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Experimental section 

Materials, chemicals and reagents 

GQDs (blue luminescent) were purchased from Sigma Aldrich, Germany. Gold (III) 

chloride trihydrate (Tetrachloroauric acid, HAuCl4, M.W.: 393.83 g mol‒1, Sigma Aldrich); 

Potassium carbonate: (K2CO3, M.W.: 138.21 g mol‒1, Sigma Aldrich); Tannic acid (C76H52O46, 

M.W.: 1701.19 g mol‒1, Sigma Aldrich) and sodium citrate tribasic dehydrate 

(C6H5Na3O7.2H2O, M.W.: 294.1 g mol‒1, Sigma Aldrich) were used to synthesize AuNPs. The 

functional groups (i.e., carboxyl group) of GQDs were activated using 1-ethyl-3-(-3-

dimethylaminopropyl) carbodiimide hydrochloride (EDC-HCl, C8H17N3.HCl, M.W.: 191.70 g 

mol‒1, Novabiochem) and N-hydroxysuccinimide (NHS, 98%, C4H5NO3, M.W.: 115.09 g mol‒

1, Sigma Aldrich). Phosphate buffer saline (PBS) tablets (Sigma Aldrich) and sodium acetate-

1-13C (≥99%, 13C CH3NaO2, MW: 83.03 g mol‒1, Sigma Aldrich) were used to prepare the 

buffer solutions. Hydrochloric acid (36.5-38%, HCl, MW: 36.46 g mol‒1, Sigma Aldrich) and 

sodium hydroxide (99%, NaOH, MW: 40 g mol‒1, VWR) were used to adjust pH of sodium 

acetate buffer solution. Double–distilled ultrapure water was obtained from a Millipore Direct–

Q® 3 UV (Millipore, Germany). Voltammetric (CV and SWV) and impedimetric (EIS) 

measurements were conducted for the characterization of immunosensor as well as for the 

target determination, with a redox marker made of potassium hexaferricyanide (≥99%, 

K3[Fe(CN)6], MW: 329.26 g mol‒1, Carl Roth) and potassium chloride (≥99.9%, KCl, MW: 

74.55 g mol‒1, VWR Chemicals). Absolute ethanol (99.9%, C2H6O, MW: 46.07 g/mol, VWR 

Chemicals) was used to clean silicon wafers prior to the AFM characterization.  

Mouse anti-human cardiac troponin-I monoclonal antibody (4.7 mg mL‒1, liquid in PBS, 

pH 7.4, with 0.09% sodium azide, isotype IgG1, Sigma Aldrich, Germany) and cardiac 

troponin-I (cTnI, MW: 23.9  103 g mol-1, Sigma Aldrich, Germany) were selected as the model 

bioreceptor and target analyte, respectively for the immunoreaction. Analyte detection was 

performed using hydrogen peroxide (35%, H2O2, MW: 34.01 g mol‒1, Carl Roth) via 

amperometric measurements based on the electro-catalytic activity of as-mentioned 

nanomaterials. After antibody immobilization, the unreacted carboxyl groups of GQDs were 

blocked by bovine serum albumin (BSA, ≥98%, pH 7.0, Sigma Aldrich). The cross-reactivity 

studies were investigated by comparing the response to our target binding with respect to other 

interfering compounds such as neuron-specific enolase from human brain (NSE, ≥95%, SDS–

PAGE, Sigma Aldrich), D–(+)–glucose (≥99.5%, C6H12O6, MW: 180.16 g mol‒1, Sigma 
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Aldrich), BSA, transferrin from human blood plasma (≥95%, SDS–PAGE, Sigma Aldrich) and 

dopamine (C8H11NO2·HCl, MW: 189.64 g mol‒1, Sigma Aldrich). 

Synthesis of gold nanoparticles (AuNPs)  

AuNPs used for the fabrication of as-designed electrochemical immunosensor have been 

domestically synthesized by following the method, reported by Piella et al. [1]. A 75 mL of 

freshly prepared reducing solution of 2.2 mM sodium citrate containing 0.05 mL of 2.5 mM 

tannic acid and 0.5 mL of 150 mM potassium carbonate (K2CO3) was heated with a heating 

mantle in a three-necked round-bottom flask under vigorous stirring. When the temperature 

reached 70°C, 0.5 mL of 25 mM tetrachloroauric acid (HAuCl4) was injected. The color of the 

solution changed rapidly to black-gray within 10 sec and then to orange-red in the following 

1−2 min. The solution was kept at 70 °C for 5 min more to ensure complete reaction of the 

gold precursor. The resultant particles (∼3.5 nm, 7 × 1013 NPs mL–1) were narrowly dispersed 

and negatively charged. The addition of 1 mM of K2CO3 in the reducing solution resulted in a 

pH ∼10, which decreased in the reaction mixture to pH ∼8 due to the introduction of HAuCl4. 

This slightly basic value seems to have a meritorious effect resulting in narrower size 

distributions of the AuNPs.  

While dealing with the reaction mixture, various critical parameters such as pH, 

temperature and tannic acid concentration were taken into a consideration. Herein, HAuCl4, 

K2CO3, C76H52O46 and C6H5Na3O7.2H2O act as reaction precursor, pH regulator, synthetic 

accelerator, and reducing as well as capping reagent, respectively. After the synthesis, different 

batches of AuNPs were stored at 4 °C by covering them with aluminium foil. 

SPGEs and their cleaning procedure  

SPGEs (8DS220AT, Metrohm, Germany) were used as an electrode system, which 

contained gold surface as a working area as well as auxiliary (counter) area, while silver as a 

reference material. The substrate material of SPGEs was composed of ceramic with dimensions 

3.4  1.0  0.05 cm. The diameter and the geometrical area of the working electrode was 4 mm 

and 0.11 cm2, respectively. 

SPGEs were cleaned using the nitrogen plasma (Model: Henniker plasma HPT-200) for 

around 1 min, power: 50 W and pressure: 5  10-2 mbar [2]. They were then preserved in 

cleaned and sterilized glass petri-plates, tightly closed with para-film, prior to the 

immunoassays. Prior to performing the as-designated experiments, SPGEs were then baked in 
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a vacuum-oven at 120 °C, to get rid of all the possible contaminations as well as to eliminate 

the residual oxidized moieties. Subsequently they were rinsed with double distilled water and 

dried using 1 bar nitrogen gun. 

Instrumentation and electrochemical analysis  

Electrochemical (voltammetric, impedimetric and amperometric) measurements and 

characterization were carried out using the PalmSens 4 (software version PS Trace 5.8.1), a 

compact electrochemical interface with a three-electrode system connected to a DropSens 

device. For all the measurements, 40 L was used as the sample volume and all the 

measurements were performed at room temperature. 

Cyclic and square wave voltammograms as well as amperometric measurements were 

recorded in triplicate to confirm the reproducibility of the sensor signal during fabrication steps. 

Table S1 depicts the parameters used for voltammetric, impedimetric and amperometric 

measurements, respectively. For the analyte determination, all these electrochemical methods 

(CV, SWV, EIS and amperometry) were separately applied on different SPGEs. 
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Supporting Tables and Figures 

Table S1. Parameters for voltammetric, impedimetric and amperometric techniques. 

CV method SWV method EIS method Chronoamperometry 

Current range 

1 μA – 10 mA 1 μA – 10 mA 1 nA – 10 mA 100 pA – 100 mA 

Pre-treatment settings 

E condition = 0.0 

V 

E condition = 0.0 V E condition 1 = 0.0 V E condition = 0.0 V 

t condition = 0 s t condition = 0 s t condition 1 = 0 s t condition = 0 s 

E deposition = 

0.0 V 

E deposition = 0.0 V E condition 2 = 0.0 V E deposition = 0.0 V 

t deposition = 0 s t deposition = 0 s t condition 2 = 0 s t deposition = 0 s 

Measurement settings 

t equilibration = 2 s t equilibration = 1 s t equilibration = 0 s t equilibration = 0 s 

E begin = 0.8 V E begin = - 0.3 V Scan type = Fixed E dc = - 0.2 V 

E vertex1 = 0.8 V E end = 0.8 V E dc = 0.0 V t interval = 0.1 s 

E vertex2 = - 0.2 V E step = 0.003 V E ac = 0.01 V t run = 200.0 s 

E step = 0.004 V Amplitude = 0.05 V Frequency type = scan  

Scan rate = 0.1 V s-1 Frequency = 10 Hz N frequencies: 41 = 

10/dec. 

 

Number of scans = 3  Max. frequency = 50000.0 

Hz 

 

  Min. frequency = 5.0 Hz  

 

Table S2. Comparison of critical features offered by the as-designed AuNPs@GQDs/SPGE 

based electrochemical immunosensor for cTnI detection with respect to various other 

nanomaterial based electrochemical immunosensors reported so far for the cTnI detection. 

Nanomaterials/ 

substrate 

Electrochemical 

Detection 

technique(s) 

Media 

Investigation 

range 

Limit of 

detection 

 

Reference 

AuNPs- 

modified ITO 

electrode 

CV 
Human 

serum 

1‒100 ng mL‒1; 

100‒500 ng mL‒1 

 

1 ng mL‒1 

 

[3]  

SPE/ PdNPs 
SWV 

Human 

plasma 

0.1‒10 ng mL‒1 0.1 ng mL‒1 [4 

SPE/ PtNPs 
CV 

Human 

plasma 

0.1‒55 ng mL‒1 0.07 ng mL‒1 [4] 

Ch-Ni3V2O8 CV, 

EIS 

Human 

serum 

0.005‒100 ng mL‒1 5 pg mL‒1 [5]  

GQDs/PAMAM CV, 

DPV 

Human 

serum 

10‒6‒10 ng mL‒1 20 fg mL‒1 [6]  

 

AuNPs@GQD/ 

SPGE 

CV, 

SWV, 

EIS, 

Amperometry 

PBS 

 

1‒1000 pg mL‒1 0.1 pg mL‒1  

Current Work 

Human 

Serum 

10‒1000 pg mL‒1 0.5 pg mL‒1 

Abbreviations: AuNPs: Gold Nanoparticles; Ch-Ni3V2O8: Nickel vanadate hollow sphere modified chitosan; 

CV: Cyclic voltammetry; DPV: Differential pulse voltammetry; EIS: Electron impedance spectroscopy; GQDs: 

Graphene quantum dots; ITO: Indium tin oxide; PAMAM: Polyamidoamine; PBS: Phosphate buffer saline; 

PdNPs: Palladium nanoparticles; PtNPs: Platinum nanoparticles; SPE: Screen printed electrode; SPGE: Screen 

printed gold electrode.
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Fig. S1. (A) Size distribution histogram of AuNPs. (B) UV-Vis absorption spectrum of AuNPs. 

 

 

Fig. S2. EDX spectrum of GQDs. The dotted green lines corresponds to the accelerating 

voltage of their respective chemical elements. 
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Fig. S3. Comparison of the signal response for different implanting approaches. 2× dilution of 

AuNP solution includes 2.13×1013 particles mL−1. (n = 3) 
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Fig. S4. Square wave voltammograms recorded using redox marker containing 10 mM 

K3[Fe(CN)6] and 0.1 M KCl for the bare SPGE (red curve), AuNPs@GQDs/SPGE (green 

curve) and anti-cTnI/AuNPs@GQDs/SPGE (blue curve). Investigation of optimal anti-cTnI 

concentration (A) 10 g mL‒1 (B) 25 g mL‒1 (C) 50 g mL‒1. (D) Comparison of the signal-

concentration relationship between anti-cTnI/AuNPs@GQDs/ SPGE immobilized with 10 g 

mL‒1, 25 g mL‒1 and 50 g mL‒1. (n = 3). 
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Fig. S5. (A) Cyclic voltammograms recorded using redox marker containing 10 mM 

K3[Fe(CN)6] and 0.1 M KCl for the bare SPGE (red curve), AuNPs@GQDs/SPGE (green 

curve) anti-cTnI/AuNPs@ GQDs/SPGE (blue curve) and cTnI/anti-cTnI/AuNPs@GQDs/ 

SPGE (brown curve). (B) Comparison of the signal responses generated by each fabrication 

step. Step 4 involves 100 pg mL1 cTnI binding on the nanocomposite sensor. (n = 3). 
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Fig. S6. AFM images for 3D surface topology images and cross-sectional height profile of (A) 

bare Si-wafer, (B) AuNPs@GQDs/Si-wafer and (C) anti-cTnI/AuNPs@ GQDs/Si-wafer at 3 

µm × 3 µm imaging area. The RMS results are average of 10 cross-sectional data 
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Fig. S7. (A) Nyquist plots recorded using redox marker containing 10 mM K3[Fe(CN)6] and 

0.1 M KCl for the target binding with anti-cTnI/AuNPs@GQDs/SPGE, by preparing six 

different concentrations of cTnI (1 – 1000 pg mL−1) in PBS. (B) Linear regression showing 

charge transfer resistance (RCT) w.r.t. different cTnI concentrations (n=3). The inset shows the 

circuit model employed for the curve fittings.  

 

 

Fig. S8. (A) Cyclic voltammogram recorded using redox marker containing 10 mM 

K3[Fe(CN)6] and 0.1 M KCl for the target binding with anti-cTnI/AuNPs@GQDs/SPGE, by 

preparing five different concentrations of cTnI (10 – 1000 pg mL−1) in human serum. (B) Bar 

chart of concentration dependent cTnI bio-assay using CV-based detection method (n=3). 
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