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Abstract: The anti-metabolite drug gemcitabine is widely used for the treatment of a variety of cancers.
At present, gemcitabine is administered as a hydrochloride salt that is delivered by slow intravenous
injection in cycles of three or four weeks. Although regarded as a ‘front-line’ chemotherapeutic agent,
its efficacy is hampered by poor target cell specificity, sub-optimal cellular uptake, rapid clearance
from circulation, the development of chemoresistance, and undesirable side-effects. The use of
organic, inorganic, and metal-based nanoparticles as delivery agents presents an opportunity to
overcome these limitations and safely harness optimal drug efficacy and enhance their therapeutic
indices. Among the many and varied nano delivery agents explored, the greatest body of knowledge
has been generated in the field of lipid-mediated delivery. We review here the liposomes, niosomes,
solid lipid nanoparticles, nanostructured lipid carriers, exosomes, lipid-polymer hybrids, and other
novel lipid-based agents that have been developed within the past six years for the delivery of
gemcitabine and its co-drugs.
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1. Introduction

Gemcitabine (2′,2′-difluoro-2′-deoxycytidine; dFdC) is a deoxycytidine analogue mar-
keted as the hydrochloride salt, Gemzar® [1]. Originally investigated as an anti-viral agent,
gemcitabine was later developed for the treatment of cancer [2]. Gemzar®, in combination
with another chemotherapeutic agent, cisplatin, was approved by the Food and Drug
Administration in 1996 for the treatment of inoperable stage III or IV non-small cell lung
cancer [3]. It has since been applied to the treatment of a wide range of solid tumors,
usually in combination with other drugs [3–6].

Currently, gemcitabine is introduced intravenously in three or four-week cycles [7].
Cells internalize gemcitabine via plasma membrane-bound human nucleoside transporter
proteins [8]. Within the cell, the dFdC prodrug is metabolized to the mono- (dFdCMP), di-
(dFdCDP), and tri-phosphate (dFdCTP) forms [9–11]. The incorporation of dFdCTP into
DNA inhibits replication by terminating DNA chain elongation. While this is the major
mode of action of the drug [12], gemcitabine also acts by inhibiting the activity of enzymes
implicated in the metabolism of deoxynucleotides [13,14], and by inducing apoptosis via
caspase signaling [15,16].

Although gemcitabine is considered a first-line chemotherapy drug, it is by no means
perfect. Gemcitabine treatments are plagued by issues such as low drug sensitivity and
unpleasant side effects [17]. Furthermore, the drug is rapidly deaminated in the blood
to inactive 2′, 2′-deoxyfluorouridine and excreted in the urine. An additional concern
is the development of chemoresistance with the loss of transporter proteins and kinases
required for phosphorylation in some cancers [18]. Evidently, the full anticancer potential
of the drug can only be profitably and safely harnessed with much improvement. Here,
two strategies have emerged. One is to chemically modify the drug itself [1]. The other is
to develop an appropriate drug delivery platform [19].

Nanomaterials 2021, 11, 597. https://doi.org/10.3390/nano11030597 https://www.mdpi.com/journal/nanomaterials

https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-9985-6567
https://doi.org/10.3390/nano11030597
https://doi.org/10.3390/nano11030597
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nano11030597
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/2079-4991/11/3/597?type=check_update&version=3


Nanomaterials 2021, 11, 597 2 of 12

In this regard, the idea of associating gemcitabine with nanoparticles is gaining impe-
tus. Nanocarriers possess unique physicochemical and biological properties imbuing them
with multifunctional abilities than can allow for the simultaneous delivery of multiple
drugs with improved retention, controlled release, and effective delivery of payloads specif-
ically to target cells; thereby reducing the overall dose and minimizing side effects [20,21].
Metallic nanoparticles have become increasingly popular due to their inherent optical fea-
tures and relative non-toxicity [22–24], but they are still to be fully explored. Lipid-based
nanostructures represent the earliest, most widely studied, and continually advancing nano
delivery agents; and have been extensively investigated for the delivery of gemcitabine
and its co-drugs. The current review has attempted to feature advances in gemcitabine-
and gemcitabine-combination lipid-based nanosystems that have come to the fore between
2015 and 2021. Figure 1 illustrates some of the lipid-based carriers that will be discussed.
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Figure 1. Illustration of some lipid-based nanocarriers being used in gemcitabine delivery.

2. Liposomes

Arguably the most famous lipid-based nanostructures are the liposomes. These
spherical lipid vesicles are comprised of a phospholipid bilayer surrounding an aqueous
core within which various substances may be contained. It is this property that is exploited
for the loading of drugs such as gemcitabine. Moreover, liposomes are biocompatible, have
slow-release profiles, and can be chemically modified to extend circulation time and/or
target cancer cells, making them suitable nanocarriers [25]. Not surprisingly, liposomes
comprise the largest nanoplatform for the delivery of gemcitabine. Figure 2 provides a
summary of liposomal gemcitabine systems discussed in this review.
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Tamam and co-workers [26] reported a combination of loading methods to yield an
unprecedented high drug loading capacity of gemcitabine into cholesterol-based liposomes.
Liposomal gemcitabine demonstrated better stability, sustained drug release, enhanced
cellular uptake, and cancer cell death when compared with the free drug. Liposomal
gemcitabine has also shown extended plasma time and lower clearance. As in these studies,
several groups [27–34] have modified gemcitabine liposomes with the steric stabilizing
agent poly(ethylene) glycol (PEG) to inhibit adverse interactions with serum and mask the
liposome from immune recognition.

However, stealth modification is not without its drawbacks. The PEG-shield is known
to inhibit cellular uptake, endosomal escape of liposomes, and release of its contents.
For this reason, the pH-sensitivity of gemcitabine liposomes is an important feature [35].
Xu and co-workers [36] reported that post-insertion of PEG chains enhanced pH-sensitivity
of gemcitabine liposomes as opposed to their pre-inserted counterparts, possibly due to
reduced viscosity on the inner liposomal bilayer and increased bilayer fluidity. As an
alternative, acid-labile PEG-lipids were introduced to enhance the efficiency of endo-
somal escape without compromising stealth features [30]. PEG-cleavable pH-sensitive
gemcitabine liposomes showed higher accumulation in pancreatic cancer xenografts than
liposomes without the cleavable lipid [37]. While most in vivo studies aim for systemic
introduction of liposomal gemcitabine, Gandhi and co-workers [38] used a lyophilization
technique to prepare a dry, inhalable powdered form of liposomal gemcitabine for the
treatment of lung cancer.

Besides stealth modification, the introduction of ligand-targeting motifs on the surface
of the gemcitabine-loaded liposome to permit cancer cell recognition and improve uptake
is also a common feature. In this regard, the use of antibodies [31,39–41], immune adju-
vants [42], folic acid [43], hyaluronic acid [44,45], and peptides [46] has been documented.
As an example, anionic liposomes encapsulating gemcitabine for breast cancer treatment
were modified with the RGD (alanyl glycyl aspartic acid) peptide that binds to the αVβ3
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integrin that is overexpressed by these cells. The treatment inhibited tumor growth more
effectively than unmodified gemcitabine liposomes and the pure drug, without toxicity in
normal cells [47].

The use of physical agents has proven useful to trigger drug release and promote
the deposition of gemcitabine liposomes in tumor tissues. Mild hyperthermia heating
assists liposomal gemcitabine delivery by increasing vascular permeability in solid tu-
mors and by encouraging the release of the drug [48]. Thermally-active gemcitabine
loaded liposomes were evaluated with respect to pancreatic cancer [48,49]. As an example,
Kirui and colleagues [50] used gold nanorod mediated mild hyperthermia conditions to
drive gemcitabine loaded distearoylphosphocholine liposomes into tumors. The over-
all enhancement of drug delivery resulted in a reduction in the dose for efficient tumor
growth inhibition. Liposomes can also serve as cavitation agents for ultrasound-mediated
delivery—thermally-activated liposomes containing gemcitabine reduced tumor viability
in murine models with the application of ultrasound [33]. The application of light repre-
sents another mechanical stimulus to promote drug delivery through the incorporation
of photosensitizers. A water-soluble photosensitizer co-loaded with gemcitabine in pegy-
lated liposomes enabled near-infrared-mediated drug release that was further modulated
by dioleoylphosphatidylethanolamine/cholesterol-mediated membrane fluidity of the
liposomes [34].

Furthermore, Kim and co-workers introduced a photosensitizer-conjugated lipid
into the bilayer of gemcitabine loaded liposomes, which gave encouraging results in
a biliary tract cancer model [27]. Drug release from liposomes can also be controlled
by applying an alternating magnetic field to introduce magnetic elements. Magnetite
nanoparticle cores and gemcitabine were co-encapsulated by a phospholipid bilayer to
give magnetoliposomes. The prepared carrier met the physicochemical criteria for systemic
delivery and released 70 % of the drug with 5 min exposure to the magnetic field [51].

Enhanced anticancer effects were elicited when liposomal gemcitabine was applied
in conjunction with “tumor priming” strategies. Such methods entail altering the tumor
microenvironment to enhance the activity of therapeutics and overcome the resistance it
may pose. Hylander and co-workers [52] administered Apo2L/TRAIL, a recombinant form
of TRAIL (tumor necrosis factor-related apoptosis-inducing ligand), to induce apoptosis,
reduce solid stress and interstitial fluid pressure, and condition tumors to liposomal
gemcitabine in a patient-derived xenograft model.

Synergistic effects have been observed when gemcitabine was co-loaded in liposomes
with other drugs such as cisplatin [53], paclitaxel [39,54], docetaxel [55], doxorubicin [40],
bevacizumab [41], and clofazimine [56]. As an example, gemcitabine and cisplatin were
co-loaded into a liposome that was modified with a synthetic thermo-responsive polymer.
These liposomes demonstrated specific hydrophobic interactions with the membranes of
pancreatic cancer cells above the temperature transition of the formulations. Moreover,
liposomes resulted in a greater than a 10-fold improvement of the IC50 of both drugs in
a temperature-dependent manner [53]. In an alternative co-delivery strategy, Herceptin
was conjugated to gemcitabine loaded thermosensitive immunoliposomes for delivery
to breast cancer cells [57]. In another study, gemcitabine and oxaliplatin were separately
loaded into magnetoliposomes. In animal models of breast cancer, tumor inhibition was
observed only when liposomes were combined for treatment [58]. Liu and colleagues [59]
later reported that a ‘mixed liposome approach,’ in which gemcitabine and its co-drug
were each encapsulated in separate liposomes, is advantageous in instances in which drug
activity is dosage-sequence dependent.

Liposomal gemcitabine has also been investigated in conjunction with gene therapy.
Wang and colleagues [60] reported on the co-encapsulation of gemcitabine and anti-KRAS
small interfering RNA (siRNA) in apolipoprotein E3-based liposomes. The combination of
the siRNA, which downregulated the expression of the KRAS oncogene by the endogenous
mechanism of RNA interference (RNAi), and gemcitabine improved pancreatic cancer
cell apoptosis when compared with single-agent treatment. In a related study, it was
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reported that anti-Mcl-1 siRNA co-delivery via cationic liposome could attenuate resistance
to gemcitabine in pancreatic cancer [61]. A similar effect was observed when liposomal
gemcitabine-treated lung cancer cells were pretreated with anti-RRM1 siRNA [62], that
targets the gene encoding a subunit of ribonucleotide reductase [63].

As an alternative to conventional drug loading, gemcitabine-conjugate was combined
with cholesterol and phospholipids to form liposomes. The liposome inhibited tumor
growth to a greater extent than free gemcitabine at less than 6 % of the normal dose,
without systemic toxicity in a mouse model of pancreatic cancer [64].

3. Niosomes

Niosomes are formed by self-association of cholesterol and non-ionic surfactants in
an aqueous phase. These nanostructures can be optimized for drug delivery by varying
the composition, size, the number of lamellae, and surface charge. They are attractive for
use in medicine, as they are biocompatible, non-immunogenic, highly stable, and have a
long shelf-life [65]. Niosomes formulated from cholesterol, Span 60, and D-α-tocopheryl
polyethylene glycol 1000 were loaded with gemcitabine and tocotrienols for improved
efficacy in pancreatic cancer cells in vitro [66]. More recently, Saimi and co-workers [67]
introduced aerosolized gemcitabine and cisplatin co-loaded niosome to treat lung cancer.
The niosomes showed controlled release for both drugs for up to 24 h, and were found to
be safe with growth inhibitory effects in non-small cell lung cancer.

4. Solid Lipid Nanoparticles

Solid lipid nanoparticles (SLNPs) are formulated from lipids that remain solid at
physiological temperature and are stabilized by emulsifiers. SLNPs are biocompatible,
biodegradable, can shield the encapsulated drug from harsh conditions [68] and have
emerged as alternatives to liposomes as drug carriers. Nandini and co-workers [69] used
a double emulsification technique to prepare gemcitabine loaded SLNPs from stearic
acid, soy lecithin, and sodium taurocholate. The SLNPs showed controlled drug release
and increased cellular uptake in several organs compared with the free drug. Affram and
colleagues [70] studied the cytotoxic effect of gemcitabine-loaded SLNPs on pancreatic cells,
in which the nanoparticle-associated drug demonstrated greater efficacy than the free drug.
As with liposomes, SLNPs can also be ligand modified. Soni and co-workers [71] attached
mannose to the surface of gemcitabine-loaded SLNPs to target the mannose-receptor on
lung macrophages.

Wang and co-workers [72] investigated the possibility of oral administration in mice
with pre-established lung tumors. SLNPs loaded with a lipophilic amide prodrug of
gemcitabine, 4-(N)-stearoyl gemcitabine, significantly inhibited tumor cell growth and
angiogenesis, induced apoptosis and extended survival time. Studies have shown that
the conjugation of fatty acids to the 4-N position of gemcitabine reduces sensitivity to
deaminases [73]. The incorporation of the conjugate into nanoparticles provides further
protection against deamination [74]. Lysosomes are reportedly beneficial for the attenuation
of gemcitabine resistance by stearoyl gemcitabine SLNPs. It was put forward that the
SLNP enters the cell via clathrin-mediated endocytosis and is fated for the lysosome
where degradation of the SLNP allows for the release of the gemcitabine conjugate and
its hydrolysis to free gemcitabine, and this is subsequently exported to the cytoplasm by
nucleoside transporters [75].

5. Lipid/Calcium/Phosphate Nanoparticles

The lipid/calcium/phosphate (LCP) nanoparticle presents another avenue for drug
delivery. Zhang and co-workers [76] precipitated phosphorylated gemcitabine within a
calcium phosphate core, which was coated with a lipid bilayer to which PEG-chains were
grafted at high density. Compared with free gemcitabine, in a mouse melanoma model,
the LCP-loaded drug-induced apoptosis and reduced immunosuppression in the tumor
microenvironment. As with other lipid-based carriers, co-drug delivery for an enhanced
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chemotherapeutic effect has also been explored with these nanoparticles. Gemcitabine
and paclitaxel were co-loaded in a pegylated, cyclic RGD-modified LCP nanoparticle
for targeted delivery to breast cancer cells. It was found that nanoparticles improved
drug accumulation within tumors and nearly halted tumor growth with minimal general
toxicity [77].

6. Nanostructured Lipid Carriers

Nanostructured lipid carriers (NLCs) are second-generation lipid nanoparticles that
are prepared from solid and liquid lipids which give an amorphous solid matrix both at
physiological and room temperature. They were developed to overcome the restrictions
associated with solid-lipid nanoparticles, including low drug loading efficiencies and the
risk of drug expulsion upon storage of the formulation [78]. Gemcitabine was conjugated to
paclitaxel and formulated into NLCs modified with N-acetylglucosamine (NAG) to target
glucose receptors on lung cancer cells [79]. The same group later introduced, also via NAG-
modified NLC, a gemcitabine-paclitaxel drug-polymer conjugate with disulphide and ester
linkages to exploit the tumor micro-environment conditions of high reducing potential and
low pH for drug release [80]. In keeping with the idea of co-drug delivery, a hyaluronic
acid-decorated NLC containing gemcitabine and baicalein gave encouraging results for
the treatment of pancreatic cancer [81]. In a multi-drug delivery approach, a doxorubicin-
gemcitabine prodrug co-loaded into NLCs with vincristine, showed excellent anti-tumor
activity in lymphoma mouse xenografts in comparison with single drug-loaded NLCs and
drug solutions [82].

7. Exosomes

Besides delivery via synthetic lipid-based nanostructures, gemcitabine can also be
loaded into natural lipid vesicles such as exosomes. Exosomes are vesicles that are released
from cells for the purpose of extracellular communication, function as natural carriers
of a variety of biomolecules, and are favorable due to their high biocompatibility [83].
Gemcitabine was loaded into autologous exosomes for delivery to pancreatic tumors.
Exosomes mediated a higher accumulation of the drug in tumor tissue and suppressed
tumor growth without recurrence [84].

8. Lipid-Polymer Hybrid Nanoparticles

Lipid-polymer hybrid nanoparticles (LPHNs), which aim to combine the advantages
of lipid-based and polymeric nanostructures while overcoming their collective disadvan-
tages [85], have been applied to the delivery of gemcitabine. A central composite design
approach was used to fabricate an amalgamation of lipids and the co-polymer, poly(lactic-
co-glycolic acid) (PLGA) for gemcitabine loading. The resulting LPHNs were 237 nm
in size, had encapsulation efficiency of 45.2%, and a cumulative drug release of 62.3%
at 24 h [86]. The same group applied LPHNs in vivo. The gemcitabine-loaded LPHNs
exhibited longer circulation time and extended half-life when compared with the com-
mercial drug [87]. As with liposomal gemcitabine delivery, LPHN-mediated gemcitabine
delivery has also been combined with RNAi. A cationic ε-polylysine co-polymer was used
to electrostatically associate with siRNA against the hypoxia-inducible factor 1α (HIF1α)
gene that contributes to gemcitabine resistance when expressed at elevated levels in cancer
cells. Gemcitabine was encapsulated within the hydrophilic core, and this was coated with
a pegylated lipid bilayer to yield functional LPHNs [88].

9. Miscellaneous Lipid Nanoparticles

Dora and co-workers [89] prepared a novel micellar phospholipid complex of gemc-
itabine. In comparison with free gemcitabine, the complex displayed a sustained release
pattern and high plasma stability. The complex performed favorably in toxicity studies
with enhanced anticancer efficacy in a pancreatic cancer model.
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Bastiancich and colleagues [90] developed an injectable gel-like nanosystem made
up of lipid nanocapsules loaded with a lauryl-gemcitabine conjugate for local treatment
of glioblastoma. In vitro drug release was shown to be sustained and prolonged over a
month. Furthermore, the system showed greater cytotoxic activity on U-87 MG glioma
cells than the free drug and significantly reduced tumor size in vivo. Lipid nanocapsules
containing gemcitabine were also shown to have monocyte-targeting properties, that can
be useful for immunomodulation, in lymphoma and melanoma-bearing mice [91].

Gaudin and co-workers [92] nano precipitated a squalenoyl gemcitabine prodrug and
a squalene-PEG conjugate to prepare nanoassemblies for convection-enhanced delivery to
the brain. The nanoparticles improved treatment over free gemcitabine in an orthotopic
model of glioblastoma multiform, both as a chemotherapeutic drug and a radiosensitizer.
Similarly, squalenoyl-gemcitabine and edelfosine, an alkyl-lysophospholipid with proven
anticancer activity, were associated with forming nanoparticles with high stability, high
drug content, and anti-tumor activity in patient-derived osteosarcoma cells [93]. These
nanoparticles were later suggested as a possible treatment for childhood osteosarcoma [94].

Recently, Comparetti and co-workers [95] introduced novel nanovesicles derived from
the major components of the plasma membranes of neoplastic cells for the co-delivery of
gemcitabine and paclitaxel. The nanoparticles exhibited high stability with enhanced cyto-
toxic effects in PANC-1 pancreatic cancer cells compared with conventional chemotherapy.
Interestingly, the nanovesicles were capable of delivering antigenic material to antigen-
presenting cells and could be useful for immunotherapy.

All the above-mentioned lipid-based nanocarriers have shown the potential to be
favorable nanocarriers of gemcitabine. Differences in drug loading capacity of the carriers
may be influenced by physical characteristics such as size and charge [96]. Despite the
advantages of such systems, there are still challenges that need to be addressed. Table 1
provides a summary of the advantages and disadvantages of the various delivery systems.

Table 1. Advantages and limitations of lipid-based nanoparticles as gemcitabine delivery agents.

Lipid-Based Nanoparticle Advantages Disadvantages

Liposomes

Biocompatible; biodegradable
High loading capacity

Flexibility of composition
Targetable

Drug leakage
High production cost

Special storage conditions required

Niosomes
Biocompatible; non-immunogenic

Osmotically active and stable
Low production cost; long shelf-life

Drug leakage
No human safety data available

Solid lipid nanoparticles

Biocompatible; biodegradable
Low toxicity

High bioavailability of drugs
Targetable

Amenable to large-scale production

Low drug loading efficiency
Risk of drug expulsion upon storage

No human safety data available

Lipid/calcium/phosphate nanoparticles

High encapsulation efficiency
Efficient endosomal escape

Sustained drug release
Blood-brain barrier permeability

Targetable

Complex structure and synthesis
No human safety data available

Nanostructured lipid carriers

Biodegradable
Increased drug loading

Prevents drug expulsion
Improved stability

Targetable

No human safety data available
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Table 1. Cont.

Lipid-Based Nanoparticle Advantages Disadvantages

Exosomes

High biocompatibility
High drug encapsulation efficiency

Natural carriers
Small size-tissue penetration

Slightly negative zeta potential-extended
circulation

Lack of standardized techniques for
isolation and purification

No human safety data available

Lipid-polymer hybrids

Robust delivery
Well-defined release kinetics

Good serum stability
Targetable

Suboptimal drug loading and entrapment
efficiency

No human safety data available

Lipid nanocapsules

Biocompatible; small size
Long-term stability

Manufactured by low energy, organic,
solvent-free process

No human safety data available

10. Conclusions

Within the past six years, significant developments have occurred in the field of
lipid-mediated drug delivery, both with respect to the introduction of novel carriers and
enhancement of existing ones. Recent developments, such as the advent of NLCs and
niosomes, have provided more robust gemcitabine delivery systems and are responsive
to modes of delivery other than systemic injection. The studies covered in this review
highlight the merit of lipid-mediated gemcitabine delivery, especially with regards to over-
coming the obstacles associated with conventional chemotherapy. Moreover, lipid-based
nanostructures are amenable to its dosage with a co-drug and/or the delivery of its prodrug
conjugates. Encouragingly, several studies have taken to in vivo models to provide proof of
efficacy. Taken together, the publications under review suggest that lipid-based nano deliv-
ery platforms have the potential to revolutionize gemcitabine-mediated cancer treatment.
The advent of a clinically viable gemcitabine nanoformulation is eagerly awaited.
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