

Supplementary Materials

Derivation of Luminescent Mesoporous Silicon Nanocrystals from Biomass Rice Husks by Facile Magnesiothermic Reduction

Sankar Sekar ^{1,2} and Sejoon Lee ^{1,2,*}

- ¹ Division of Physics & Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Korea; sanssekar@dongguk.edu
- ² Quantum-functional Semiconductor Research Center, Dongguk University-Seoul, Seoul 04620, Korea
- * Correspondence: sejoon@dongguk.edu

• Chemical Composition of Rice Husk Ashes

Figure S1. EDX spectra of (**a**) S-RH, (**b**) R-RH, and (**c**) B-RH ashes. Note that Pt in each raw source material arose from the conductive coating of Pt for better focusing and imaging during SEM and EDX measurements.

• Comparison of Various Methods for Silicon Production

Method	Need for High-Vacuum Facility?	Precursor Materials	Hazardousness	Thermal Budget (Temperature, Power, etc.)
Laser Ablation	Yes	Silicon Bulks or Powders (Solid Phase)	No	High Power Excimer Laser (>a few J/cm ²)
Plasma Process	Yes	SiH4, SiCl4, etc. (Gas Phase)	Yes	RF Power (a few tens to hundreds W)
Pulsed Laser Deposition	Yes	Si or SiO2 Ceramic Targets (Solid Phase)	No	High Power Excimer Laser (>a few J/cm²)
Chemical Vapor Deposition	Yes	SiH4, SiCl4, etc. (Gas Phase)	Yes	High Temperature (~1000 °C)
Thermal Annealing	Yes	Siliceous Sources (Solid or Gas Phases)	Dependent on Precursors	Moderate Temperature (~500 °C)
Chemical Doping	Yes	Siliceous Sources (Solid and Liquid Phases)	Dependent on Precursors	Medium Temperature (700–800 °C)
Electrochemical Etching	No	Silicon Bulks or Powders (Solid Phase)	No	High Current Density (a few A/cm² for 1 min)
Molten-Salt Process	No	Every Siliceous Source and CaCl2 (Solid Phase)	No	Medium–High Temperature (900–1000 °C)
Magnesiothermic Reduction	No	Every Siliceous Source and Mg (Solid Phase)	No	Medium Temperature (700–800 °C)

Table S1. Summary of silicon synthesized from various resources through several experimental methods.

Study	Resources	Synthesis Method	Summary of Process Steps	Results
Z. Favors et al. [1]	Beach Sand	Magnesiothermic Reduction	 Calcination of sand at 900 °C in air HCl, HF, and NaOH leaching Ultrasonication for 1 h NaCl was mixed with SiO₂ (10:1 wt.%); then, the mixture was ultrasonicated for 4 h SiO₂:NaCl (1:0.9 wt.%) with Mg powder Transferred to swagelok-type reactors Annealed at 700 °C for 6 h in Ar-filled glovebox HCl (5 M) and HF (10%) acid etching 	 Porous network of interconnected crystalline silicon nanoparticles with high specific surface area of 323 m² g⁻¹
M. Sakamoto et al. [2]	Rice Husks	Pulsed Laser Melting	 HCl acid leaching RH annealed at 700 °C for 4 h by flowing O₂ in furnace SiO₂ mixed with Mg powder Annealed at 650 °C for 2 h under H₂/Ar gas HCl:Ethanol:H₂O (1.5:10:5) etching Nd:YAG laser (λ = 532 nm) was used as an energy source for melting processes Repetition rate: 10 Hz Irradiation time: 20 min Laser fluence: 50, 150, and 250 mJ/cm² 	 Nanocoral Si spheroidal structure with a particle size of ~200 nm When increasing the laser fluence (50 to 250 mJ/cm² pulse), the specific surface area of the Si nanoparticle was decreased (57.9 to 20.7 m² g⁻¹).
JH. Choi et al. [3]	Rice Husks	Molten-Salt Process	 Acid leaching and thermal process of RH RH-SiO₂ was mixed with NiO (20:1 at.%) in ethanol Polyvinyl alcohol and zinc stearate were added as binders Powders pressed at 100 bar in cylindrical mold Sintering at 1200 °C in air for 5 h Annealing of CaCl₂ at 850 °C in Ar atmosphere RH-SiO₂ + NiO pellet was wrapped in nickel mesh Electrodeoxidation was performed at 2.7–2.9 V for 0–10 h HCl (0.1 M) and HF (2%) etching 	 Crystalline Si nanowires with diameter of ~300 nm and length of ~1 μm Si nanowires had excellent cycling and power performance in LIB anodes

Table S2. Summary of silicon synthesized from various biomass resources through several experimental methods.

A. Su et al. [4]	Corn Leaves	Aluminothermic Reduction	 Annealed at 650 °C in air for 3 h HCl (1 M) leaching for 12 h SiO₂ was mixed with Al powder and AlCl₃ powder Annealed at 250 °C for 12 h under Ar atmosphere 	 Crystalline silicon nanoparticles with specific surface area of 64 m²g⁻¹ Si nanoparticles exhibited excellent long-term cycling and high rate capability in LIB anodes
S. Praneetha et al. [5]	Rice Husks	Microwave-Assisted Metallothermic Reduction	 HCl acid leaching Powder transferred to swagelok-type reactors Microwave solid-state process at 650 °C for 30 min Operated frequency at 2.45 GHz HCl:Ethanol:H2O (19.3:172.6:28.3 mL) etching Stirring for 6 h Centrifuged and washed with water and ethanol, and dried in vacuum oven 	 Interconnected nanoporous wall structure of Si with a wall thickness of ~23 nm and a pore diameter of 50–80 nm It was used as a suitable material for LIB anodes.
Present Work	Rice Husks (3 Types of RHs)	Magnesiothermic Reduction	 Carbonized at 500 °C for 2 h in air HCl leaching Incineration at 700 °C for 2 h in air SiO₂ mixed with Mg powder Incineration at 700 °C for 2 h in Ar atmosphere HCl (HCl:H₂O:EtOH = 0.66:4.72:8.88 molar ratio) etching for 10 h HF acid etching DI washing and drying 	 Crystalline nature of spherical Si nanoparticles with average particle sizes of 15–50 nm High surface area of 265.6 m² g⁻¹ and high porosity Light absorption near the UV region Blue, green, and yellow emissions The Si nanocrystals possess both high porosity and high luminescence/absorbance, which is indicative of great potential for highly efficient photocatalytic applications

References

- 1. Favors, Z.; Wang, W.; Bay, H.H.; Mutlu, Z.; Ahmed, K.; Liu, C.; Ozkan, M.; Ozkan, C.S. Scalable Synthesis of Nano-Silicon from Beach Sand for Long Cycle Life Li-ion Batteries. *Sci. Rep.* **2014**, *4*, 5623.
- 2. Sakamoto, M.; Terada, S.; Mizutani, T.; Saitow, K.-I. Large Field Enhancement of Nanocoral Structures on Porous Si Synthesized from Rice Husks. *ACS Appl. Mater. Interfaces* **2021**, *13*, 1105–1113.
- 3. Choi, J.-H.; Kim, H.-K.; Jin, E.-M.; Seo, M.W.; Cho, J.S.; Kumar, R.V.; Jeong, S.M. Facile and scalable synthesis of silicon nanowires from waste rice husk silica by the molten salt process. *J. Hazard. Mater.* **2020**, *399*, 122949.
- 4. Su, A.; Li, J.; Dong, J.; Yang, D.; Chen, G.; Wei, Y. An Amorphous/Crystalline Incorporated Si/SiO_x Anode Material Derived from Biomass Corn Leaves for Lithium-Ion Batteries. *Small* **2020**, *16*, 2001714.
- Praneetha, S.; Murugan, A.V. Development of Sustainable Rapid Microwave Assisted Process for Extracting Nanoporous Si from Earth Abundant Agricultural Residues and Their Carbon-based Nanohybrids for Lithium Energy Storage. ACS Sustain. Chem. Eng. 2015, 3, 224–236.