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Abstract: In a liquid crystal (LC) state, specific orientations and alignments of LC molecules produce
outstanding anisotropy in structure and properties, followed by diverse optoelectronic functions.
Besides organic LC molecules, other nonclassical components, including inorganic nanomaterials, are
capable of self-assembling into oriented supramolecular LC mesophases by non-covalent interactions.
Particularly, huge differences in size, shape, structure and properties within these components gives
LC supramolecules higher anisotropy and feasibility. Therefore, hydrogen bonds have been viewed
as the best and the most common option for supramolecular LCs, owing to their high selectivity
and directionality. In this review, we summarize the newest advances in self-assembled structure,
stimulus-responsive capability and application of supramolecular hydrogen-bonded LC nanosystems,
to provide novel and immense potential for advancing LC technology.

Keywords: liquid crystal; hydrogen bonds; supramolecular; self-assembled; stimulus-responsive

1. Introduction

As a well-known material, liquid crystal (LC) unites molecular ordering and mobil-
ity [1–6]. The LC state of matter exists between the solid and isotropic liquid phase, and
is therefore defined as a mesophase [7–9]. Sometimes it is referred to “the fourth state of
matter”. In 1888, Friedrich Reinitzer found a cholesterol ester which had “two melting
points”, the cholesterol ester firstly melted into a cloudy liquid at 145.5 ◦C, and became
transparent at 178.5 ◦C [10]. Furthermore, O. Lehmann named this kind of material “liquid
crystal”, with both liquid fluidity and crystal optical anisotropy [11].

According to the forming condition of the mesophase, LC can usually be divided into
thermotropic and lyotropic LC [12]. Typically, thermotropic LC mesophase appears within
a certain temperature range without any additive, but lyotropic mesophase needs to gain
enough fluidity or mobility through interactions with solvent molecules, e.g., soaps. Given
different mesophases, thermotropic LC is further classified into nematic, cholesteric and
smectic phases. This classification, created by Georges Friedel the 19th century, depends
on the molecular arrangement [13].

During the last few decades, there has been a lot of progress in interdisciplinary
developments of LC materials and applications, e.g., organic electronics, templates, reflec-
tors, actuators, sensors and nanoporous films [3,14,15]. In order to advance performance,
multifunctional supramolecular materials have gradually developed into a novel platform
for LC self-assemblies with a large scale and high anisotropy [16].
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2. Nature of Liquid Crystal Molecules: Anisotropy

In nature, there are abundant materials with physicochemical anisotropy. When part
or all of the physicochemical properties of a substance varies with directional change,
this substance is defined as anisotropic. LC molecules are considered as the most typical
anisotropic materials.

The anisotropy of physical properties, including refractive index, dielectric constant,
viscosity and so on, make LC materials special. Unlike isotropic phase, the LC phase shows
a macroscopic anisotropy featuring non-zero average value of these properties in different
directions [17]. Microscopically, this is a consequence of specific electronic and steric
interactions within LC molecules. These interactions lead to long-range intermolecular
order, which makes LCs significantly different from ordinary isotropic liquids [18].

On account of this unique anisotropic performance, LC materials are very sensitive
to external physical stimulus, including light, electricity, magnetism and so on. Typically,
LC optical and dielectric anisotropy play a key role in display technology. Nowadays,
stimulus-responsive LC materials have been made, with big developments in many fields,
e.g., actuators, sensors, ion transport and templates.

For example, one of the main LC characteristics in optics is birefringence, namely,
anisotropy in the refractive index, which behaves similarly to optical uniaxial crystal. As
LC material develops under suitable conditions (e.g., temperature or solvent), some optical
textures of birefringence can be observed by a polarizing optical microscope, like striped
texture, planar texture, focal conic texture, fingerprint-like texture and mosaic texture [19].
This is the simplest way to determine whether a substance has an LC state.

Taking a rod-shaped LC molecule as an example, it can be seen that it is a uniaxial
crystal. The uniaxial crystal has two different refractive indexes, no and ne. no is ordinary
light, and its electric vector vibration direction is perpendicular to the optical axis of the
LC molecule; ne represents extraordinary light, whose electric vector vibration direction is
parallel to the optical axis of the LC molecule. So, the optical anisotropy (∆n) is expressed as:

∆n = ne − no.

Another important characteristic of LC is dielectric anisotropy (∆ε). For LC display de-
vices, the threshold voltage is a key parameter and mainly depends on dielectric anisotropy.
The optical anisotropy (∆ε) is expressed as:

∆ε = ε‖ − ε⊥.

where ε‖ and ε⊥ denote the dielectric constant measured in the applied electric field parallel
and perpendicular to the optical axis of the liquid crystal, respectively.

In a word, special anisotropy makes LC attract a lot of attention since different LC
materials show macroscopic changes in different directions or when exposed to an external
stimulus [20].

3. Supramolecular Liquid Crystals

When alkali metal cations and several types of strong and highly selective ligands
were discovered in 1960s, supramolecular chemistry began to grow into an independent
discipline [21–23]. In 1987, Lehn defined supramolecular chemistry as the science which
focuses on the structure and function of supramolecular systems formed by intermolecular
forces of two or more compounds [24].

In 1927, E. Bradfield and B. Jones found the first supramolecular LC structure gener-
ated by hydrogen bonding between the carboxyl groups of benzoic acid derivatives [1,21].
Obviously, supramolecular LC is totally different from traditional covalent-bonded LC
molecules, and should be viewed as an LC composite system based on intermolecular
non-covalent interactions, including hydrogen bonds (H-bonds), halogen bonds, van der
Waals force, electrostatic interaction, conjugation effect, hydrophobic interaction and so on.
To date, supramolecular LC has gradually developed into a mature and widely applied



Nanomaterials 2021, 11, 448 3 of 22

discipline for lots of aspects (e.g., nanowire [25–28], templates [29], LC physical gel [30]
and electro-optic materials [31,32]).

Compared with covalent bonds, non-covalent interactions are reversible and highly
responsive to external physical or chemical stimuli (e.g., heat and solvent). H-bonds, π−π
stacking, van der Waals forces and other non-covalent interactions have lower energy, and
is easy enough to induce assembly and disassembly when using to an external stimulus.
A supramolecular fibrous LC network featuring heat recovery was employed to construct
soft materials like physical gels [30,31].

Many supramolecular LC systems were formed between LC molecules, units or other
components, and appeared in different new phases [32–35]. Different from conventional
LC, these highly ordered supramolecular architectures would be paid much attention due
the response ability, not the nature of LC (e.g., phase transition, thermal stability and spatial
order). Therefore, supramolecular LC formed by non-covalent interactions provided a new
route to design multifunctional and practical materials [36–40].

In supramolecular LC systems, H-bonds are a general option to position different com-
ponents in a certain arrangement with enhanced intermolecular binding strength [32,41].
For aromatic LCs, π−π conjugation can also cause these molecules to form well-organized
supramolecular assemblies [42–44]. Other non-covalent interactions, like halogen bonds,
ionic bonds and π−π conjugation, have their own unique way of constructing multi-
functional LC supramolecules [45–49]. When combined with electron-donating groups
or systems, LCs containing an electrophilic halogen atom can act as a acceptor to form
halogen-bonded supramolecular LCs [48,50–52]. As for ionic LCs, they were formed by
the self-assembly of ions in solution, and behaved with different self-assemblies and LC
phases upon different solvent inductions [49,53].

Besides, non-covalent interactions can even boost inorganic materials with LC molecules
forming nanoparticle–LC systems. Not surprisingly, graphene, carbon nanotubes and other
multifunctional carbon nanomaterials containing large π-conjugated structures are easily
assembled with LC molecules. For example, the nematic matrix, like 5CB and 8CB, can align
carbon nanotubes to form long-range orientational ordered structures with a grooved surface
or magnetic or electric field [54,55]. Additionally, carbon nanotubes can modify the LC’s
anisotropy in optic and dielectric anisotropy [56–58]. Monolayer graphene flakes can provide
the parameter of orientational order to enhance the dielectric anisotropy in the nematic LC
of MLC-15600-100 [59]. It has also been reported that the presence of graphene flakes can
accelerate the electro-optic response in a nematic LC [60]. H-bonds were also used as a linker
to combine LC molecules and nanoparticles into a supramolecular whole [61]. For example,
highly specific H-bonding interactions improved the dispersibility and compatibility of the
ZrO2 nanoparticles in supramolecular nematic LC nanocomposites [62].

4. Hydrogen-Bonded Supramolecular Liquid Crystal

H-bonds are an ideal non-covalent interaction for the construction of supramolecular
architectures [39,63–67]. Once a donor (D) with an available acidic hydrogen atom interacts
with an acceptor (A) carrying available non-bonding electron lone pairs, H-bonds arise and,
therefore, are endowed with high selectivity and directionality [39]. Importantly, H-bonds
are easily affected by solvents, salts, ions, temperature and so on, so they are viewed as
key to the controllability of H-bonded supramolecular systems. As a tool to assemble
supramolecular architectures, H-bonding can bring positive effects to LC, e.g., to generate
new phases, expand the phase temperature range, improve thermal stability and so on.

As for H-bonded supramolecular LC (see Figure 1), the common structures are formed
through benzoic acid, carboxylic acids, pyridyl and others [68,69]. In the first example
of H-bonded supramolecular LC complexes, the LC state was formed by intermolecular
H-bonds within benzoic acid derivatives [70]. According to the number of hydrogen bonds,
H-bonded supramolecular LCs are classified into two categories, single H-bonded [71,72]
(see Figure 1a) and multiple H-bonded ones [73–75] (see Figure 1b). Furthermore, especially
for LC polymers, side-chain (see Figure 1c) and main-chain H-bonded supramolecular LCs
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(see Figure 1d) are the most common. In addition, there are some hybrid and network
H-bonded supramolecular liquid crystals [76–79]. Figure 2 shows the formation and brief
classification of H-bonded supramolecular LCs.

Figure 1. Supramolecular hydrogen-bonded liquid crystal (LC) molecules: (a) Low molecular weight
complex by Kato and Fre’chet in 1989. Reprinted with permission from reference [80]. Copyright
(1989) American Chemical Society. (b) Low molecular weight complex by Lehn and coworkers in
1989. Reprinted with permission from reference [81]. Copyright (1989) Royal Society of Chemistry.
(c) Side-chain polymer by Kato and Fre’chet in 1989. Reprinted with permission from reference [82].
Copyright (1989) American Chemical Society. (d) Main-chain polymeric complex by Lehn and
coworkers in 1990. Reprinted with permission from reference [83]. Copyright (1990) John Wiley
and Sons.
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Figure 2. Classification of H-bonded supramolecular LCs.

Complex 1 (see Figure 1a) consists of 4-butoxybenzoic acid (4BA) and trans-4-[(4-
ethoxybenzoyl)oxy]-4’-stilbazole (2Sz) with one H-bond, featuring sematic and nematic
phases. The mesomorphic range of Complex 1 was extended to 102 ◦C, and a new smectic
phase appeared between 136 ◦C and 160 ◦C, but each component showed only a nematic
phase [80]. Complex 2 (see Figure 1b) was formed with three parallel H-bonds between the
uracil and 2,6-diaminopyridine groups, with a columnar hexagonal LC mesophase [81].
There was no mesomorphic phase of these pure compounds. Fortunately, the mesophase be-
came observable only if long enough aliphatic chains were introduced into the uracil deriva-
tives. Side-chain polyacrylate was used as framework to build up a special supramolecular
LC through hydrogen bonds between its pendant pentoxybenzoic acid groups and guest
stilbazole ester (see Figure 1c) [82]. The mesomorphic range of the mixture with the deter-
mined ratio (polyacrylate: stilbazole ester = 1:1) reached 112 ◦C, while the corresponding
ranges of each component were 15 and 48 ◦C, respectively. It is likely that this strong
enhancement on the mesophase is due to the formation of hydrogen-bonded complexes.
On the other hand, supramolecular main-chain “polymers” were obtained with triply
hydrogen-bonded complementary pairs between uracil and 2,6-diacylamino-pyridine (see
Figure 1d) [83]. Under different conditions, these 1:1 mixtures showed special optical
textures (e.g., stretched and helically wound fibers).

One of the obvious traits of these supramolecular H-bonded mesogens is high thermal
stability. The stabilization effect greatly contributes to the ordered condensed state of
hydrogen-bonded supramolecular LCs. Another merit is the unique reversibility during
dynamic formation and breaking, compared with covalent-bonded LC molecules. Both of
them provide a specific idea for designing new LC structures [16,33]. Naturally, H-bonded
supramolecular LCs have been rapidly developed into a flexible, facile and cost-effective
approach for novel smart materials [84–86].

In this review article, we describe topics on the recent progress of H-bonded supramolec-
ular liquid crystal, which consists of assemblies among organic LC molecules, or between
inorganic materials and organic LC molecules. We will discuss molecular structures and
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the relationships between molecular self-assembled structures and functions, especially the
formation, mechanism and advantage of hydrogen bonds. In addition, we focus on some
H-bonded LC systems which showed a new LC phase, wider phase transition tempera-
ture, better mechanical properties, “reversible” deformation behaviors, wider reflection area
or other better performance properties with some external stimuli, for example, light, pH,
thermality and humidity.

5. Hydrogen-Bonded Supramolecular Self-Assemblies of Organic Liquid
Crysta Molecules

As mentioned above, H-bond sensitivity to an external stimulus gives LC com-
plexes diverse response functions (e.g., light, pH, humidity and heat). Here, H-bonded
supramolecular LCs are classified into a few representative types according to their
stimulus-responsive capability.

5.1. Photo-Responsive Type

The key is to introduce light-sensitive chromophores into H-bonded supramolecular
LC systems [87]. Molecules with photo-isomerized azobenzene groups are a fine exam-
ple that can trigger self-assembly and disassembly by intermolecular H-bonds [88–91].
In these cases, the azobenzene groups underwent reversible trans–cis transformation under
ultraviolet (UV) and visible (Vis) light irradiation. The azobenzene isomers proceed with
a geometrical change on the molecular level [92–96]

In particular, photo-driven actuators have been rapidly upgraded to H-bonded
supramolecular LC polymers (LCPs), including azobenzene-containing side-chain [91]
and main-chain LCPs [89]. Their outstanding self-healing and photoinduced deformable
properties keep attracting more and more attention [97]. As for H-bonded LCs based on
azobenzene molecules or a polymer, proportion of H-bonds and the resulting LC phase in
the LC complex can be tuned by photoisomerization [98].

Supramolecular side-chain LCPs are usually formed by H-bonds between hydroxyl
and cyano groups [90,99–102]. Wang et al. employed 4-hydroxy-4′-cyanoazobenzene and
poly(4vinylpyridine) with 4-phenylazophenol (P4VP) to construct H-bonded supramolec-
ular azobenzene complexes (see Figure 3) [103]. Along with an increasing molar ratio of
azobenzene groups to the pyridine ring of P4VP repeat units (FA), H-bonding complexa-
tion, as well as the band intensity in infrared spectra, were enhanced. For P4VP/AzoH,
angular hole burning (AHB) did not allow a stable orientation, or orientation transfer from
azobenzene to pyridine through H-bonds, which led to a decrease in the photo-orientation
efficiency at a high azobenzene content. However, for P4VP/AzoCN, the angular redistri-
bution (AR) made a positive contribution to the photo-orientation at a high azobenzene
content. This may be caused by the emergence of an LC mesophase, as well as the much
higher dipole moment of AzoCN compared to AzoH. Obviously, H-bonds regulated the
optical photo-orientation of this supramolecular polymer. Koskela et al. applied H-bonds
between guest azobenzene units to stabilize the photoinduced birefringence of a bisazo-
polymer. These resulting H-bonded complexes play a leading role in this stabilizing effect,
owing to their large length-to-diameter ratio and low side-chain mobility compared with
the corresponding monoazo-functionalized polymers [91]. Yu et al. fabricated supramolec-
ular LC polymer microparticles through H-bonds between an azopyridyl polymer and
a series of dicarboxylic acid compounds [104]. Photoinduced deformation occurred with
LC phases for the assembled microparticles, whereas no changes in morphologies were
observed. Importantly, in the LC composite, H-bonds make those microparticles more
stable upon photo irradiation.
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Figure 3. Supramolecular complexes of poly(4vinylpyridine) (P4VP) with 4-phenylazophenol (AH, R = H) and 4-hydroxy-
4′-cyanoazobenzene (ACN, R = CN), and photoinduced orientation as a function of time during orientation (laser on) of
P4VP/ACN (100%) and P4VP/AH (100%). Reprinted with permission from reference [103]. Copyright (2018) American
Chemical Society.

Compared with side-chain ones, main-chain LCPs favor larger deformation upon
some irradiation levels owing to their better mechanical properties and stronger chain
anisotropy [105]. Typically, in physically crosslinked supramolecular fibers, the secondary
amino or amide groups formed H-bonds, and other azo groups completed photoinduced
deformation upon UV irradiation (wavelength: 365 nm) at 40 ◦C [106]. Subsequently,
among azo polymer chains, strong H-bond interactions between amide groups can bring
higher thermal stability, a lower glass transition temperature and a wider crystalline phase
temperature range. Additionally, H-bonds play a vital role in photomobility for the much
higher mechanical strength of azo polymers [107]. Figure 4 shows the inherent molecular
self-assembly through H-bonds, and the resulting macroscopic deformation of these Azo-
PEA-6 fibers upon exposure to UV and visible light, respectively. The response time for the
LC fiber bending decreases rapidly with the increase in both the UV light intensity and
the ambient temperature, and finally becomes almost unchanged with a further increase.
Clearly, higher UV light intensity or temperature can accelerate reversible isomerization of
the backbone azobenzenes. However, another polymer similar to Azo-PEA-6, in which the
ester bond replaced the original amide bond, showed no photodeformation upon exposure
to UV or visible light. This verified the decisive role of the H-bond-crosslinked networks in
the recycled photomobility. Better thermal stability, a lower glass transition temperature
and a wider range of the smectic phase appeared and developed from H-bonding in
this structure.

Figure 4. H-bonding self-assembly and photoinduced deformation upon irradiation with 365 nm
UV light (150 mW cm−2) and visible light (λ > 510 nm, 120 mW cm−2) at 25 ◦C. Reprinted with
permission from reference [107]. Copyright (2017) Royal Society of Chemistry.
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Moreover, chiral nematic mesoporous organosilica (CNMO) films were constructed
via H-bonding self-assembly between hydroxyl and cyano groups, in which a columnar
nematic structure with broad range of phase transition was formed inside the pores. Since
H-bonding can adjust the orientational order of the mesogens, the photonic properties
of the chiral nematic mesoporous host can be tuned by heating or UV irradiation [108].
As soon as it is irradiated by UV light at 365 nm for 5 s, a weakened birefringence of the LC
guest was observed, showing photochromic behavior of hybrid materials. Interestingly, H-
bonded supramolecular LC composites were applied to build up fluorescence-responsive
materials [109]. Compared to the LC composites without H-bonds, the H-bonded LC
composites behaved with a significant shift of the emission band to the long-wave region
in their fluorescence spectra upon irradiation. After annealing treatments, the irradiated
H-bonded LC composites underwent a decrease in dichroism values, but the one without
H-bonds experienced a significant increase. Given the heat sensitivity of H-bonds, this may
be attributed to the destroyed orientation of H-bonded supramolecular LC composites
during annealing. Similarly, this kind of LC composite can also reorganize to perform
photoinduced orientation once exposed to UV light [110]. The internal LC alignment
direction can be regulated by exposure energy.

5.2. pH-Responsive Type

Harris et al. reported a H-bonded monodomain LC nematic network that can conduct
a dramatic reversible bending deformation in response to small changes in pH value [111].
Here, H-bonds appeared within the carboxylic acid groups of acrylate monomers. When
exposed to KOH solution, this LC film underwent a reduction in H-bonding to disrupt
the nematic cores of the mesogenic network, followed by anisotropic deformation. Below
the pH threshold, the LC network expansion was modest, along with little detectable
anisotropy. Above the pH threshold, the expansion rate in the perpendicular direction
significantly exceeded that in the parallel direction, along with H-bond breakage and loss
of ordering.

Afterwards, Dirk J. Broer’s group adapted H-bond-bridged smectic networks to fab-
ricate well-ordered nanoporous membranes [112,113]. This kind of smectic well-ordered
polymer nano-membrane can be switched between an open and a closed state by mod-
ulation of the pH (see Figure 5a). At high pH values, the smectic membrane is in the
open state owing to the destruction of interlamellar H-bond bridges. Once those bridges
were broken, the smectic networks generated periodic lateral pores in both a planar align-
ment and homeotropic alignment, to absorb water rapidly by spontaneous permeation.
Of course, a reversible swelling behavior also occurs as the ambient pH value changes
(see Figure 5b,c) [113].

Besides, the control of H-bonds is also viewed as a common method to improve the
sensitivity of the helical supramolecular structure. InChen et al.’s paper, the selective
reflection band (SRB) of the cholesteric LCP film above pH 7 showed an obvious red shift
with increasing pH values, but hardly changed at pH 7 or below pH 7. This pH sensitivity
may be attributed to the breakage of H-bonds formed by isonicotinate and acrylates above
pH 7 [114].
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Figure 5. (a) Schematic representation of the formation of a smectic hydrogel based on LC monomers, and the swelling
at high pH value. The 3D figure illustrates the nanopores formed by hydrogen bridges. (b) Swelling and deswelling of
thin films of a planar-aligned smectic network (c) and a homeotropic smectic network (scale bar corresponds to 500 µ).
Reprinted with permission from reference [113]. Copyright (2012) Royal Society of Chemistry.

5.3. Thermo-Responsive Type

Cholesteric LCs (CLCs) possess outstanding reflection characteristics and are widely
used in colorimetric sensors and display devices [115–118]. This characteristic comes from
changes of helical pitch (p), namely, uniformly periodical layer deformations. In general,
p is defined as the distance in which CLC molecules rotate 360◦ around the helical axis to
propagate light [119]. The corresponding wavelength of the maximum reflection (λ0) is
calculated by the following equation:

λ0 = p × −
n

where
−
n = (ne + n0)/2 , namely, the average refractive index. So, the photonic band gap

(PBG) width of a conventional CLC is equal to the product of p and ∆n.
In other words, changes of PBGs in periodical helical orientation will bring about

changes of CLC reflective colors. It was demonstrated that controlling the breaking and
forming of H-bonds in CLCs can cause PBG changes [120]. In this study, the CLC com-
posites comprised a nematic LC molecule, a H-bond chiral dopant (HCD) and a series of
cholesteryl esters. When heated above 60 ◦C, the H-bonds in the HCDs were broken and
therefore two new chiral dopants comprising an initial proton acceptor and proton donor
were obtained with a resulting blue shift of the reflective color.

On the other hand, H-bonded chiral monomers (HBCMs), including cholesteryl
isonicotinate as a proton acceptor and 4-(6-acryloyloxyhexyloxy) benzoic acid as a proton
donor, were introduced to build up the CLC system [121]. While the temperature rose from
25 to 75 ◦C or when applying a voltage, many H-bonds of the HBCM were broken, and
then the helical twisting power value (HTP) of both the HBCM and cholesteryl additives
increased to generate a blue shift of the reflection band from 780 to 540 nm. This variation
made this system’s color change from the initial red to green. Similarly, a CLC composite
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self-assembled by H-bonds of chiral molecules exhibited an unusual red shift of selective
reflection band due to heating [122]. Here, he temperature increase makes the internal
H-bonds break, which decreases the HTP value, viz., increases p. Otherwise, the opposite
transition will happen.

On top of these interesting examples, Schenning et al. proposed an optical time–
temperature steam sensor based on crosslinked supramolecular CLC films [31]. The side
carboxyl groups of the acrylic monomers interacted to form H-bonds inside. While the
CLC film was heated up above the isotropic temperature (Tiso), the order loss of the internal
photonic structure accompanied those broken H-bonds to bring about a transparent coating
in the isotropic phase. After cooling down below Tiso for 20 min, a white scattering film
was obtained due to H-bond recovery.

In general, a thermo-responsive hydrogen-bonded CLC composite can also respond to
other stimuli such as light and electricity. Jin et al. introduced H-bonded chiral molecular
switches (CMSs) and photosensitive domains (e.g., azobenzene) into CLC films to construct
a dual photo- and thermo-responsive supramolecular system [123]. The HTP was switched
by temperature and UV/Vis light for different reflective colors (see Figure 6). Here, the
thermo-modulation of the H-bond interaction between donors and acceptors plays an
important role for the CLC composite. In the four H-bonded CLC mixtures containing
different chiral molecular switches, all the reflection bands exhibited a red shift under UV
irradiation or heat treatment.

Figure 6. (a) Chemical structures of H-bonded chiral molecular switch (CMS) and proton donors. (b) Schematic diagram
of the helical superstructure and the corresponding switching mechanism of H-bonded CMS in a nematic liquid crystal
(NLC) host reversibly tuned by UV/Vis light and heat. The photographs and reflection spectra of 8.1 wt% BNAzo-MBA in
SLC1717 in 10 mm thick planar cells under UV irradiation (c) and at various temperatures (d). Reprinted with permission
from reference [123]. Copyright (2015) Royal Society of Chemistry.

5.4. Humidity-Responsive Type

Humidity-responsive LC materials have also been investigated a lot for actuators and
sensors. Here, the sensitivity of H-bonds to moisture pushes H-bond supramolecular LC
systems to play a vital part.

Harris et al. developed a supramolecular H-bonded LCP network and converted it
into a polymer electrolyte under alkaline conditions. At this point, the inner H-bonds
disappeared, and this salt network became much more hygroscopic than the crude one.
Once in contact with moisture, it swelled to produce macroscopic deformation [124]. Then,
Schenning et al. fabricated a humidity-responsive supramolecular bilayer system via H-
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bonding between the side carboxy groups of the acrylate monomers (see Figure 7). This film
was first treated with an alkaline solution for H-bond breakage. After drying, it showed
a reversible deformation with spontaneous response to ambient humidity [125]. Similarly,
another LC hydrogen-bonded actuator was made by the same alkaline treatment. The
actuator was straight at a humidity level of 75%, but strongly bent at a humidity level of
15%. Furthermore, when a base treatment was selectively performed on the specific surface
regions, like patterning, the film underwent a violent deformation, with the bending angle
varying from −45◦ to +45◦ [126].

Figure 7. Formula of the LC mixture (a) and the humidity-responsive deformation (b). Reprinted
with permission from reference [125]. Copyright (2013) American Chemical Society.

Additionally, a H-bonded cholesteric LCP was prepared by treatment with 0.05 M
KOH solution for a printable and optical humidity-responsive sensor. Here, most of the
H-bonds formed by acrylate monomers were broken, and then the LCP was saturated with
water to yield a red-reflecting film. A fast reversible change of the reflection color between
green and yellow happened when it was exposed to water [127].

5.5. Other Stimulus-Responsive Types

In recent years, the detection of organic vapors has been viewed as a hotspot in the
field of sensors. Particularly, LC materials have also been adopted for organic vapor
sensors [128–131], even supramolecular H-bonded LC materials [132]. It has been reported
that a H-bond-bridged cholesteric LCP network was constructed to distinguish between
ethanol and methanol as an optical sensor material [133]. In this photopolymerizable LCP
film, H-bridges were formed between the side carboxylic groups of acrylic acids monomers.
Once these H-bonds were broken and activated using an alkaline solution, the network
became more porous on a molecular length scale to stimulate analyte absorption. Typically,
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those hydroxyl groups of alcohol molecules may interact with the activated carboxylic
moieties to produce a higher extent of expansion than crude H-bridged networks, followed
by a different reflective color. Ethanol molecules showed a larger red shift compared to
methanol molecules.

Hecht et al. adopted perylene bisimide (PBI1) to build up columnar and lamellar LC
systems into fibers and sheets by homo- and heterochiral H-bonded self-assembly upon
different cooling rates, respectively (see Figure 8) [134]. While the helical structure of Agg1
is formed by a homochiral arrangement of the respective P- and M-atropo-enantiomers, the
sheets of Agg2 are formed by an alternating heterochiral arrangement of the two. In a hot
solution, PBI1 self-assembles into two different aggregates, with purple fluorescence at a
fast cooling rate and red fluorescence at a slow cooling rate. The intermolecular hydrogen
bonds provide the possibility for the formation of these two different assembled structures
of fibers and sheets.

Figure 8. (a) Chemical structure of PBI1. (b) Schematic illustration of homochiral fibers (Agg1) and
heterochiral sheets (Agg2) self-assembled by cooling PBI1 solution (90 ◦C) with 10 and 0.6 K/minute,
respectively, and their subsequent organization into columnar or lamellar LCs. Reprinted with
permission from reference [134]. Copyright (2020) John Wiley and Sons.

Kato et al. fabricated a shear-responsive supramolecular H-bonded LC film containing
bi-, ter- and quarter-thiophene moieties [135] (see Figure 9a). All these compounds exhib-
ited various reversible luminescent colors under the action of shearing force. As shown
in Figure 9c, compounds 1–3 exhibited reversible luminescent color changes at ambient
temperature, for compound 1 from green to blue–green, compound 2 from orange–yellow
to yellow–green, and compound 3 from red–orange to yellow. These unique luminescence
phenomena were attributed to reducing of the luminescent cores, in which the H-bonds
between π-conjugated moieties transformed into linear modes to trigger the phase transi-
tion, e.g., the OI–M phase transition in compound 1 (see Figure 9b). Once shear force was
applied, these phase changes appeared. Similarly, another shear-responsive LC film using
benzodithiophene molecules was reported [136]. At an applied shear press of 2.4 × 105 Pa
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(shear strain: 390%), this film showed a luminescent color change from yellow to sky blue,
due to a phase transition from a rectangular columnar to a metastable optically anisotropic
mesophase. Interestingly, once shear stopped, the film emitted a blue–green luminescent
along with reaggregation of LC molecules. Besides, it showed a reversible color transition
at 150 ◦C. In the two examples mentioned above, all these structures and colors were
greatly dependent on the balance between intermolecular H-bonds and π–π interactions.

Figure 9. (a) Chemical structures of LC compounds 1–3. (b) Schematic illustrations of compound 1 assembly, the optically
isotropic (OI) phase (G form) and the unidentified mesophase (M) phase (BG form). (c) Luminescence images of compounds
1–3 under UV irradiation (365 nm) before (left) and after shearing (center), and after aging at ambient temperature (right).
Reprinted with permission from reference [135]. Copyright (2016) Royal Society of Chemistry.

Besides, supramolecular H-bonded LC complexes have been applied a lot in nanoporous
materials for selective molecule or ion adsorption [137–139]. For example, melamine has
not only attracted extensive attention since the milk powder incidents, but has also become
more and more important in the food industry. Yang et al. prepared supramolecular H-
bonded discotic LCs with a melamine core [140]. Here, five H-bonded complementary
functional groups, i.e., benzoic acid, cyanuric acid, homophthalimide, succinimide and
thymine derivatives, were involved. By comparison, the imidodicarbonyl unit was the best.
Finally, different columnar mesomorphic orders (e.g., hexagonal, rectangular and square
columnar phases) were obtained by adding functional thymine or succinimide units, and
changing the molar ratios of melamine to those of H-bonded complementary compounds.
Subsequently, this group reported a nanoporous supramolecular H-bonded LC polymer
based on a melamine/thymine derivative for the specific recognition and absorption of
melamine (see Figure 10) [141]. It showed a stable and recyclable absorbability of melamine
within a wide pH range (pH 4~10). On the other hand, these nanoporous supramolecular
H-bonded materials were constructed using melamine as a template, but also kept the
columnar hexagonal order after the removal of the template. Different pore sizes brought
about different absorbabilities. In another similar work, new discotic LCs, i.e., columnar
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hexagonal H-bonded complexes, were fabricated by the self-assembly of a melamine core
and a tris(triazolyl)triazine derivative [142]. As a template, this LC complex was treated with
polymerization and the removal of the melamine core, to obtain two nanoporous polymers
with different pore diameters. After base treatment, both of the systems could selectively
adsorb cationic dyes by electrostatic interaction.

Figure 10. Schematic illustration of the design and fabrication of supramolecular discotic LC polymeric material for
specific and selective uptake of melamine. Reprinted with permission from reference [142]. Copyright (2020) American
Chemical Society.

6. Hydrogen-Bonded Supramolecular Self-Assemblies of Inorganic Materials and
Organic Liquid Crystal Molecules

Besides organic molecules, inorganic materials with high anisotropy have also become
a good choice of dopant to improve the electro-optical performance of LC systems. In recent
years, the LC-mediated assembly of nanoparticles (NPs) has been developed a lot into new
tunable meta-materials for electronic, photonic and optical applications [143–145]. In many
systems, H-bonds were a key linker to combine LC molecules and NPs together, leading to
better stimulus-responsive performance [146].

In general, the compatibility of inorganic NPs with LC is a huge challenge in this
field. Surface modification is the most common solution for good compatibility and
dispersibility [62,147,148]. Most oxide NPs generally aggregate into primary particles
by H-bonds between the hydroxyl groups on the NP surface [149]. Similarly, carboxyl
acid group-containing LC molecules can induce the aggregation of pendant carboxylic
acid group-decorated NPs via intra- and inter-particle H-bonds. In order to avoid NP
aggregation, the NP surface can be modified to construct H-bonded supramolecular LC
without end carboxyl groups, and to promote NP–LC coupling [62].

Therefore, H-bonds can also be introduced to form a stable dispersion of NP–LC
composites. Figure 11 shows a H-bonded LC nanocomposite comprising 4-(n-hexyl)benzoic
acid (6BA) and zirconia (ZrO2) NPs capped with the diacids 6-phosphonohexanoic acid
(6PHA) and 4((6-phosphonohexyl)oxy)benzoic acid (6BPHA), respectively [61]. Obviously,
there were two different pendant acid groups, i.e., carboxylic and oxybenzoic acid groups,
on the surface of ZrO2 NPs. Particularly, the ratio control of the two surface groups
can reduce undesired interactions within NPs, which is due to the high selectivity of
H-bonds. Roohnikan et al. prepared a few model LC mixtures comprising trans-4-n-
butylcyclohexanecarboxylic acid (4-BCHA), 4-hexylbenzoic acid (6BA) and 4,4′-bipyridine,
and analyzed their molecular-level H-bond interactions with ZrO2 NPs systematically by
solid-state 1H and 13C nuclear magnetic resonance (NMR) and Fourier transform infrared
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spectroscopies (FT-IR) [150]. The solid-state 1H chemical shifts for the model complexes
indicated that the carboxyl–pyridine linkages of 6BA to the ZrO2-pyridine NPs were
stronger than the ones of 4-BCHA. When 6BA was hybridized with BPy, the acid proton of
6BA underwent a large shift from 14 to 16 ppm. In addition, the heterodimer formation of
pyridine groups can also be demonstrated by peak change.

Figure 11. Schematic diagrams of LC molecules, ligands, functionalization types and proposed H-bonding interactions
with the LC matrix along with a TEM image of the ZrO2 nanoparticles. Reprinted with permission from reference [61].
Copyright (2016) American Chemical Society.

Furthermore, new phenomena were found inside H-bonded supramolecular LC/ZnO
nanospike composites [151]. By polarized optical microscopy, different phases were ob-
served, but also lower temperature transitions, fast response times and high switching rates
compared to the pure LC samples. This was ascribed to the highly ordered assembly, espe-
cially internal π–electron stacking and dipole–dipole interactions between LC molecules
and ZnO nanospikes.

Katranchev et al. introduced carboxyl-functionalized single-walled carbon nanotubes
(SWCNTs) into alkyloxybenzoic acids (8OBA), to form a stable H-bonded LC compos-
ite [152]. Ezhov et al. utilized CdS nanorods (NRs) and poly(4-(nacryloyloxyalkoxy)
benzoic acids to produce a smectic C H-bonded nanocomposite. The optical properties
of this system were demonstrated to be dependent on the extent of CdS NR microphase
separation [153]. Similarly, Shandryuk et al. prepared another H-bonded LC nanocom-
posite using CdSe quantum dots (QDs) and poly[4 -(n-acryloyloxyalkoxy)] benzoic acids.
The nanolayers of the H-bonded side-chain LC polymers on the surface of CdSe QDs make
the resulting QD–LC system more stable and induce the QDs to become arranged in the
smectic layer [146]. Due to confinement to mesoporous aluminosilicate molecular sieves
(AlMCM-41), H-bonded supramolecular LC composites showed special phase behavior
and structural organizations [154]. Most of molecular H-bonds were broken, and then the
loaded monomeric 4-HBA and 4-BCA were chemisorbed to the AlMCM-41 pore surface
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by bidentate coordination bonds to aluminum cations. Naturally, the crude LC phase
disappeared, showing a wide temperature range of 10–120 ◦C.

7. Summary

This review mainly summarized the recent advances in H-bonded supramolecular
LC systems. Here, the formation mechanism and the inherent nature of supramolecu-
lar LCs were emphasized to highlight the enhancement of noncovalent interactions in
molecular anisotropy and stimulus-responsive capability. Particularly, basic directionality,
selectivity and reversibility make H-bonds the best option to build supramolecular LC
architectures. Some external stimuli easily break H-bonds with the LC phase transition, and
further induce property changes, and even macroscopic deformation. All of these merits
make H-bond supramolecular LC systems more functionalized and intelligent. Light,
heat, pH value, humidity and other physicochemical factors were employed as H-bond
switches to the structures and properties of supramolecular LC self-assemblies. Moreover,
inorganic nanomaterials were also introduced to improve electro-optical performance for
optoelectronics. In the foreseeable future, H-bonded supramolecular LC materials will
keep developing more new functions and applications.

8. Future Directions

Good sensitivity to external physicochemical stimulus or conditions makes H-bonded
supramolecular LC systems adjustable in structure and property, showing excellent con-
trollability, but joint H-bonds are unstable. This is a great challenge for applications in
which both controllability and stability must be taken into consideration.

1. Compatibility, including material, surface, interface, and cross-scale compatibility, is
also viewed as a big barrier for supramolecular LCs, especially supramolecular LCs
self-assembled by organic LC molecules and inorganic materials. Either shape and
size, or surface groups and chemical properties, make huge differences between or-
ganic and inorganic components. They are not conductive to the overall compatibility
of supramolecular LCs. Some effective solutions, e.g., surface modification, need to
be performed during the construction of supramolecular LCs.

2. The existing applications of H-bonded supramolecular LCs still focus on reflectors,
sensors and actuators. More functions and applications need to be developed.
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