

Supplementary information

Article The Importance of Thermal Treatment on Wet–Kneaded Silica– Magnesia Catalyst and Lebedev Ethanol–to–Butadiene Process

Sang–Ho Chung ^{1,*}, Adrian Ramirez ², Tuiana Shoinkhorova ², Ildar Mukhambetov ¹, Edy Abou–Hamad ³, Selevedin Telalovic ², Jorge Gascon ² and Javier Ruiz–Martinez ^{1,*}

- ¹ KAUST Catalysis Center, King Abdullah University of Science and Technology, Catalysis, Nanomaterials, and Spectroscopy (CNS), Thuwal 23955, Saudi Arabia; ildar.mukhambetov@kaust.edu.sa
- ² KAUST Catalysis Center, King Abdullah University of Science and Technology, Advanced Catalytic Materials (ACM), Thuwal 23955, Saudi Arabia; adrian.galilea@kaust.edu.sa (A.R.); tuiana.shoinkhorova@kaust.edu.sa (T.S.); selvedin.telalovic@kaust.edu.sa (S.T.); jorge.gascon@kaust.edu.sa (J.G.)
- ³ KAUST Core Labs, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia; edy.abouhamad@kaust.edu.sa
- * Correspondence: sangho.chung@kaust.edu.sa (S.-H.C.); javier.ruizmartinez@kaust.edu.sa (J.R.M.); Tel.: +966-(0)12-808-4530 (J.R.M.)

Figure S1. SEM images of wet–kneading precursors for SiO₂–MgO catalyst: SiO₂ (**a**) and MgO (**b**). The inset figures represent the schematic models of each nanoparticles. The scale bar represents 500 nm.

Figure S2. Pore size distribution of wet–kneaded samples. The distribution was calculated from N_2 desorption isotherms.

Citation: Chung, S.-H.; Ramirez, A.; Shoinkhorova, T.; Mukhambetov, I.; Abou–Hamad, E.; Telaovic. S.; Gascon, J; Ruiz-Martínez, J. The Importance of Thermal Treatment on Wet-Kneaded Silica–Magnesia Catalyst and Lebedev Ethanol-to-Butadiene Process. *Nanomaterials* **2021**, *11*, 579. https://doi.org/10.3390/ nano11030579

Academic Editor: Juan Carlos Serrano-Ruiz

Received: 31 December 2020 Accepted: 11 February 2021 Published: 26 February 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Figure S3. Solid–state ¹H spin–echo NMR spectra of wet–kneading precursors: SiO₂–900, SiO₂–500, MgO–900 and MgO–500. The numbers after sample name denotes the calcination temperature.

Table S1. Summary	v of the observed ²⁹ S	i species for we	t-kneaded SiO ₂ –MgO	D catalysts b	v 1H–29Si CP MAS NMR.
	,				

Magnesium Silicates	WK-Dried	WK-500	WK-600	WK-700	WK-800	WK-900
Silica (Q4)	m	m	m	m	m	_
Silica (Q3)	s	s	s	s	m	-
Talc	S	s	s	m	W	_
Stevensite	S	m	m	m	m	s
Lizardite	m	m	m	S	S	-
Amorphous hydrous magnesium silicates	w	m	S	S	m	-
Enstatite	W	n.d.	n.d.	n.d.	n.d.	_
Intermediate between forsterite and enstatite	w	m	m	m	w	-
Forsterite	—	_	_	—	obs.	obs.

¹ The relative intensities of ²⁹Si species of each spectra by ¹H–²⁹Si CP MAS NMR: w (weak), m (medium) and s (strong). n.d. (not determined) due to the overlap with other ²⁹Si resonances; obs. (observed only by ²⁹Si DE MAS) It should be noted that the intensities of ²⁹Si species by ¹H–²⁹Si CP MAS NMR are not quantitative.

Figure S4. Detailed activity test results (ethanol conversion) of wet-kneaded SiO₂-MgO catalysts varying LHSV.

Catalant	LHSV	Ethanol Conver-	Selectivity (%)				
Catalyst	(h-1)	sion (%)	AA	C2= Butadiene C4= 19.2 2.4 0.24 33.5 36.1 4.2 27.1 20.2 2.7	C5+		
Physical mixture of SiO2–MgO	1.0	12.8	78.0	19.2	2.4	0.24	0.22
	0.5	60.8	19.9	33.5	36.1	4.2	6.1
WK-500	1.0	46.1	35.8	27.1	29.2	2.7	4.9
	1.5	37.0	41.6	25.1	25.9	2.0	5.2
	0.5	57.8	8.7	46.2	36.9	3.8	4.2
WK-600	1.0	37.3	22.4	41.2	31.8	2.8	1.6
	1.5	26.5	26.9	39.7	29.6	2.3	1.3
	0.5	45.0	7.1	52.7	35.2	3.3	1.5
WK-700	1.0	31.4	17.2	49.0	30.2	2.2	1.1
	1.5	22.7	20.3	48.9	27.7	1.8	1.0
	0.5	37.3	4.4	65.0	27.5	1.9	0.9
WK-800	1.0	28.6	9.6	61.3	26.9	1.4	0.6
	1.5	21.5	11.9	60.5	26.0	1.2	0.2
	0.5	37.1	32.2	27.9	34.0	3.5	2.9
WK-900	1.0	26.1	43.5	23.9	28.6	2.8	1.2
	1.5	18.2	44.9	26.4	25.5	2.5	0.6

Table S2. Ethanol conversion and product selectivity of wet–kneaded SiO₂–MgO catalysts for Lebedev process varying LHSV. Acetaldehyde (AA), ethylene (C2=), 1,3–butadiene (butadiene), butenes (C4=) and C5+.

Figure S5. (a) FT–IR spectra of wet-kneaded SiO₂–MgO catalysts after adsorption of pyridine. Four bands at 1446, 1492, 1576 and 1607 cm⁻¹ indicates the Lewis acid sites were only probed by pyridine-IR for wet-kneaded SiO₂–MgO catalysts. The spectra were taken after desorption of pyridine at 150 °C. The MS signals of (**b**) NH₃–TPD and (**c**) CO₂–TPD. The FT–IR spectra and MS signals of the NH₃– and CO₂–TPD were displayed with offset for clarity.

Table S3. Comparison of the ethanol conversion (CEIOH), ethylene selectivity (Sethylene), the rate of ethylene formation, the number of acidic and basic sites of wet-kneaded SiO₂–MgO catalysts characterized by pyridine–IR, NH₃–TPD and CO₂-TPD.

Catalyst	LHSV (h-1)	Сеюн (%)	Sethylene (%)	Rate of Ethylene For- mation (molethylene/gcat/h)	Number of Acidic Sites (mmol/g _{cat})		Number of Basic Sites (mmol/g _{cat})
					py–IR ¹	NH3–TPD	CO ₂ -TPD
WK-500	1.5	37.0	25.1	3.0	0.39	0.50	0.20
WK-600	1.0	37.3	41.2	3.3	0.22	-	-
WK-700	1.0	31.4	49.0	3.3	-	-	-
WK-800	0.5	37.3	65.0	2.6	0.20	0.09	0.06
WK-900	0.5	37.0	27.5	1.1	0.20	0.08	0.10

¹ The number of acidic sites for pyridine–IR (py–IR) were calculated after the normalization of the spectra by the weight of the pellets and by the subtraction of the spectra obtained before pyridine adsorption, using the integral extinction coefficients of 0.96 cm/µmol⁻¹ for Lewis acid site.[57].

Figure S6. PXRD patterns of spent wet-kneaded SiO2-MgO catalysts after reaction.

Figure S7. Ethanol conversion and 1,3–but adiene selectivity as a function of time–on–stream over WK–500 catalyst at LHSV 1.0 $\rm h^{-1}.$