

Removal of Radioactive Iodine Using Silver/Iron Oxide Composite Nanoadsorbents

Mah Rukh Zia^{1,†}, Muhammad Asim Raza ^{2,3,†}, Sang Hyun Park ^{2,3}, Naseem Irfan ¹, Rizwan Ahmed ¹, Jung Eun Park ⁴, Jongho Jeon ^{4,*} and Sajid Mushtaq ^{1,2,3,*}

- ¹ Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, P. O. Nilore, Islamabad, Pakistan; Mahrukhzia14@gmail.com (M.R.Z.); naseem@pieas.edu.pk (N.I.); Rizwanahmed@pieas.edu.pk (R.A.)
- ² Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; m.asimraza@ust.ac.kr (M.A.R.); parksh@kaeri.re.kr (S.H.P.)
- ³ Radiation Science and Technology, University of Science and Technology, Daejeon 34113, Korea
- ⁴ Department of Applied Chemistry, College of Engineering, Kyungpook National University,
- Daegu 41566, Korea; pje1204@knu.ac.kr
- * Correspondence: jeonj@knu.ac.kr (J.J.); sajidmushtaq@pieas.edu.pk (S.M.); Tel.: +82-53-950-5584 (J.J.); +92-51-9248611-3716 (S.M.)
- + These Authors contributed equally to this study.

Figure S1. (a) Schematic route for the synthesis of Fe_3O_4 and Ag/Fe_3O_4 nanocomposites, (b) Experimental setup for the synthesis of nanoparticles and (**c–e**) Steps to collect Ag/Fe_3O_4 nanocomposites by using an external magnet.

Figure S2. (**a**,**b**) SEM images of Fe₃O₄ nanoparticles, (**c**,**d**) TEM images of Fe₃O₄ nanoparticles, (**e**) Size distribution histogram of Fe₃O₄ nanoparticles with a standard deviation of 1.15 nm, (**f**) Powder XRD analysis of Fe₃O₄ nanoparticles.

Figure S3. EDS analysis of iron oxide nanoparticles.

Figure S4. TEM images of Ag/Fe₃O₄ nanocomposite.

Figure S5. Calibration curve to determine the unknown concentration using UV-Visible Spectrometer at 226 nm.

Figure S6. (a) Pseudo-second-order kinetics study for Ag/Fe₃O₄, (b) Pseudo-first-order kinetics study for Ag/Fe₃O₄.

Peak position 2θ (°)	FWHM B _{size} (°)	Dp (nm)
30.10403	0.84909	10.13
35.36326	0.70679	12.33
43.03682	0.86449	9.25
54.30076	0.58961	15.83
56.99288	0.77461	12.20
62.58666	0.51349	18.92

Average Dp: 13.2 nm; Crystallite size Dp = K λ / (β cos θ); Dp: Average Crystallite size (nm); K: Scherrer constant, K = 0.94 nm; λ : X-rays wavelength λ = 1.54178 Å; β : FWHM (Full Width at Half Maximum) of XRD peak (radian); θ : XRD peak position, one half of 2 θ (radian).

Table S2. Scherrer equation based crystallite size Ag/Fe₃O₄ composite nanoparticles.

Peak position 2θ (°)	FWHM B _{size} (°)	Dp (nm)	Phases
30.09569	0.52589	16.35	220, Fe ₃ O ₄
37.88646	0.51726	16.97	111,Ag
35.60499	0.54419	16.03	311, Fe ₃ O ₄
44.09552	0.51265	17.48	200, Ag
64.30628	0.54827	17.89	440, Fe ₃ O ₄
77.29275	0.60798	17.49	311, Ag

Average Dp, Ag: 17.2 nm; Average Dp, Fe₃O₄: 16.7 nm.

Table S3. Nanomaterials used for iodine removal from aqueous solutions.

Nanomaterial	Target ion	Adsorption Capacity	Ref.
Bi-GO	I ⁻ and IO ₃ -	200–230 mg g ⁻¹	1
		562.5 mg g ^{-1a}	
Layered sodium titanate	125 [-	(4.5 mmol g ⁻¹)	2
(Ag2O-T3NT, Ag2O-T3NF)		375 mg g ^{-1a}	
		(3.0 mmol g ⁻¹)	
Ag2O@Mg(OH)2	I-	368.6 mg g ^{$-1a$}	3
Ag2O@NFC	I-	650 mg g^{-1}	4
Fe3O4@PPv	I-	1627 mg s^{-1a}	5
Nano CupO-activated carbon	I I-	$\frac{1027}{112} \text{ mg g}^{-1}$	67
Nallo Cu2O-activated carbon	1	41.2 mg g	0, 7
3D formicary-like δ -Bi ₂ O ₃	I-	255 mg g ⁻¹	8
NTA-Au-CAM	I-	24.3 mg g ⁻¹	9
Silver coated iron oxide	I-	847 mg g^{-1}	This work

Note: Ag₂O@NFC – Ag₂O nanoparticles on nanofibrillated cellulose, Fe₃O₄@PPy – magnetite nanoparticles encapsulated in the polypyrrole matrix, NTA-Au-CAM – NTA-disulfide loaded gold nanoparticles on cellulose acetate membrane, ^a Maximum monolayer adsorption capacity from Langmuir (Q_m , mg g⁻¹).

References

- 1. Ham, S.; Um, W.; Kim, W.-S. Development of bismuth-functionalized graphene oxide to remove radioactive iodine. *Dalton Trans.* **2019**, *48*, 478–485.
- Yang, D.; Sarina, S.; Zhu, H.; Liu, H.; Zheng, Z.; Xie, M.; Smith, S.V.; Komarneni, S. Capture of radioactive cesium and iodide ions from water by using titanate nanofibers and nanotubes. *Angew. Chem., Int. Ed.* 2011, 50, 10594– 10598.
- Chen, Y.-Y.; Yu, S.-H.; Yao, Q.-Z.; Fu, S.-Q.; Zhou, G.-T. One-step synthesis of Ag₂O@Mg(OH)₂ nanocomposite as an efficient scavenger for iodine and uranium. J. Colloid Interface Sci. 2018, 510, 280–291.
- Lu, Y.; Li, H.; Gao, R.; Xiao, S.; Zhang, M.; Yin, Y.; Wang, S.; Li, J.; Yang, D. Coherent-interface-assembled Ag₂Oanchored nanofibrillated cellulose porous aerogels for radioactive iodine capture. ACS Appl. Mater. Interfaces 2016, 8, 29179–29185.
- Harijan, D.K.L.; Chandra, V.; Yoon, T.; Kim, K.S. Radioactive iodine capture and storage from water using magnetite nanoparticles encapsulated in polypyrrole. J. Hazard. Mater. 2018, 344, 576–584.
- 6. Zhang, X.; Gu, P.; Li, X.; Zhang, G. Efficient adsorption of radioactive iodide ion from simulated wastewater by nano Cu₂O/Cu modified activated carbon. *Chem. Eng. J.* **2017**, *322*, 129–139.
- Zhang, X.; Gu, P.; Zhou, S.; Li, X.; Zhang, G.; Dong, L. Enhanced removal of iodide ions by nano Cu₂O/Cu modified activated carbon from simulated wastewater with improved countercurrent two-stage adsorption. *Sci. Total Environ.* 2018, 626, 612–620.
- Xiong, Y.; Dang, B.; Wang, C.; Wang, H.; Zhang, S.; Sun, Q.; Xu, X. Cellulose fibers constructed convenient recyclable 3D graphene-formicary-like δ-Bi2O3 aerogels for the selective capture of iodide. ACS Appl. Mater. Interfaces 2017, 9, 20554–20560.
- 9. Park, J.E.; Shim, H.E.; Mushtaq, S.; Choi, Y.J.; Jeon, J. A functionalized nanocomposite adsorbent for the sequential removal of radioactive iodine and cobalt ions in aqueous media. *Korean J. Chem. Eng.* **2020**, *37*, 2209–2115.