ± 15.7		13.0 ± 7.0	
	45	70.8 ± 9.5 *	***	16.1 ± 2.6	10.5 ± 1.6	***	2.2 ± 1.2		1.2 ± 0.1		0.9 ± 0.3		84.9 ± 22.6	***	15.9 ± 4.6	
	90	100.4 ± 3.0 *	***	25.2 ± 3.4 *	21.9 ± 1.9	***	4.6 ± 1.0	*	1.7 ± 0.2	***	0.9 ± 0.2		67.8 ± 31.7	**	24.4 ± 6.8	
SIPERNAT® 50	0	13.4 ± 2.7		14.5 ± 3.0	1.7 ± 0.5		1.7 ± 1.7		0.9 ± 0.2		0.8 ± 0.1		14.3 ± 14.7		16.7 ± 8.9	
	11.25	14.9 ± 2.7		14.8 ± 2.3	1.6 ± 0.2		1.7 ± 0.7		1.2 ± 0.1		0.5 ± 0.6		15.8 ± 8.9		17.9 ± 10.3	
	22.5	23.3 ± 4.4 *	**	15.9 ± 2.3	2.4 ± 0.6		2.0 ± 1.0		1.4 ± 0.1		0.5 ± 0.7		32.9 ± 19.9		16.3 ± 5.4	
	45	64.9 ± 1.1 *	***	18.5 ± 3.2	7.9 ± 0.9	***	2.8 ± 1.3		1.8 ± 0.1	*	0.8 ± 0.3		90.0 ± 36.8	**	20.9 ± 10.6	
	90	91.4 ± 1.9 *	***	23.9 ± 4.6 **	15.5 ± 0.3	***	4.5 ± 2.2	*	2.2 ± 0.2	***	1.0 ± 0.2		97.0 ± 51.1	***	22.5 ± 10.7	
SIPERNAT® 160	0	13.4 ± 2.7		14.5 ± 3.0	1.7 ± 0.5		1.7 ± 1.7		0.9 ± 0.2		0.8 ± 0.1		14.3 ± 14.7		16.7 ± 8.9	
	11.25	19.1 ± 2.1 *	ĸ	14.3 ± 2.1	1.8 ± 0.3		1.3 ± 0.8		1.0 ± 0.2		0.6 ± 0.6		19.9 ± 10.7		14.6 ± 5.5	
	22.5	78.2 ± 1.0 *	***	16.8 ± 2.0	9.7 ± 0.5	***	2.0 ± 0.8		1.3 ± 0.1		0.4 ± 0.9		38.5 ± 15.5		14.0 ± 5.0	
	45	102.5 ± 1.7 *	***	24.7 ± 2.3 ***	18.5 ± 0.2	***	3.3 ± 0.8		1.6 ± 0.2		0.6 ± 0.5		77.0 ± 24.8	**	20.7 ± 9.9	
	90	92.6 2.7 *	***	50.3 3.1 ***	17.3 ± 1.4	***	9.9 ± 2.1	***	1.9 ± 0.2	*	0.8 ± 0.4		82.5 ± 40.1	***	30.3 ± 7.2	
Corundum	0	13 2 + 2 3		161 + 29	17+04		17+04		11+03		09+01		153 + 119		165 + 68	
corunaam	22.5	136+25		129 + 19	21+07		15+23		11+02		0.9 ± 0.1		116 + 78		128 + 84	
	45	15 1 + 3 4		153 + 19	18 + 0.6		15+21		12+02		10 ± 0.1		12 2 + 7 1		12.9 + 7.4	
	90	18.0 + 3.3		17.2 + 1.5	2.0 + 1.0		2.2 + 1.5		1.1 + 0.3		1.0 + 0.1		12.9 + 10.0		14.3 + 8.4	
	180	21.5 ± 2.9 *	k	18.9 ± 1.3	2.6 ± 0.8		3.4 ± 1.0		1.7 ± 0.3	**	1.2 ± 0.1		15.2 ± 13.4		11.9 ± 6.1	
Quartz DQ12	0	13.2 ± 2.3		16.1 ± 2.9	1.7 ± 0.4		1.7 ± 0.4		1.1 ± 0.3		0.9 ± 0.1		15.3 ± 11.9		16.5 ± 6.8	
	22.5	12.3 ± 2.2		13.3 ± 0.9	1.8 ± 0.3		2.3 ± 1.4		1.1 ± 0.3		0.9 ± 0.1		12.8 ± 8.2		14.2 ± 7.8	
	45	15.8 ± 3.1		15.4 ± 1.3	2.0 ± 0.6		3.2 ± 1.9		1.2 ± 0.3		0.9 ± 0.1		13.7 ± 10.6		14.4 ± 4.1	
	90	34.6 ± 7.8 *	***	28.9 ± 4.2 ***	4.4 ± 1.6		7.2 ± 2.7	**	0.9 ± 0.4		1.0 ± 0.2		38.8 ± 25.8		34.6 ± 8.8	
	180	78.7 ± 9.9 *	***	61.9 ± 5.6 ***	15.4 ± 4.2	***	20.3 ± 3.5	***	2.0 ± 0.3	***	1.1 ± 0.2		101.2 ± 35.9	***	99.1 ± 16.8	***
Zymosan	360			-	-		-		15.2 ± 0.4	***	11.6 ± 0.7	***	-		-	
LPS	0.5	-			-		-		-		-		1153 ± 214	***	2634 ± 55.4	***

Footnote to Table S3. LDH: lactate dehydrogenase, GLU: glucuronidase, H₂O₂: hydrogene peroxide, TNF: tumor necrosis factor α , LPS: lipopolysaccharide. * Level of significance is shown by asterisks with *: P < 0.05, **: P < 0.01, and ***: P < 0.001.

Particle Name	LD	Н	GI	LU	TNFa		
	EC50 [pg/cell]	Goodness of Fit (R2)	EC50 [pg/ cell]	Goodness of Fit (R2)	EC50 [pg/cell]	Goodness of Fit (R2)	
SIPERNAT® 160	6.38 (15.5)	0.992	7.87 (19.4)	0.997	9.26	0.998	
SIPERNAT® 50	10.60 (31.7)	0.998	13.61(36.3)	0.993	7.86	1.000	
AEROSIL® OX50	28.00 (22.7)	1.000	33.61(36.5)	0.999	17.16	0.967	
AEROSIL® 380F	2.03 (13.2)	0.998	2.50 (14.0)	1.000	1.67	0.993	

Table S4. EC50 values for the release of LDH, GLU and TNF α calculated for cell-associated SAS.

Footnote to Table S4. Values were non-linear fittings from the curves shown in Figure 8 using GraphPad Prism 8 Software. Italic values in brackets are EC50 values previously determined in μ g/mL [18].

Figure S1. Electron microscopy of NR8383 cells laden with SIPERNAT[®] 50 in the absence of FCS for 16 h. (a) Overview of a cell with particle-containing phagosomes (large arrows), autophagosomes (aPh) and lysosomes; N: nucleus; the white box is enlarged in (b) and shows a particle-filled phagosome; (c) an autophagosomes with condensed particulates (aPh).

Figure S2. Electron microscopy of NR8383 cells laden with SIPERNAT[®] 50 in the presence of FCS for 16 h. (**a**) Overview of a cell with particle-containing autophagosome; CV: clear vesicle; N: nucleus. (**b**) particle-filled phagosome (Ph); the white box in (**a**) is enlarged in (**c**) and shows an autophagosome (aPh) with condense particulates. Arrows in (**b**) and (**c**) point to continuous membranes of the particle-containing vesicles.

Figure S3. Electron microscopy of NR8383 cells laden with SIPERNAT® 160 in the absence of FCS for 16 h. (a) Section of a cell with particle-containing vesicles. Extracellular aggregates/agglomerates of SIPERNAT® 160 in the medium (b), and (c) close to the cell membrane during beginning endosome formation (large arrows). (d)Autophagosome (aPh) partly filled with particles aggregates/agglomerates.

Figure S4. Electron microscopy of NR8383 cells laden with SIPERNAT® 160 in the presence of FCS for 16 h. (a) Extracellular aggregates/agglomerates of SIPERNAT® 160 close to the cell membrane during early endosome formation. (b) Section of a cell with particle-containing phagosomes (large arrows) and numerous small particle deposits in endosomes (small arrows), lysosomes and autophagosomes. (c) Aggregates/agglomerates of SIPERNAT® 160 lysosomes.