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Abstract: The uniqueness of paclitaxel’s antimitotic action mechanism has fueled research toward
its application in more effective and safer cancer treatments. However, the low water solubility,
recrystallization, and side effects hinder the clinical success of classic paclitaxel chemotherapy. The
aim of this study was to evaluate the in vivo efficacy and biodistribution of paclitaxel encapsulated
in injectable amphiphilic cyclodextrin nanoparticles of different surface charges. It was found that
paclitaxel-loaded amphiphilic cyclodextrin nanoparticles showed an antitumoral effect earlier than
the drug solution. Moreover, the blank nanoparticles reduced the tumor growth with a similar
trend to the paclitaxel solution. At 24 h, the nanoparticles had not accumulated in the heart and
lungs according to the biodistribution assessed by in vivo imaging. Therefore, our results indicated
that the amphiphilic cyclodextrin nanoparticles are potentially devoid of cardiac toxicity, which
limits the clinical use and commercialization of certain polymeric nanoparticles. In conclusion,
the amphiphilic cyclodextrin nanoparticles with different surface charge increased the efficiency
of paclitaxel in vitro and in vivo. Cyclodextrin nanoparticles could be a good candidate vehicle for
intravenous paclitaxel delivery.

Keywords: tumor targeting; cyclodextrin; nanoparticle; paclitaxel; biodistribution; breast tumor
induced animal model

1. Introduction

Paclitaxel (PCX) is an effective anticancer drug used in many types of cancer including
breast, ovarian, lung, head, and neck cancers. The unique PCX action mechanism is based
on the abnormal microtubule stabilization that blocks mitotic progression leading to either
the G0-phase of the cell cycle without cell division or, eventually, apoptosis [1]. The solu-
bility of PCX in aqueous media is very low (<0.1 µg/mL) [2], which limits its injectability
and bioavailability, so Cremophor EL® and ethanol are used in commercial formulations
as co-solvents to increase the solubility. Clinical side effects such as the hypersensitivity
reactions, nephrotoxicity, and neurotoxicity [3] of PCX are also associated with co-solvents,
even though these co-solvents are not sufficient to avoid the re-crystallization of PCX when
diluted with saline or dextrose solution for intravenous infusion. The drug remaining
recrystallized in the applied area causes insufficient doses to be carried to the tumor as well
as causing necrosis and pain in the injection site [4]. Novel PCX formulations that are safer
and more effective in lower doses are needed to overcome this vicious circle and increase
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treatment efficiency. To date, PCX is marketed in different nanoplatforms for parenteral
delivery against various cancers: polymeric nanoparticles Abraxane®), polymeric micelles
(Cynviloq®, Paclical®, Genexol® and Nanoxel®), and liposomes (Lipusu®).

The tumors not only consist of malignant cells but also non-transformed cells such as
fibroblasts, epithelial cells, endothelial cells, and pericytes. Therefore, a better targeting
of this complex microenvironment, which is associated with tissue/cell interaction and
penetration, is required for the improvement of anti-cancer therapeutics efficacy [5]. Even
though in advanced cancers, the conventional chemotherapy is the first choice in clinics,
the desired overall therapeutic success is not frequently achieved. Notably, systemic
toxicity is observed due to the non-selectivity of anti-cancer drugs with a large volume of
distribution and the side effects of the co-solvents. Additionally, chemoresistance is the
most important obstacle to be overcome in order to provide successful chemotherapy. The
nanoparticulate drug delivery systems such as Doxil (Doxorubicin-loaded PEGylated nano-
liposome), Abraxane (nab-Paclitaxel), Marqibo (Vincristine sulfate liposome), DaunoXome
(daunorubicin citrate liposome), and Onivyde (irinotecan liposome) have been developed
and approved for increasing the efficacy of chemotherapeutics and for overcoming the
drug resistance.

Nanoparticulate drug delivery systems have been a frequently studied approach for
cancer treatment [6,7]. They can overcome the problems caused by conventional chemother-
apy as a result of their unique physicochemical properties. Nanoparticles have various
advantages such as small and adjustable particle sizes, modifiable surfaces, being pre-
pared from a wide range of natural and synthetic polymers, high cellular penetration,
and protecting the drug from physical and biological factors [8–10]. Cyclodextrins (CD),
natural cyclooligosaccharides obtained from the enzymatic digestion of starch, have been
profusely used in nanoparticle preparation for drug delivery purposes [11,12]. CDs feature
rigid hollow-shaped troncoconic structures capable of hosting hydrophobic molecules
in their nanometric cavity and stabilizing them in polar media. In addition, their dense
hydroxyl display can be selectively functionalized to render an array of amphiphilic
structures featuring spontaneous self-assembling capabilities in an aqueous environment,
whose functional properties (i.e., stability, encapsulation capabilities, surface, interaction
abilities, or environmental sensitivity) can be tailored. In fact, these nanodelivery sys-
tems were applied for the delivery of various anticancer drugs such as PCX [13–15],
erlotinib [16], camptothecin [17–19], docetaxel [20], genistein [21], sorafenib [22], and
quercetin/silibinin [23]. In addition, it has been preferred in studies to increase the effec-
tiveness of various molecules besides anti-cancer drugs in different strategies such as gene
silencing or phototherapy in cancer treatment [24–30].

The main purpose of the current study is to evaluate the efficacy and distribution
of the PCX-encapsulated amphiphilic CD nanoparticles of different surface charges in
3D breast cancer cell cultures and breast tumor-bearing animals. Our results underline
the superiority of the positively charged amphiphilic CD nanoparticles for delivering the
PCX into the tumor site, avoiding its distribution amongst vital organs, and increasing
its anti-cancer efficacy. For this purpose, two different amphiphilic βCDs were used in
the study. Non-ionic 6OCaproβCD and cationic PC βCDC6 were used in our previous
studies to create nano-sized carrier systems for anti-cancer drugs through oral or parenteral
administration routes [13,15–17,19,31]. Our formulation development studies revealed
both CDs as optimal carriers for PCX in our previous studies through cell culture studies
and detailed in vitro characterization data including particle size, drug-loading efficiency,
drug release profile, stability, hemolysis, and cytotoxicity in healthy cells [15,31]. Moreover,
in our previous papers, it was determined that these two amphiphilic CD derivatives even
in blank form had a high affinity to cholesterol microdomains in the cell membrane in
human breast cancer cells (MCF-7), as well as removing cholesterol from the membrane and
inducing apoptosis in cells in a dose-dependent manner that can be beneficial in fighting
multidrug resistance based on cell membrane rigidity [32,33]. In this study, the antitumoral
activities of anionic and cationic amphiphilic CD nanoparticles dispersions, which are ideal



Nanomaterials 2021, 11, 515 3 of 17

carrier systems for PCX, were evaluated for tumoral penetration in 3D spheroid tumor
culture and antitumoral and antimetastatic efficacy in tumor-induced mice studies. In
addition, the effect of different surface charge properties on the biodistribution and tumoral
accumulation of injectable amphiphilic nanoparticles were also investigated and visualized
in comparison to solution form.

2. Materials and Methods

Non-ionic amphiphilic CD, Heptakis(6-O-hexanoyl)cyclomaltoheptaose (6OCaproβCD)
(Molecular Weight (MW): 1822 g/mol), and Heptakis[6-cysteaminyl-2,3-O-hexanoyl]cyclo-
maltoheptaose (PC βCDC6) (MW: 3178.15 g/mol) were synthetized as described previously
in University of Sevilla, Spain [16,19,34]. Paclitaxel (>99% powder, MW: 853.91 g/mol)
was purchased from LC Laboratories, Woburn, MA, USA. Matrigel® Basement Membrane
Matrix (356234) was obtained from Corning, NY, USA. Poly (2-hydroxyethyl methacrylate)
(poly-HEMA) (P3932) was purchased from Sigma-Aldrich, St. Louis, MO, USA. Dulbecco’s
modified Eagle medium (DMEM) (D5796, St. Louis, MO, USA), supplemented with
10% (v/v) fetal bovine serum (FBS) (F7524, Sigma-Aldrich, St. Louis, MO, USA) and 1%
penicillin /streptomycin (P4333, Sigma-Aldrich, St. Louis, MO, USA) was used for all cell
culture studies (hereinafter referred to as “complete DMEM”). Roswell Park Memorial
Institute Media (RPMI-1640) (R8758) was obtained from Sigma-Aldrich, St. Louis, MO,
USA. All other chemicals used were of analytical grade and obtained from Sigma-Aldrich,
St. Louis, MO, USA. Ultrapure water was used as obtained from Millipore Simplicity 185
Ultrapure Water System (Millipore, Molsheim, France).

2.1. Cell Culture Studies
2.1.1. Determination of PCX IC50 Value on 4T1 Cell Line

In order to determine the half maximal inhibitory concentration (IC50) value of PCX
solution, 4T1 cells were seeded in a 96-well cell culture plate (1 × 104 cells/well) in
complete DMEM (100 µL) and were allowed to attach overnight. Then, the medium was
replaced with 7 different dilutions of PCX stock solution (4 mg/mL in dimethyl sulfoxide
(DMSO)) in complete DMEM (in a range from 3.9 to 250 µM). In addition, cells were
incubated with complete DMEM containing the same concentration of DMSO, and the
results were normalized with DMSO groups. After 48 h of incubation time, cell viability
was determined with WST-1 assay. For this purpose, 10 µL WST-1 reagent was added in
each well, and cell viability was determined with a microplate reader at 450 nm. Cells
treated with complete DMEM were considered as control and 100% viable. The IC50 value
of PCX solution was calculated by using GraphPad Prism version 7. (GraphPad Software
Inc., San Diego, CA, USA).

2.1.2. Anticancer Activity of Amphiphilic Cyclodextrin Nanoparticles

The antitumoral activities of PCX loaded amphiphilic CD nanoparticles were deter-
mined on the 4T1 (ATCC® CRL-2539™, Manassas, VA, USA) mouse mammary tumor cell
line, which was further used to induce a tumor model in mice. For this purpose, cells were
grown in complete DMEM. Then, cells were seeded at a density of 5 × 103 cells/well in
complete DMEM (100 µL) into each well of 96-well plates. Then, the cells were incubated
for 24 h in a 5% CO2 incubator at 37 ◦C. At the end of 24 h, the cell culture medium in the
wells was replaced with fresh medium containing PCX alone or PCX-loaded amphiphilic
CD nanoparticles. After 48 h incubation, WST-1 (10 µL) was added into the cells. The cells
were incubated for about 2 h, and then, the absorbance at 450 nm was determined with
a microplate reader, and cell viability was calculated. The cells incubated with complete
DMEM were evaluated as the control, and the viability of these groups was accepted
as 100%.

The effect of PCX alone or PCX-loaded amphiphilic CD nanoparticles on 4T1 cells was
also monitored microscopically with a Viability/Cytotoxicity Assay Kit (30002, Biotium,
Fremont, CA, USA). In order to detect live and dead cells in 4T1 cells, cells were incubated
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with nanoparticle formulations for 48 h; then, the medium was removed, and 200 µL of
dye mixture was added to each well and incubated for 45 additional minutes. After the
incubation, groups of cells were visualized by fluorescence microscopy.

2.1.3. Migration Assay

The inhibitory effect of amphiphilic CD nanoparticles on the migration and invasion
ability of 4T1 cells was measured by a wound healing-based method [35]. For this purpose,
4T1 cells were plated in 6-well culture plates at a density of 1 × 106 cells per well and
cultured overnight to form a confluent monolayer. The following day, a vertical scratch
was generated across the center of each well using a 200 µL pipette tip to form a cell-free
zone and then washed with phosphate-buffered saline (PBS) twice to remove non-adherent
exfoliated 4T1 cells. Cells were incubated with the fresh medium containing drug-loaded
nanoparticle formulations for 48 h. The plates were imaged using a microscope, and
migration was quantified as the percent decrease in the mean migration zone area.

2.1.4. 3D Tumor Culture Studies

The antitumoral activity and tumoral penetration ability of PCX-loaded amphiphilic
CD nanoparticles and PCX solution were determined against a scaffold-based 3D in vitro
tumor model using MCF-7 human breast cancer cells by our group previously [15]. In
this study, 3D tumor culture was formed with 4T1 cells that were used in the animal
model. Briefly, poly (2-hydroxyethyl methacrylate) coated U-bottom cell culture plates
were prepared. Then, 1 × 104 cells/200 µL medium per well was added into the each
well containing Matrigel® Basement Membrane Matrix equal to 3% of the total medium.
Subsequently, the cells were spun at 1000 rpm for 10 min using a plate centrifuge. After
centrifugation, the cells were removed to the incubator, and the media were replaced with
fresh for 7 days for growth. At the end of the incubation time, the medium was removed
from the spherical tumors, and the medium containing the nanoparticle formulation was
added. After 48 h, cell viability in tumors was determined by the WST-1 method and
living/dead cells in tumors were imaged by confocal microscopy (Zeiss LSM 5, Pascal,
Oberkochen, Germany) after staining, as described above.

2.2. In Vivo Studies
2.2.1. Antitumoral Activities of Amphiphilic Cyclodextrin Nanoparticles

Female BALB/c mice (22–24 g, 6–8 weeks of age) (Kobay AŞ, Ankara, Turkey) were
maintained in cages at 22 ± 3 ◦C, 55% relative humidity of under a 12-h dark/light cycle.
Mice were allowed free access to food and water. All the experiments and handling of
animals were performed following the approval by Hacettepe University Local Ethical
Committee (approval number: 2019/02-10).

4T1-Red-FLuc Bioware® Brite Cell Line (Perkin-Elmer) were used for in vivo stud-
ies. Luciferase-expressing cells were grown in an incubator containing 5% CO2 at a
constant temperature of 37 ◦C in medium (completed RPMI with 10% FBS and 1% peni-
cillin/streptomycin). A syngeneic tumor model was developed in 6–8-week-old female
BALB/c mice to test the antitumor effect of amphiphilic CD nanoparticles. After subcu-
taneous injection of 3 × 105 4T1-Red-FLuc cells in 100 µL PBS to the inguinal fat pad of
mice, tumor development was followed until reaching 0.5 cm diameter before nanoparticle
injection.

In order to test the antitumoral effect, mice were separated into seven groups including;
blank 6OCaproβCD nanoparticles (n = 7); blank PC βCDC6 nanoparticles (n = 7); PCX-
loaded 6OCaproβCD nanoparticles (n = 8); PCX-loaded PC βCDC6 nanoparticles (n = 8);
PCX solution in Cremophor®EL: EtOH (1:1 v/v) (n = 8); Cremophor®EL:EtOH (1:1 v/v)
(n = 8) and untreated control group (n = 7) randomly. All injections were performed three
times a week intraperitoneally (1.25 mg/kg/day). Mice were weighed, and tumor growth
was measured by using a caliper twice a week. In addition, tumor growth was monitored
with D-luciferin (150 mg/kg, Biovision, Milpitas, CA, USA) injection intraperitoneally
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during the experiment. Mice were anesthetized, and luciferase activities were recorded
three times a week using an in vivo imaging system (Newton 7.0, Vilber, Collégien, France).

2.2.2. Biodistribution of Amphiphilic Cyclodextrin Nanoparticles

The biodistribution of amphiphilic cyclodextrin nanoparticles was performed by the
injection of Flamma® 774 NHS ester dye (PWS1603, BioActs, Incheon, Korea)-loaded
6OCaproβCD and PC βCDC6 nanoparticles intravenously through the tail vein. The dye
solution was used as a control group. Mice were monitored at 2, 6, and 24 h after injection
using an in vivo imaging system (Newton 7.0) under anesthesia (n = 3). To capture 4T1-Red-
FLuc cells’ bioluminescence in live mice at 24 h, D-Luciferin was injected intraperitoneally,
and tumor–dye interaction was compared. Mice were sacrificed, and organs were dissected
at the 6th and 24th hours. Photographs of organs were taken under near-infrared filter,
and a mean florescence intensity of Flamma® 774 NHS ester dye was calculated using the
ImageJ Fiji program (Madison, WI, USA).

2.3. Statistical Analysis

For both cell culture assay and in vivo studies, a Student’s t test was used for multiple
comparisons using GraphPad Prism 7 (GraphPad Software Inc., San Diego, CA, USA).
A value of p < 0.05 was considered statistically significant. Results were expressed as
mean ± SD (standard division)

3. Results and Discussion
3.1. Physicochemical Properties of the Nanoparticles

The formulation, in vitro safety, and anti-cancer activity of the amphiphilic CD
nanoparticles used in this paper were determined and optimized in our previous stud-
ies [16,31,33]. Blank and drug-loaded amphiphilic CD nanoparticles were prepared using
the nanoprecipitation method, as described previously [31]. Monodisperse PCX-loaded
amphiphilic CD nanoparticles were reproducibly produced from 6OCaproβCD (average
hydrodynamic diameter 113 ± 4 nm) and PC βCDC6 (82 ± 2 nm), respectively. In addition,
the zeta potential (ζ) of nanoparticles was determined as −29 ± 2 mV for 6OCaproβCD
and +62 ± 1 mV for PC βCDC6 as a result of the analysis by dynamic light scattering (DLS),
using a Malvern ZetaSizer Nano ZS (Malvern Instruments, Malvern, UK). The efficiency of
paclitaxel loading (>40%) and stability of the nanoparticles (over 30 days) were also shown
(Table 1) [31,33].

Table 1. Physicochemical properties of blank or paclitaxel-loaded amphiphilic cyclodextrin nanopar-
ticles (n = 3, ±SD) [31,33].

Formulation Particle Size
(nm) ±SD

Zeta Potential
(mV) ±SD

Encapsulation
Efficacy (%) ±SD

Blank 6OCaproβCD nanoparticle 104 ± 1.1 −24 ± 0.3 -
PCX-loaded 6OCaproβCD nanoparticle 113 ± 4.0 −29 ± 2.0 41 ± 2.3

Blank PC βCDCD nanoparticle 75 ± 2.1 +61 ± 1.4 -
PCX-loaded PC βCDCD nanoparticle 82 ± 2.0 +62 ± 1.1 64 ± 1.9

3.2. Cell Culture Studies
3.2.1. Determination IC50 Value of Paclitaxel on 4T1 Cell Line

To optimize the concentration of PCX-loaded CD nanoparticles to be used in further
experiments, the IC50 value of PCX was calculated on the 4T1 breast cancer cell line with
serial dilution of PCX solution in DMSO. Non-treated cells and cells incubated with DMSO-
containing media were used as control groups. Normalized absorbance against PCX
concentration was plotted, and the IC50 value of PCX was calculated from the logarithmic
trendline of the graphs by using GraphPad Prism 7. Viability in the control group was
taken as 100% cell proliferation. According to the results shown in Figure 1, the IC50 value
of PCX was determined as 3.78 µM for 4T1 cells. Thus, for the rest of the cell culture
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assays, nanoparticles were diluted with complete DMEM to contain 3.78 µM PCX to ensure
application in the range of IC50.
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Figure 1. The half maximal inhibitory concentration (IC50) value of paclitaxel solution on 4T1 murine
breast cancer cell line at 48 h. Cells were treated with the different concentrations of Paclitaxel (250,
125, 62,5, 31.25, 15.6, 7.8, and 3.9 µM). The absorbance was determined as a result (n = 6, mean ± SD).

3.2.2. Anti-Cancer Activity of Amphiphilic Cyclodextrin Nanoparticles

The viability of cells treated with PCX-loaded anionic and cationic nanoparticles at
the same PCX effective concentration (3.78 µM) was 40% ± 1.2% and 34% ± 2.8%, respec-
tively (Figure 2). These findings show that the anticancer activity of PCX was enhanced
by encapsulation into amphiphilic CD nanoparticles of different charge. Moreover, cell
viability was reduced to 67% ± 0.6% and 65% ± 2.3% in the groups treated with blank
anionic and blank polycationic nanoparticles, respectively. Results indicate that both of the
CD nanoparticles caused higher cancer cell mortality than free PCX solution indicated by
the significant difference between the PCX-loaded amphiphilic CD nanoparticles and free
PCX (p < 0.05).
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WST-1 assay. (n = 6, mean ± SD), (* p < 0.05 compared with PCX solution and ** p < 0.05 compared
with control group).
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When the obtained data were evaluated, statistical difference was found between the
two PCX-loaded CD nanoparticle formulations with the polycationic CD causing higher cell
death. On the other hand, the effect of blank CD nanoparticle formulations on cell viability
was similar to each other (p > 0.05). Thus, it is thought that viability in cells incubated with
drug-loaded nanoparticles is dependent on the amount of PCX uptake by cells rather than
the anti-cancer activity of the CDs itself. This uptake is inversely correlated with the size of
the nanoparticles. Both nanoparticle formulations contain equal amounts of PCX (3.8 µM),
and therefore, cell viability was reduced depending on the uptake of PCX. It is known
that zeta potential plays an important role in the interaction with biological membranes,
cellular uptake, and opsonization. The net surface charge of nanoparticles directly affects
cellular uptake properties. The cationic surface charge improves the cellular penetration
of nanoparticles by increasing the electrostatic interaction with the plasma membrane,
which has a negative surface charge due to its double-layer phospholipid chains [36,37].
However, when the structures of CD derivatives and anti-cancer activities are considered
together, it is thought that other factors may influence cell viability. In a previous study, we
have shown that the positively charged PCX-loaded CD nanoparticles exhibited a more
pronounced anti-cancer activity in 2D and 3D MCF-7 cells [15,31]. More recently, we have
also demonstrated that positively charged nanoparticles were more effective against 2D
and 3D liver and lung cells cultures and caused a significant decrease in IC50 value of
erlotinib [16]. Taken together, our findings suggest that positively charged nanoparticles
enhance anti-cancer drug uptake and decrease cell proliferation. Studies showed that
CD nanoparticles with positive surface charge also show success in oral chemotherapy.
Camptothecin-loaded amphiphilic CD nanoparticles were developed and evaluated for
oral chemotherapy in breast and colorectal carcinoma treatment. The results suggest that
the drug loading and cellular interaction of the CD nanoparticles can easily be modulated
by coating with a positively charged biocompatible material with penetration enhancer
properties such as chitosan. Thus, camptothecin-loaded CD nanoparticles can be effective in
improving the oral bioavailability and decreasing the dosing frequency, thereby minimizing
the dose-dependent adverse effects and maximizing the patients’ compliance [17–19].

The 4T1 cells were visualized by fluorescent microscopy to observe live/dead cells
in groups treated with PCX-loaded nanoparticles or PCX alone. According to the results
shown in Figure 3, the characteristic morphology of living 4T1 cells (green) was observed
in the control group incubated only with complete DMEM. In other groups, which were
treated with different amphiphilic CD formulations, dead cells stained with red color were
observed along with living cells. It was observed that PCX-loaded CD nanoparticles have a
negative influence on the morphological structures and colonization of 4T1 cells and cause
a decrease in cell viability.

3.2.3. Migration Assay

The wound healing and migration experiment offer the opportunity to observe cell
migration, which plays an important role in several processes in tumor development, such
as neoangiogenesis and metastasis. In cell culture as well as in vivo, microtubules are
required for cell migration [38]. In this regard, it is important to determine the efficacy of
microtubule-stabilizing agents such as PCX in wound-healing assays. The effect of the
developed PCX-loaded CD nanoparticles on the migration of 4T1 murine breast cancer
cells was determined by wound-healing assay. The results obtained are shown in Figure 4.
According to the microscopic images obtained for 48 h, it can be suggested that CD
nanoparticles suppress the migration of 4T1 cells. Moreover, blank CD nanoparticles were
also observed to inhibit cell migration and thus wound healing. At the end of 48 h, it was
observed that the cell-free scraped area at the beginning of the experiment was completely
covered with 4T1 cells in the control group incubated with complete DMEM only. On the
contrary, blank or PCX-loaded CD nanoparticles inhibited the vertical migration capacity
of 4T1 cells. It was observed that even blank CD nanoparticles negatively affected the
migration of cells after 48 h. It was observed in studies performed with both blank and
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drug-loaded nanoparticles that the polycationic CD is more effective than the non-ionic
CD. All formulations were more effective than the free PCX solution in suppressing the
migration capacity of 4T1 cells.
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3.2.4. 3D Spheroid Culture

In vitro 3D spherical tumors can mimic the tumor microenvironment and natural
tumor morphology, and they are developed to fill the gaps between 2D conventional cell
culture and in vivo animal studies. Tumor growth and metastasis is a biological process
controlled by the extracellular matrix (ECM), cancer cell, and stroma. In this biological
process, the development and metastasis of cancer cells depends on many factors such
as growth factors, hormones, and other cells within the ECM. By using this in vitro 3D
spherical tumor model, cell–cell and cell–ECM interaction can be provided, and hierarchical
arrangement can be simulated [39–41]. Cell-based studies are the main tool for evaluating
the potential efficacy of a new drug compound. However, in order to obtain the most
reliable results in cell culture studies, the analysis method should mimic the biological
environment as well as possible. For this reason, 3D spherical tumor models are used in
cancer studies where 2D conventional cell culture studies are insufficient. In this study, 3D
in vitro cell culture studies were carried out before the in vivo model.
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cyclodextrin nanoparticles in vitro. Wound-healing assay of 4T1 cells before and after blank nanoparticles, drug-loaded
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4T1 spherical tumors were prepared by the scaffold-based method in this study [15].
4T1 spherical tumors formed as one nodule in each well of cell culture plate. Microscopic
examination of nodules showed a spherical morphology and different zones: proliferation
zone, quiescent zone, and necrotic core (Figure 5b).
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4T1 spheroids were allowed to grow for 7 days and then incubated with the appropri-
ate nanoparticle formulations or PCX solution for 48 h. Cell viability data obtained as a
result of WST-1 analysis are shown in Figure 6. According to the results, cell viability was
calculated as 57% ± 1.4%, 44% ± 3.5% and 65% ± 2.4% for PCX-loaded anionic, cationic
CD nanoparticles, and PCX solution, respectively. In addition, the percentage of viable cells
was found to be over 77% in groups treated with blank CD nanoparticles. In this context, it
can be said that both nanoparticle formulations successfully deliver the PCX through the
3D and multilayer spherical tumor model and significantly reduce the cell viability in the
tumor compared to the drug solution.
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Figure 6. Anticancer effect of paclitaxel (PCX) solution and PCX-loaded amphiphilic cyclodextrin
(CD) nanoparticles against 3D 4T1 spheroids for 48 h. Cells incubated with the complete DMEM
were considered as control and 100% viable. Cell viability was determined with WST-1 colorimetric
assay (n = 4; mean ± SD). * p < 0.05 compared with PCX solution.

When the results of 2D and 3D homospheroid studies performed on 4T1 cells are
compared, it is noticed that the difference is significant in terms of cell viability, and this is
an expected result. The percentage of viability in cells incubated with PCX-loaded anionic
CD nanoparticles increased from 40% in the 2D model to 57% in the 3D model. Similarly,
this value increased from 34% to 44% for PCX-loaded cationic CD nanoparticles. In addition,
similar results are also found with the PCX solution; in the 2D culture model, cell viability
was determined as 49%, but in 3D tumor studies, the viability was determined as 65%. It
is known that cells in 3D tumors typically have lower sensitivity to cytotoxic drugs than
2D monolayer cells. It has been argued that this difference has several causes, including
reduced drug penetration, the development of hypoxic nuclei, and reduced growth [39]. It
is also known that increased intercellular signaling by enhancing the cell–cell interaction of
3D cell culture is an important factor in decreased drug sensitivity in spherical tumors [42].
In this field, Green et al. incubated HT29 human colorectal adenocarcinoma cells with
E-cadherin inhibitory antibody, and then, their sensitivity to various anticancer drugs
was determined. It was shown that 3D colon cancer tumors have increased sensitivity to
5-fluorouracil, PCX, vinblastine, and etoposide as a result of the inhibition of E-cadherins,
which is one of the adhesion molecules that provide intercellular connectivity [43].

While preparing 3D spherical tumors, Matrigel® was used to provide ECM in the en-
vironment. Matrigel is derived from the basement membrane of Engelbreth–Holm–Swarm
(EHS) mouse sarcoma cells and contains 60% laminin, 30% collagen IV, and 8% entactin.
Collagen and laminin are essential components for cell growth and attachment. Entactin,
on the other hand, is a bridging molecule that interacts with laminin and collagen IV and
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contributes to the structural arrangement of extracellular matrix molecules. Moreover,
Matrigel® contains perlecan, epidermal growth factor, insulin-like growth factor, fibroblast
growth factor, tissue plasminogen activator, and other growth factors that are naturally
present in the tumor structure. In this study, it was shown that the response of spherical
tumors prepared in the presence of a scaffold such as Matrigel to the nanoparticulate
drug delivery system is significantly different from the response of single-layered cells in
conventional 2D cell culture and a more realistic indicative of the expected in vivo behavior
of the nanoparticles.

The antitumoral efficacy of PCX-loaded amphiphilic CD nanoparticles against a 3D
spherical tumor model was also observed microscopically. The cells in the control group
were incubated with medium alone. Living cells stained in green in the control group were
observed in spherical tumors. As seen in Figure 7, it was observed that the dead cells were
mostly in the proliferation zone of tumors treated with free PCX solution. Results in the
group treated with PCX-loaded anionic CD nanoparticles are similar to the PCX solution.
However, in the image of the PCX-loaded cationic CD nanoparticles shown in Figure 7, it
is seen that the dead cells are in the inner parts of the tumor along with the surface. These
images indicate that CD nanoparticles with positive surface charge can advance through
the multilayered tumor layer and penetrate through the tumor layer.
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Figure 7. Antitumoral effectiveness of paclitaxel-loaded cyclodextrin nanoparticles and paclitaxel
solution on 3D spherical breast tumor viability. Three-dimensional (3D) spheroids were incubated
with complete DMEM alone observed as a control group. 4T1 cells were seeded at 1 × 104 cells per
well into 96-well U-bottom plates, formulations were added to the spheroids, and the plates were
returned to the incubator for 48 h of culture. Calcein AM (live, green fluorescence) and ethidium
homodimer (dead, red fluorescence) reagents were added to the wells, and plates were incubated for
an additional 45 min (scale bar: 500 µM).
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According to the microscopic images, it can be said that in tumor spheroids treated
with anionic CD nanoparticles, dead cells were mostly located on the tumor surface, but
in tumors treated with cationic CD nanoparticles, dead cells were also located deep into
the 3D tumor structure as well as near the surface. It is an expected result that the surface
charge of nanoparticles increases tumor penetration. Positively charged nanoparticles inter-
act with negatively charged components such as sialic acid, cholesterol, and phospholipids
in the membrane structure of cells stronger than anionic nanoparticles [44]. Therefore,
surface charge is very important in cellular and tumoral uptake and localization in sub-
cellular units [45,46]. In our previous in vitro 3D tumor studies using human lung (A549),
liver (HepG2), and breast (MCF-7) cancer cells, the efficacy of anticancer drug-loaded
amphiphilic CD nanoparticles was determined [15,16]. In these studies, it was observed
that CD nanoparticles have different antitumoral activities in cells depending on their
surface charge, on the cancer cell type, and the drug they carry. Moreover, hydrophobic
Nile red-loaded nanoparticles were prepared, and their penetration into a multilayer MCF-
7-based spherical tumor was observed with confocal microscopy. It was observed that
nanoparticles with a positive surface charge can penetrate the tumor deeply, which may be
related to the results of this study, while it was determined that nanoparticles with negative
surface charges were mostly uptaken by cells on the surface of the tumors. Therefore, dead
cells (colored red) were observed at the tumor surface in the group treated with anionic
CD but also at deeper levels in the group incubated with cationic CD nanoparticles.

3.3. In Vivo Studies
3.3.1. Antitumor Efficacy of Paclitaxel-Loaded Amphiphilic Cyclodextrin Nanoparticles

The blank and the PCX-loaded CD nanoparticles were administered to the tumor-
bearing mice, and the change in tumor size was followed for 14 days (Figures 8 and 9).
On day 5, compared to the control groups that received physiological saline or blank CD
nanoparticles, an approximately 25% reduction was observed in the tumor size of the mice
treated with PCX-loaded nanoparticle or PCX solution (Figure 8). The most significant
difference between the groups was achieved on day 8 in which the tumors continued to
grow in the physiological saline control group; on the other hand, either the blank or the
PCX-loaded CD nanoparticles reduced the tumor burden. In general, the PCX-loaded
positively charged nanoparticles were the most efficient antitumor formulation, albeit not
reaching the level of statistical significance (Figure 8). On day 14, the tumor size was
reduced by 50% in all groups that were treated with blank or PCX-loaded CD formulations,
or PCX solution. Collectively, the antitumor effect of the PCX-loaded amphiphilic CD
nanoparticles was observed earlier than the PCX solution. Interestingly, in the long run, the
blank CD nanoparticles were also capable of hindering the tumor growth (Figures 8 and 9).
Accordingly, Erdogar et al. showed that folate-targeted CD nanoparticles were better toler-
ated by animals and localized in the tumor area than PCX solution in Cremophor®EL [14].
These results support that the CD nanoparticles can be a good candidate for increasing the
efficacy and safety of PCX therapy in breast cancer.
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were monitored with D-luciferin (150 mg/kg, Biovision) injection intraperitoneally (left colon day 0,
right column day 8). Mice were anesthetized, and luciferase activities were recorded in an in vivo
imaging system.
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In our previous studies, it was observed that blank amphiphilic CD derivatives
cause a selective antiproliferative effect in various cancer cells (MCF-7, HepG2, MDA-
MB-231), although they do not have any toxic effects on healthy fibroblasts (L929) and
healthy bladder cells (G/G1) [33]. With advanced cell culture studies performed with
proteomic and metabolomic approaches, it was determined that this effect was caused by
the cholesterol affinity of CDs [32]. It is known that amount of cholesterol in the membranes
of cancer cells is higher than that in healthy cells. Moreover, the cholesterol content in the
membrane also varies according to the drug resistance of the cancer. Todor et al. reported
that the amount of cholesterol increased by 60% in resistant MCF-7 cells [47]. CDs are also
used to manipulate the cholesterol composition in different cells in the literature.

In our previous study, the effects of blank 6OCaproβCD nanoparticles on MCF-7 cells
were investigated by biochemical and proteomic tests. According to the results of the
proteomics studies, it was determined that the protein levels of Heterogeneous nuclear
ribonucleoproteins (hnRNP) and chromobox protein (CBX1) associated with apoptosis
were increased, and hepatoma-derived growth factor (HDGF) was not affected. In addition,
the findings obtained by RT-PCR showed that the 6OCaproβCD nanoparticle, which can be
used as a nanoparticular drug carrier, does not trigger multidrug resistance. The effect of
the metabolomic pathways affected by blank 6OCaproβCD nanoparticles on breast cancer
cells was elucidated with Human Metabolome Database (HMDB) as serine biosynthesis,
transmembrane transport of small molecules, metabolism of steroid hormones, estrogen
biosynthesis, and phospholipid biosynthesis [32].

The in vivo antitumoral activity exhibited by the blank CD nanoparticles observed
in this study confirms and strengthens the previous findings. PCX used as an anti-cancer
model drug in this study is an effective chemotherapeutic. However, as emphasized in the
literature, there are serious toxicity problems in its clinical application [3,4]. In the light of
the findings obtained in this study, it can be said that even blank nanoparticles as well as
PCX-loaded CD nanoparticles can be used as an alternative approach to PCX solution. In
this way, it is believed that the toxicity caused by Cremophor®EL can be prevented.

3.3.2. Biodistribution of Amphiphilic Cyclodextrin Nanoparticles

The biodistribution of the amphiphilic CD nanoparticles, 6OCaproβCD and PC
βCDC6, was determined following loading with Flamma® 774 dye. Even though there
was only a slight difference at the early time point (2 h) between the dye solution and the
CD nanoparticles, at the later time point, both amphiphilic CD derivatives were found to
more competently accumulate in the tumor area (Figure 10).
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(mean ± SD) (c). Tumor developing in mice highlighted in a white ring.
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Major organs were examined after the mice were sacrificed, and it was observed that
the dye solution accumulated in the heart and lungs, but on the contrary, the nanoparticles
were barely detected in the lungs and heart (Figure 10b,c). This is an unexpected result
when considering the surface charges of cationic nanoparticles. It is known that nanopar-
ticles with a cationic surface charge accumulate in the lungs due to the surfactant [48].
When the kidneys were examined, it was observed that the highest accumulation was in
the mice administered with the dye solution. Renal involvement was lesser with nega-
tively charged nanoparticles than cationic nanoparticles. This may be the result of both
the surface charge and the small particle size of the cationic CD derivative. As empha-
sized previously, amphiphilic CD nanoparticles had mean diameters of 113 ± 4 nm and
82 ± 2 nm for 6OCaproβCD and PC βCDC6, respectively. In addition, zeta potential (ζ) of
nanoparticles were determined as −29 ± 2 mV for 6OCaproβCD and +62 ± 1 mV for PC
βCDC6 [31]. The organ distribution of the nanoparticles suggests low cardiotoxicity and
lung accumulation after a single injection and 24 h monitoring, which can be favorable for
a systemic nanomedicine since some polymeric nanoparticles are associated with cardiac
toxicity, limiting their clinical use and commercialization.

4. Conclusions

In this study, nano-sized carrier systems for PCX were prepared using amphiphilic CD
derivatives with different surface charges, and their efficacy was determined by in vitro
and in vivo studies. The antitumoral activities of two different CD derivatives, which
were determined by our group to be safe carriers for cancer treatment in previous studies,
were supported by in vivo studies. In the light of the findings obtained, it can be said
that both CD derivatives are more effective than PCX solution in a 3D spherical tumor
model conducted with breast cancer cells. Moreover, in vivo studies, we observed that both
blank and anti-cancer drug-loaded nanoparticles significantly reduce the tumor volume.
These findings support that both CD derivatives can provide effective cancer treatment by
preventing the clinical problem of PCX toxicity. As a result of these studies, it is thought
that especially blank CD nanoparticles are worth researching and developing for use in
cancer treatment.
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