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Abstract: In this study, the phase modulation ability of a dielectric Pancharatnam–Berry (PB) phase
metasurface, consisting of nanofins, is theoretically analyzed. It is generally considered that the opti-
cal thickness of the unit cell of a PB-phase metasurface is λ/2, i.e., a half-waveplate for polarization
conversion. It is found that the λ/2 is not essential for achieving a full 2π modulation. Nevertheless,
a λ/2 thickness is still needed for a high polarization conversion efficiency. Moreover, a gradient
phase metasurface is designed. With the help of the particle swarm optimization (PSO) method, the
wavefront errors of the gradient phase metasurface are reduced by fine-tuning the rotation angle
of the nanofins. The diffraction efficiency of the gradient phase metasurface is thus improved from
73.4% to 87.3%. This design rule can be utilized to optimize the efficiency of phase-type meta-devices,
such as meta-deflectors and metalenses.

Keywords: PB-phase; metasurface; polarization

1. Introduction

Recently, Pancharatnam–Berry (PB) metasurfaces [1,2], based on design concept re-
garding the geometric phase, have attracted intense attention due to their strong capabilities
in controlling circular-polarized (CP) waves [3]. We consider the case of two identical meta-
surface unit cells illuminated by the same CP light, where the second one is rotated by an
angle θp with respect to the first one. The spin-flipped components of the waves, scattered
by the two unit cells, will differ only with a phase factor ei2θp. This phase difference, termed
as the PB-phase, is independent of the frequency. This dispersion-less phase modulation
ability allows the PB-phase metasurface to control the phase much easier compared to
other resonance-based metasurfaces. However, the unavoidable Ohmic heat dissipation
loss of metals significantly degrades the performances of metasurfaces made by plasmonic
structures [4]. To address the heat dissipation loss of metals, dielectric metasurfaces are
proposed [5,6]. Low-loss dielectric resonators can also support both electric and magnetic
resonances with mechanism governed by the Mie resonances [7]. For the lossless case, a
single electric resonator exhibits a Lorentz-type response with a maximum phase variation
of π and with a scattering amplitude tightly linked with the phase variation. Nevertheless,
with an optically thick-enough nanofin with optical anisotropy, the strict π limit is no
longer applicable on the single electric resonator due to the magnetic dipole resonance
arisen from the circulating displacement currents within the nanofin. In general, by over-
lapping the electric and magnetic resonances in frequency via adjusting the resonator’s
geometry, it is possible to achieve a phase variation covering the entire 2π range with high
transmission [8,9].
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As a 100% efficient PB metasurface in transmission geometry, a perfectly transparent
unit cell is not sufficient. According to the PB-phase concept, a polarization converter
is also needed [10]. The polarization converter is usually a half-wave plate (HWP) [11].
Therefore, utilizing the anisotropy of the unit cell to obtain a HWP is a common strategy
for achieving high-efficiency metasurfaces.

Here, we consider PB-phase metasurfaces that operate for the CP. We consider a simple
shape of the antenna, a nanofin. The nanofin can be regarded as a one-dimensional dipole
oscillator, where the rotation angles of the antennas impart an initial phase difference to
the outgoing circularly polarized light. This mechanism of the phase modulation is not
based on the resonance condition. Therefore, compared to other resonance-based antennas,
PB phase metasurfaces have a broader range of operating wavelengths. In this article, we
would like to analyze how the thickness of the nanofin affects the modulation phase of CP
and propose a high-efficiency gradient phase metasurface based on optimized geometric
parameters of the nanofin.

2. Simulation of Phase Modulation of PB-Phase Metasurfaces

Imagine an x-polarized normally incident light impinging onto a nanofin with a
rotation angle (respect to the x-axis) of θp. The output polarization state is elliptically
polarized light and can be decomposed to two cross-linear polarization states, as shown on
the left-hand side of Equation (1). The amplitude parts of the linear polarization states are
decomposed to two cross- and circular-polarization states [12]:[

|Ex|eiδx∣∣Ey
∣∣eiδy

]
=

[
eiδx (axR̂ + bx L̂)
eiδy(ayR̂ + by L̂)

]
=

[ 1√
2
|Ex|eiδx (R̂ + L̂)

1√
2

∣∣Ey
∣∣eiδy(R̂− L̂)

]
(1)

where R̂ and L̂ is the normalized Jones vector of ideal right-handed circularly polarized
(RCP) and left-handed circularly polarized (LCP), respectively. The output phasor of the
RCP, ER, can be obtained by retrieving the RCP components in the Ex and Ey. The phasor
of the LCP, EL, can be similarly obtained.

ER = axeiδx + ayeiδy = |ER|eiδR =
1√
2

(
|Ex|eiδx + i

∣∣Ey
∣∣eiδy

)
(2)

EL = bxeiδx + byeiδy = |EL|eiδL =
1√
2

(
|Ex|eiδx − i

∣∣Ey
∣∣eiδy

)
(3)

According to Equations (2) and (3), we can retrieve the overall phase modulation,
δ, of the incident light passing through the metasurface, which are GaN nanofins on an
Al2O3 substrate. δR and δL indicate the overall phase modulation for the output beam
with a polarization state of RCP and LCP, respectively. The schematic of the investigated
structure is shown in Figure 1a. L, W and d indicate the length, width, and height of the
nanofin, respectively. The optical properties of the GaN nanofin on an Al2O3 substrate
are simulated by using the Finite-Difference Time-Domain (FDTD) method, a commercial
software package FullWave by RSoft-SYNOPSYS. Figure 1b shows the phase modulation
as a function of θp for normally incident light with RCP. The geometric parameters of
the nanofin are L = 330 nm, W = 100 nm, and d = 600 nm, respectively. The period of
the unit cell is 330 nm. The operation wavelength is set to be 633 nm. The dielectric
constants of the GaN and Al2O3 are taken from [13,14]. Periodic and perfectly matched
layer (PML) boundary conditions are used in the transverse direction and vertical direction,
respectively. The total length in the z-direction is 10 µm and the nanofin/Al2O3 interface
is set at z = 0 µm. The solid red line shown in Figure 1b indicates our simulation result
based on Equation (3) which is the overall phase modulation. The black squares represent
the results taken from the reference [15], which was simulated by using the Finite Element
Method. They simulated the phase as the input polarization is fully converted to its
cross-polarization state. The original phase reference of reference 15 is θp = 22.5◦. For
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comparison, we shift the phase reference from θp = 22.5◦ to θp = 0◦. Here, we consider the
phase modulation of the total transmission field of incident light with x-polarization but
not only the geometric phase as LCR converts to RCP. Therefore, it shows a nonlinear phase
modulation curve as a function of the θp as the input polarization is not fully converted
to its cross polarization state. Moreover, the nanofin that is used has a θp of 0◦ as a phase
reference. Therefore, there is a constant shift of the two overall phase modulation curves.
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Figure 1. (a) Schematic of the unit cell of the PB phase metasurface consisting of a GaN nanofin on an Al2O3 substrate. L,
W and d indicate the length, width, and thickness of the nanofin, respectively. (b) The overall phase modulation through
a periodic nanofin with a geometric parameters of L = 330 nm, W = 100 nm, and d = 600 nm, respectively. The red line
indicates our simulation result based on Equation (3). The solid square symbol represents the FDTD simulation results
from [15].

The overall phase modulation of a PB-phase metasurface is the combination of the
dynamic phase and geometric phase. The dynamic phase relies on the optical path length
(OPL), which is the product of the thickness (d) and the refractive index (n) of an optical
element and is independent of the orientation angle of the nanofin, θp. The geometric phase
is the inherent phase modulation of the PB phase, owing to its rotational symmetry. The
magnitude of the geometric-phase shift is 2θp.

Here, we keep the same length and width of the nanofin. The phase modulation
under a series of different thickness are simulated and shown in Figure 2a. Usually, for
off-resonance conditions, the performance of a metallic nanofin design is not sensitive to the
width and height [16,17]. However, the dynamic phase of a dielectric antenna significantly
is affected by the thickness. Generally, we can see two trends in Figure 2a. For a very thin
thickness, the overall phase is dominated by the geometric phase. As θp increases, the
overall phase will slightly decrease from 360◦ for θp = 0o. It shows a minimum at θp = 90◦

and then increases back to 360◦ for θp =180◦ due to the symmetry. Thus, we cannot achieve
2π phase modulation. For a relatively thick thickness, the overall phase can increase from
0◦ for θp = 0◦ to 360◦ for θp = 180◦. As shown in Figure 2a, there is a critical or transition
thickness between d = 500~600 nm. The overall phase trend is split toward 0◦ and 360◦

for θp = 180◦ and the transition occurs for θp close to 45◦. For clarity, we again simulate
the overall phase as a function of thickness and θp as shown in Figure 2b. The geometric
parameters of the nanofin are still 300 nm × 100 nm with a pitch of 330 nm. It can be
seen that the critical thickness is 540 nm. It is shown that 2π overall phase modulation
is achieved for d > 540 nm. A linear overall phase modulation as a function of θp can
be obtained for d = 1000 nm. It was reposted that the complete 2π phase control of the
PB-phase mechanism is due to the electromagnetic resonance and the strong confinement
of the incident wave inside the dielectric nanofins [18].
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3. Results and Discussion
3.1. Analysis of the Critical Thickness and Peak of the Overall Phase Modulation

Figure 3 shows the schematic of the periodic dielectric nanofin array on an Al2O3
substrate. The nanofin antenna can be considered as a two-dimensional dielectric grating,
whose effective refractive index can be analyzed by using effective medium theory (EMT).
The filling factor f is defined by the ratio of the ridge width to the period Λ. The subscript,
x and y, indicates the x- and y- directions. Therefore, the two grating vectors of the nanofin
array can be denoted by Kx = 2π/Λx and Ky = 2π/Λy. The nanofin is two-folded symmetric
around the z-axis and behaves as a formed-birefringent anisotropic medium. Here, we
attempt to obtain the effective indices of the nanofin array based on the second-order 1D
EMT theory. The effective index for a propagating wave along the z-axis with an electric
field polarized along the x-axis is nx. Similarly, the effective index for a propagating wave
along the z-axis with y-polarization is ny. First, we reduce the 2D nanofin array to be an
effective 1D grating with a grating vector of Ky by using 1D EMT theory [19,20]. Assume
the incident light is x-polarized. The zero-order approximation of the effective index of the
metasurface can be expressed as the following:

ε
(0)
x,E‖Kx ,1D = (n(0)

x,E‖Kx ,1D)
2
=

εAεB

fxεA+ (1 − fx) εB
(4)

ε
(0)
y, E⊥Kx , 1D = (n(0)

y, E⊥Kx , 1D)
2
= εA(1− fx) + εB fx (5)

where εA and εB are the permittivity of the host material and nanofin material, respectively.
In this case, the εA and εB are the permittivity of air and GaN, respectively. Since the
period-to-wavelength ratio is small, the displacement vector and the electric field are
approximately constant across the unit cell. For zero-order approximation, the effective
index is independent of the ratio of the grating period to wavelength, Λg/λ. In this paper,
the second-order solutions are applied as shown:

ε
(2)
x, E‖Kx , 1D = ε

(0)
x, E‖Kx , 1D +

π2

3
f 2
x (1− fx)

2
(

Λx

λ

)(
1
εA
− 1

εB

)2
(ε

(0)
x, E‖Kx , 1D)

3
·ε(0)y, E⊥Kx , 1D (6)
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Figure 3. (a) Schematic of the periodic dielectric nanofin array on an Al2O3 substrate. (b) FDTD simulated critical thickness
for full 2π modulation as a function of fy (red square). The 2D EMT is represented by solid black line. The ∆n for periodic
GaN nanofin array is calculated at a constant wavelength-to-period ratio of 0.633/0.33.

By using Equation (6), we can reduce the nanofin array to be an effect 1D grating with
an effective permittivity calculated by Equation (6) and a host material of air. Then, again
utilize the 1D EMT theory to reduce the effective 1D grating to an effective homogeneous
medium. Again, the zero-order approximation is:

ε
(0)
x, E⊥Ky , 1D = (n(0)

x, E⊥Ky , 2D)
2
= εA(1− fy) + ε

(2)
x, E‖Kx , 1D fy (7)

Note that the x-polarized light is perpendicular to Ky and the εB now is the effec-
tive permittivity of 1D GaN grating but not the permittivity of GaN. The second-order
approximation for 2D nanofin is:

ε
(2)
x, E⊥Ky , 2D = ε

(0)
x, E⊥Ky , 2D +

π2

3
f 2
y
(
1− fy

)2
(

Λy

λ

)(
ε
(0)
x, E⊥Ky , 2D − εA

)2
(8)

The effective refractive index for y-polarization, ny, can also be obtained by a similar
procedure. The most commonly used EMTs are the Maxwell–Garnett Equation [21,22],
Bruggeman’s model [23], and the Lorentz–Lorentz model [24]. All of these have been
demonstrated to be in good agreement with other rigorous simulation methods, such as
Rigorous coupled-wave analysis (RCWA) and FDTD.

In order to find the relation between the critical thickness and the effective index of
the nanofin array. The half-wavelength thickness calculated by EMT and critical thickness
simulated by FDTD method as a function of fy is shown in Figure 3b. As mentioned, the
critical thickness, which is denoted by square symbols, is defined as the minimum thickness
for achieving a full 2π modulation simulated by FDTD method. The solid line indicates
the half-wave thickness calculated by using the EMT and the following equation:

∆n d = (m +
1
2
)λ (9)

where ∆n = (ny − nx) and m = 0. It is well-known that the input CP state will turn
to an orthogonal CP as it passes through a PB phase metasurface. Therefore, besides
providing the geometric phase, the PB phase metasurface also plays an important role
in polarization conversion. For the point of view of a waveplate, for a fixed wavelength
and ∆n, the polarization conversion efficiency is a function of its thickness. The square
symbols indicate the critical thickness simulated by using FDTD. As mentioned, the fx is
10/11. The anisotropic effect is similar to a one-dimensional (1D) grating under such a
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large fx. According to the EMT, the maximum ∆n for 1D grating occurs at a filling factor of
0.5. The 2D EMT shows a similar trend. There is a maximum ∆n as fy = 0.4. ∆n equal to
zero for fy = 0 and close to zero for fy = 1. As fy away from 0.4, the optical anisotropic effect
is less significant, i.e., a small ∆n. Therefore, a relatively thick d is required. However, the
critical thickness simulated by FDTD is not the optimized thickness, i.e., the λ/2 thickness.
The critical thickness is the minimum thickness for achieving 2π modulation. However,
under the critical thickness, the polarization conversion efficiency is not sufficient. The
optimized thickness simulated by FDTD for highest polarization conversion efficiency is
1000 nm. Simply speaking, for achieving 2π modulation, λ/2 thickness is not essential.
Nevertheless, λ/2 is the optimized thickness for a high conversion efficiency Moreover,
this thickness is the corresponding λ/2 thickness which is about 250 nm thicker than that
predicted by the EMT. We think the discrepancy between the FDTD and EMT is because
the EMT ignores the change of the period and the filling factor caused by the rotation of
the nanofin.

For observing the nonlinearity of the overall phase modulation curve as a function of
θp, we normalize the overall phase modulation as a function of θp, δ(θp), by an ideal δ-θp
function, δ = 2θp. As shown in Figure 4a, the normalized δ, δ’, shows a peak at θp = 55◦ for
a d = 600 nm. The peak shifts to a larger θp for an increasing d. The peak transforms to a
dip as θp > 90◦. When the inclined angle between the x-polarization and the long-axis of
the nanofin is zero, the effective refractive index, neff, x, is nx. For θp = 90◦, neff, x is equal to
ny. For a rotating θp, the effective refractive index for the x-polarization can be calculated
by using the following equation:

1
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x

+
sin2 θp
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It is found that the peak/dip of δ’-θp relation coincides with the high reflection condi-
tion of a single-layer thin-film. The high reflection condition is:

2× ne f f , x(θp)× d = mλ (11)

where m is the number of the standing waves. Figure 4b shows the thickness for the high
reflection condition calculated by Equation (11). The red, orange, yellow, and green lines
indicate the m = 2, 3, 4, and 5, respectively. The E-field distribution and the magnetic
line for d = 500 nm, 700 nm, 1000 nm are shown in Figure 4c–e, respectively. The E-field
distribution of the LCP component shows the standing wave resonance in the effective thin
film, i.e., the combination of air and nanofin. The number of the standing wave for d = 800
nm, 1000 nm, 1300 nm are m = 3, 4, 5, respectively, which has a good agreement with the
calculated results from using the EMT. Moreover, from the vertex of the magnetic line, one
can observe the polarization conversion during propagating in the nanofin.

For x-polarized light, the effective index, neff, x, gradually decreases from 1.6138 to
1.2023 as θp increases from 0◦ to 90◦. By fulfilling the condition of Equation (11), when the
phase peak shifts to larger θp, the d increases as shown in Figure 4a,b. Furthermore, the
peak transforms to a dip as it crosses over the transmission point at θp = 90◦. Although it is
not shown here, the RCP component shows a complementary behavior. The effective index,
neff, y, gradually increases from 1.2023 to 1.6138 as θp increases from 0◦ to 90◦. Consequently,
the phase dip shifts to small θp as d increases. As the peak and dip coincides at θp = 90◦, by
choosing an appropriate d, the overall phase modulation is almost linear to θp. A linear
phase modulation curve is more convenient for practical applications.

3.2. Phase Influence Caused by Adjacent Unit Cells

The previous results are simulated under the assumption that all the unit cells are
identical and periodical. For this kind of periodic boundary conditions, the phase modula-
tion (at an arbitrary x- and y- position) of a PB-phase unit cell is uniform. The non-uniform
scattering term of Ex and Ey components (the eigenstates of circular polarization) is com-
pensated by the diffracted/scattering beam from the adjacent and identical unit cells.
However, for a practical application, the adjacent unit cell is not identical. Consequently,
the non-uniform components cannot be compensated, which leads to a serious scattering
loss. As a result, the overall efficiency of metalenses and gradient surfaces is currently
lower than conventional refractive-type device. In this part, we can consider a unit cell
sandwiched by unit cells along the x-direction. In the y-direction, the unit cells are identical.
For convenience, the central unit cell is named CU, while the two adjacent unit cells at the
left-hand-side and right-hand-side are called LU and RU, respectively. The rotation angle
of LU and RU are (θp + ∆θ) and (θp − ∆θ), respectively. The schematic of the considered
supercell is shown in Figure 5a. The triangle and circle symbols indicate corresponding
phase for a large ∆θ and a small ∆θ, respectively. The overall phase at CU for different ∆θ
as a function of θp is shown in Figure 5b. It can be seen that as the adjacent unit cell is not
identical to the CU, the overall δ of the CU is different from that of the periodic case. In
addition, generally, a larger ∆θ results in a larger phase difference, compared to a periodic
case shown in Figure 1b. Therefore, it seems to us that the induced phase difference is not
only arisen from the electromagnetic coupling of the adjacent unit cell, but also the phasor
evolution during propagation. This result shows that the adjacent scattering is important
for designing high-efficiency meta-devices. The scattering losses from the non-uniform
phase modulation should be eliminated by appropriately designing the supercell.
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3.3. Demonstration of Phase Optimization with Gradient Surface Metasurface

In this part, we utilize a gradient surface metasurface [25] as a demonstration of phase
optimization. Basically, the gradient surface metasurface is similar to a blazed grating
and is also similar to the outer ring of a metalens. Theoretically, the phase distribution
constructed by using a metasurface can be a continuous gray-level one in a one-step
lithography process. This means the theoretical diffraction efficiency can be close to 100%
as the Fresnel reflection loss can be ignored. In contrast, the diffraction efficiency of an
eight-level phase grating is 92%. Furthermore, a three-step lithography process is required.
Here we use a gradient surface metasurface with a supercell consisting of 7 unit cells.
Figure 6a shows the phase distribution within one supercell for ideal blazed grating, un-
optimized gradient surface metasurface, and optimized gradient surface metasurface. The
phase distribution is recorded for the incident light away from the metasurface with a
distance of 3 µm. For ideal blazed grating, the phase linearly increases from 0 to 2π. For the
un-optimized meatasurface, the rotation angle of the un-optimized metasurface is directly
taken from Figure 2a. The phase distribution vibrates owing to the influence of the adjacent
unit cells. The maximum phase difference as compared to the ideal one is 16.8◦. This
oscillation in phase leads to scattering loss. In free-space, the direction of energy flow is

normal to the wavefront, i.e.,
→
S ‖

→
k , where

→
S and

→
k is the Poynting vector and wave-vector,

respectively. Therefore, to achieve a high diffraction efficiency, a continuous and smooth
phase profile is essential. Here, the phase optimization is done by using particle swarm
optimization method [26,27]. The merit function is the deviation of the under-optimized
phase to the ideal phase profile, i.e., the wavefront error. The optimization variables are the
rotation angles of the nanofins in the supercell, whereas as is shown in Figure 6a, the phase
distribution becomes close to the ideal one after PSO optimization. The schematic of the
arrangement of the nanofins with and without optimization is also shown in Figure 6a.

The far-field diffraction efficiency is shown in Figure 6b. The black, green and red
lines indicate the diffraction pattern of the ideal blazed, un-optimized and optimized
metasurfaces, respectively. The input beam is RCP light. The Fresnel reflection losses of
the ideal case are ignored and the corresponding intensity of the first-order diffraction
beam is normalized to be 100%. The first-order diffraction efficiency of un-optimized
and optimized metasurfaces are 73.4% and 87.3%, respectively. After optimization, the
diffraction efficiency of the gradient surface metasurface is increased by 14% compared to
the un-optimized one. For reference, the far-field diffraction of the nanofin with a thickness
of 600 nm is also shown (blue line). It has been shown that the phase modulation can be 2π
for d = 600 nm. However, the thickness is well-below the λ/2 thickness predicted by both
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FDTD and EMT. Therefore, the polarization conversion efficiency is low. Therefore, the
far-field distribution for d = 600 nm shows a zero-order diffraction beam with a polarization
state of RCP while the first-order diffraction beam is LCP.
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4. Conclusions

In summary, the phase modulation ability of a dielectric PB phase metasurface, con-
sisting of a nanofin array with arbitrary rotation angle, is theoretically analyzed. It is
generally considered that the optical thickness of the unit cell of a PB-phase metasurface
is λ/2, i.e., a half-waveplate for polarization conversion. It is found that the λ/2 is not
essential for a full 2π modulation. Nevertheless, a λ/2 thickness is still needed for a high
polarization conversion efficiency. Moreover, based on the optimized unit cell, we further
designed and optimized a gradient phase metasurface. The first-order diffractive efficiency
of the seven-phase-level metasurface is increased from 73.4% to 87.3% by optimizing the
θp to minimize wavefront errors via the PSO method. We believe that this method can
be utilized to optimize the efficiency of phase-type meta-devices, such as meta-deflectors
and metalenses.
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