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Abstract: In this work, the ternary titanium, copper, and silver (Ti-Cu-Ag) system is investigated as a
potential candidate for the production of mechanically robust biomedical thin films. The coatings
are produced by physical vapor deposition—magnetron sputtering (MS-PVD). The composite thin
films are deposited on a silicon (100) substrate. The ratio between Ti and Cu was approximately
kept one, with the variation of the Ag content between 10 and 35 at.%, while the power on the
targets is changed during each deposition to get the desired Ag content. Thin film characterization is
performed by X-ray diffraction (XRD), nanoindentation (modulus and hardness), to quantitatively
evaluate the scratch adhesion, and atomic force microscopy to determine the surface topography. The
residual stresses are measured by focused ion beam and digital image correlation method (FIB-DIC).
The produced Ti-Cu-Ag thin films appear to be smooth, uniformly thick, and exhibit amorphous
structure for the Ag contents lower than 25 at.%, with a transition to partially crystalline structure for
higher Ag concentrations. The Ti-Cu control film shows higher values of 124.5 GPa and 7.85 GPa for
modulus and hardness, respectively. There is a clear trend of continuous decrease in the modulus
and hardness with the increase of Ag content, as lowest value of 105.5 GPa and 6 GPa for 35 at.%
Ag containing thin films. In particular, a transition from the compressive (−36.5 MPa) to tensile
residual stresses between 229 MPa and 288 MPa are observed with an increasing Ag content. The
obtained results suggest that the Ag concentration should not exceed 25 at.%, in order to avoid an
excessive reduction of the modulus and hardness with maintaining (at the same time) the potential
for an increase of the antibacterial properties. In summary, Ti-Cu-Ag thin films shows characteristic
mechanical properties that can be used to improve the properties of biomedical implants such as
Ti-alloys and stainless steel.

Keywords: Ti-Cu-Ag thin films; mechanical properties; magnetron sputtering; nanoindentation;
FIB-DIC

1. Introduction

Over the years, metals have been widely used for biomedical implants because of their
properties, such as mechanical strength, corrosion resistance, and biocompatibility [1,2].
Several metallic elements and their alloys such as titanium (Ti), Ti-based alloys, platinum
(Pt), and austenitic stainless steel (316 L) are used for orthopedic and biomedical appli-
cations [3]. However, degradation of metallic implant takes place due to the interaction
with corrosive media inside the human body with a subsequent release of metallic ions,
such as nickel (Ni) ions released from corrosion of titanium-nickel (Ti-Ni) alloy implants,
which is harmful for the patients [4,5]. To solve the metallic degradation problem, surface
treatment or application of thin films are common techniques used to improve the chemical,
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mechanical, and biological properties of the surface interfaced with the living tissues [6].
For biomedical implants, the most important factor is to have excellent corrosion resistance
and low toxicity due to released metallic ions [7], possibly in combination with antibacterial
or even antiviral functionalities [8,9].

Mostly monolayers or multilayers of oxides, nitrides, and carbides thin films of
different elements such as Zr, Ti, Cu, Ni, Au, and Ag are used in order to enhance the
surface mechanical properties [10]. However, in order to further improve the corrosion
resistance and biocompatibility of the implants, the implant alloys are often coated with
various multi-element thin films such as Zr-based thin films (Zr-Cu, Zr-Cu-Ag, ZrCN,
Zr/ZrCN multilayer) [11–13] and Ti-based thin films (TiN, Ti-Cu, Ti-Zr-Si) [14,15]. The
Young’s modulus and hardness of Zr-based thin films were reported in the range of 95–
121.7 GPa and 5–7 GPa, respectively [12,16]. Ti-based thin films showed high hardness
in the range of 5–12.5 GPa and elastic modulus of 90–200 GPa [17,18]. Metallic thin films
have recently emerged as alternative advanced surfaces for many applications, such as
micro/nano-electromechanical systems and for biomedical use. For instance, due to their
structural features and physiochemical properties, interest is rising for metallic thin films
in the field of bio-implants and surgical tools [19].

In particular, Ti-based intermetallic thin films could combine promising biocompat-
ibility and high durability [18,20]. Among several available techniques, physical vapor
deposition (PVD), e.g., sputtering, is one of the most commonly used techniques to coat
implants [21], as the films produced by the sputtering process have very low surface rough-
ness, which also play an important role on biofilm adhesion on Ti-based thin films [22–24].
The addition of several metallic elements during processing can improve the properties of
pure Ti by the formation of intermetallic compounds. Specifically, silver (Ag) and copper
(Cu) add new properties without showing a significant difference in biocompatibility [25].
The properties of intermetallic thin films are usually better than pure metallic films due
to their mixed bonding (metallic, covalent, and ionic) at specific stoichiometry [26]. Many
authors have studied the antibacterial behavior of metallic elements such as Au, Cu, Zn,
Ag, and their alloys because of their ability to kill bacteria up to a broad spectrum [27]. The
antibacterial mechanism of silver is complicated due to its interaction with thiol groups of
bacteria proteins which may affect the replication of DNA [28]. However, various forms of
Ag have been used in medicine in the past, including pure metal [29], silver nitrate [30],
silver salts [29], silver polymer composite [8], silver nanoparticles [29,31], and Ag-based
thin films [32].

In this framework, the study of the influence of Ag addition on the properties of
Ti-based alloys still represents a major challenge in the scientific community. In fact, the
improvement of antibacterial properties is usually accompanied by an undesired decay of
the mechanical and tribological behavior, which needs to be solved. Although Ag has been
used with Zr-based thin films such as Zr-Cu-Ag in previous studies [33,34], to the best
of the authors’ knowledge, Ti-Cu-Ag thin films have never been used to coat biomedical
implants, although there has been an increasing interest in application of Ti-Ag-based
thin film systems in the biomedical field because of the two-fold advantage of this system:
biocompatibility of titanium and antimicrobial effect of silver [32,35]. Copper is considered
a promising element in the field of biomedical applications because of its antibacterial
activity against numerous bacteria [36]. The biocidal performance of copper is associated
to liberation of Cu+1 and Cu+2 ions [37–39] as observed in Ti-Cu [40].

In recent years, copper-based systems have also been proposed for the production
of surface antiviral coatings with virucidal properties, especially in view of the recent
COVID-19 pandemic [41,42]. Very recent examples include [42,43] copper-coated touch
surface fabricated by cold-spray technology, as well as antiviral CuxO/TiO2 photo catalyst
thin films with interesting photo-activated anti-viral properties.

These examples from the literature suggest the Ti-Cu-Ag system to be a promising
ternary system for the production of surface with potential multiple biocidal functionality
(both antibacterial and antiviral). At the same time, the analysis of feasibility for the real ap-
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plication of this ternary system requires a fundamental study on structure –microstructure
–property correlation of the films, with specific focus on the mechanical properties that are
a fundamental requirement for real industrial applications.

For this reason, in the present study we have produced and characterized Ti-Cu-Ag
thin films with a varying Ag content from 10 to 35 at.% on Si substrates by co-deposition of
Ti, Cu, and Ag and studied thin films. The effect of the Ag content in the Ti-Cu-Ag compos-
ite thin films on their microstructure and mechanical properties is evaluated. Although the
biocompatibility and antimicrobial and antibacterial properties are commonly the primary
properties of interest of thin films for biomedical applications, we first focused on the
correlation between the thin film composition and microstructure and their mechanical
properties, which are as decisive for the application of thin films for implants as their
antibacterial properties.

2. Materials and Methods
2.1. Thin Film Deposition

A series of Ti-Cu-Ag thin films was deposited on rotating 525 µm-thick silicon (100)
substrates (21 × 7 mm2) by direct current (DC) magnetron sputtering in a custom-made
deposition system equipped with three unbalanced magnetrons. Three pure metallic
targets, Ti, Cu, and Ag (3” in diameter), were employed with confocal arrangement at a
maximum tilting angle of ~50 degrees with respect to the substrate normal (see Figure 1).
The composite monolayer thin films were produced by the co-sputtering of all three targets
at the same time at room temperature without applying negative substrate bias voltage. The
power supplied to metallic targets to obtain the desired film compositions is summarized
in Table 1. All the substrates were cleaned in ultrasonic bath and ethanol for 10 min before
mounting on the substrate holder at equidistant positions with a Kapton polyimide tape.
The distance between the substrates and targets was 70 mm. The substrate rotation was
kept constant at 80 rpm for all thin films.
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Figure 1. (a) Physical vapor deposition (PVD) chamber of three tilted metallic targets with respect to
the substrate holder, and (b) targets ignite during sputtering.

Table 1. Power supplied to metallic targets to obtain the desired compositions.

Sample Composition Ti:Cu ~ 1 Power at Ti
(W)

Power at Cu
(W)

Power at Ag
(W)

Ti-Cu (Control) 48:52 150 29 0

Ti-Cu—10%Ag 43:47 143 27 3

Ti-Cu—15%Ag 40.5:44.5 135 26 4

Ti-Cu—20%Ag 38:42 128 24 5

Ti-Cu—25%Ag 35.5:39.5 120 23 7

Ti-Cu—30%Ag 33:37 113 21 9

Ti-Cu—35%Ag 30.75:34.25 105 20 11
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The deposition chamber was pumped down to a vacuum of approximately 1 × 10−5 Pa
before each deposition run. The argon pressure was maintained at 0.52 Pa corresponding
to the gas flow of 30 sccm for all thin films. For further substrate cleaning and surface acti-
vation, a preliminary etching step was performed, powered by radio frequency (RF) power
supply at 50 KHz, at an argon pressure of 1.2 Pa and a discharge power of 0.03 KW. During
the deposition, DC discharge power was applied to the magnetrons in a power-controlled
mode for 40 min (see Table 1), resulting in film thickness varied between 1.40 and 1.48 µm,
depending on the film composition.

2.2. Characterization of Thin Films

The crystallographic structure of the thin films was investigated by X-ray diffraction
(XRD) using a θ-2θ Bruker D8 Advanced system with Cu Kα radiation (λ = 0.154 nm).
Diffraction patterns were collected by using grazing incident angle of 1 degree with time
step of 0.02◦/s. The operating voltage and current were 40 kV and 40 mA, respectively. The
elemental composition of the thin films was evaluated via energy dispersive X-ray spec-
troscopy (EDX, Oxford Instrument INCA, High Wycombe, UK), using built-in sensitivity
factors for calibration.

The film thicknesses were measured by using a white light optical profilometer with a
Leica DCM 3D software package via automatic step measurement of coated and uncoated
parts of the substrate. All the deposition rates were calculated as film thickness over the
time, neglecting eventual differences in the film density. The surface topography and
average roughness Ra of the thin films were analyzed and measured using a Bruker atomic
force microscope (AFM Dimension Icon, Bruker®, Billerica, MA, USA) system scanning
in a tapping mode with high aspect ratio tips according to the method described in our
previous paper [44]. The tips used have half-apex angle of <25◦ with a spring constant of
42 N/m and a resonant frequency of 320 KHz. All measurements were taken on an area
of 5 × 5 µm2 and the data was processed using a Bruker Nanoscope Analysis software
v1.40r1 suite.

Elastic modulus (E) and hardness (H), were determined using nano-indentation testing
method, using a KLA-Nanomechanics G200, (KLA Corporation®, Milpitas, CA, USA), fitted
with a Berkovich diamond indenter operated in continuous stiffness measurement mode,
hence allowing obtaining both E and H, as a continuous function of the depth from a single
indentation experiment [45]. A standard fused silica sample was tested before and after
a batch of measurements to calibrate the tip and ensure the reliability of the results. For
all measurements reported here, a minimum of 25 indentations were performed and the
calculations were made by the Oliver and Pharr method from the load-displacement curve
using 10% of the film thickness at the maximum indentation depth [46].

For adhesion evaluation, scratch tests were performed using an Anton Paar Revetest
Xpress micro scratch tester (Anton Paar®, Graz, Austria) in which critical load acting
normal to the thin film surface at incident of failure is related to adhesion between thin
film and substrate. However, critical load depends on mechanical strength (adhesion) of
the thin film-substrate system but also on various parameters such as scratch indenter
tip radius, film thickness, friction effects, hardness, and elastic modulus of coatings and
substrate material. During the test, scratches were made on the surfaces with a sphero-
conical diamond tip (200 µm radius) which is drawn at a constant speed (16.5 mm/min)
under a progressive load (1–30 N) with a fixed loading rate (120 N/min).

2.3. Residual Stress Measurements

The residual stress measurements were carried out by the focused ion beam and digital
image correlation (FIB-DIC) micro-ring core method on a FEI Helios Nanolab 600 dual
beam focused ion beam scanning electron microscope (FIB/SEM, Thermo Fisher Scientific,
Waltham, MA, USA), using a specifically developed automated procedure [47]. The milling
was performed using an annular trench with an inner diameter of 6.5 µm while employing
a current of 0.92 nA at the acceleration voltage of 30 kV. Ten high resolution secondary elec-
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tron images were acquired before and after each milling step using an integral of 128 images
at a dwell time of 50 ns. The automatic procedure continuously monitored and corrected
electron and ion beam drift while maintaining the same contrast of the reference image. The
milling was performed until the h/D ratio of 0.2 was achieved, where h and D represent
the milling depth and the pillar diameter, respectively. The h/D ratio of 0.2 ensures an
optimal strain relief, as demonstrated in number of recent publications [48–50]. After the
milling cycle, all images were processed with a customized MATLAB v2.1.0.0 based DIC
code [51] to calculate the relaxation strain over the pillar. Assuming an equi-biaxial stress
distribution in the thin film, which is more than reasonable in the case of PVD films on flat
substrates, average stress in the film was calculated by using the interpolated relaxation
strain at h/D = 0.2, elastic modulus (E), and Poisson’s ratio (ν) according to the following
equation [52]:

σ = − E∆ε
(1 − ν)

(1)

where, σ is the average residual stress in the film and ∆ε is the relaxation strain. Thin film
thickness was also measured by using the FIB cross-section at a current of 0.92 nA at 30 kV.
The step-by-step milling procedure highlighting the different stages of milling process
along with the thin film cross-section is represented in Figure 2.
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The residual stress state was also indirectly determined by substrate curvature mea-
surements, according to the Stoney’s equation:

σf =

{
Ms

6(1 − vs)

}(
t2
s

t f

)(
1
R
− 1

R0

)
(2)

where σf is the residual stress in the thin film, t f the film thickness, ts the substrate thickness,
Ms the biaxial elastic modulus of the substrate (180 GPa, in the present case), vs is the
Poisson’s ratio of the substrate, R0 and R are the radii of curvature of the substrate before
and after the thin film deposition, respectively.
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3. Results and Discussion
3.1. Elemental and Structural Characterization

The Ti-Cu-Ag composite thin films with a varying Ag content were grown under
optimized process conditions with regards to the target power and working pressure,
while the Ti/Cu ratio in the thin films was kept approximately equal to 1 by a slight
variation of the target power, the Ag content was varied between 10 and 35 at.% by a
progressive increase of power on the Ag target. The exact elemental composition from EDX
measurements is shown in Table 1.

X-ray diffraction patterns of the as-deposited thin films are shown in Figure 3. For
the binary Ti-Cu thin films, only a broad diffraction hump in the [38–45] 2θ-range is
observed without any pronounced Bragg’s diffraction peaks which represent amorphous
glassy structure with Ti-Cu ratio nearly equal to one. Although the Ti-Cu alloys form
multiple intermetallic compounds, a solid solution forms for alloys with the Ti48Cu52
composition [32]. This was the target composition of the Ti-Cu thin film in this study in
order to get the amorphous bulk metallic glass structure [34]. While keeping the Ti/Cu
ratio constant and increasing the Ag content, the diffraction hump shifted towards lower
2θ angle. The position of the maximum level of broad peak can be correlated, in the
first approximation, to the typical distance between nearest-neighbor atoms within the
amorphous matrix. The decrease in the nearest neighbor distance with Ag content can be
associated with the progressive substitution of Ti atoms by Cu and Ag atoms.
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While the structure of the Ti-Cu-Ag composite thin films with the Ag content lower
than 25 at.% remains amorphous similar to the binary Ti-Cu thin film (Figure 3), a more
pronounced diffraction peak was observed for the ternary Ti-Cu-Ag thin films with the
Ag content varying from 25 to 35 at.% reflecting their nanocrystalline structure. The full
width at half maximum (FWHM) of the diffraction peak is obviously higher for the binary
Ti-Cu thin films than for the composite Ti-Cu-Ag thin films and decreased when the Ag
content increased. This feature may reflect a more ordered structure of the Ti-Cu-Ag thin
films than that of the Ti-Cu thin films especially for the Ag contents higher than 25 at.%.
Therefore, the Ag content of ~25 at.% was identified as a critical threshold for the transition
from an amorphous to a crystalline structure of Ti-Cu-Ag system.
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3.2. Surface Morphology

The surface average roughness Ra of the Ti-Cu-Ag thin films with a varying Ag
content determined by AFM is shown in Figure 4. The AFM images reveal crack-free
smooth surfaces for all thin films with an increase in roughness as the Ag content increases
from 10 to 35 at.%.
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Figure 4. Atomic force microscope (AFM) images of the Ti-Cu and Ti-Cu-Ag thin films with 10, 25,
and 35 at.% of Ag.

The surface roughness increase from 0.5 to 1.3 nm corresponds to the appearance of the
crystalline phase at the Ag content of ~20 at.% and grain coarsening at higher Ag content
of 35 at.% (Figure 4). On the other hand, the amorphous Ti-Cu thin film and Ti-Cu-Ag thin
films with the Ag content below 20 at.% exhibit the average surface roughness well below
0.5 nm (Figure 5). Thin films with such a low average surface roughness are in general very
favorable for antibacterial biomedical applications [8], especially if an adequate amount
of antimicrobial agents such as Ag and Cu is added into the protective thin films, which
induce a release of metallic ions after exposure to a humid environment [53].
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3.3. Mechanical Properties

Thin films for the biomedical applications must have a high mechanical stability to
insure their durability in service. The elastic modulus (E) and hardness (H) of Ti-Cu-Ag
thin films as a function of the Ag content are shown in Figure 6. The highest E and H
values of 124.50 GPa and 7.85 GPa, respectively, exhibit the Ag free Ti-Cu thin film. There
is a slight decrease in both modulus (118.6 GPa) and hardness (7 GPa) with the addition of
silver into the Ti-Cu thin films. With the first addition of 10 at.% Ag, it shows 5% decrease
in modulus and 10% decrease in hardness. The phase changes from amorphous to partially
crystalline at 25 at.% Ag and changes to completely crystalline with 35 at.% Ag, which
causes the decrease in mechanical properties. At threshold phase change point of 25 at.%
Ag, there is a decrease of 10% in modulus and 18% in hardness which is almost two times
lower than controlled sample. With the further addition of Ag into the Ti-Cu thin films,
both modulus and hardness continuously decrease to the lowest values of 105.5 GPa and
6 GPa for E and H, respectively, at 35 at.% of Ag in the Ti-Cu-Ag thin films. The percentage
decrease in modulus is 15.6% and hardness is 23.5% for 35 at.% Ag as compared to the
controlled sample. Although the nanocrystalline materials are commonly harder and stiffer
due to grain boundary-related hardening [54,55], the decrease of E and H of the Ti-Cu-Ag
thin films is dominated by the effect of the addition of soft Ag atoms into the thin films
and may even be intensified by softening due to rotation and/or sliding of crystallites with
sub-critical size [56,57].
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3.4. Scratch Test

The scratches on the thin film surfaces were observed with an optical profilometer
and images at incident of the first failure (LC1) are shown in Figure 7. The first failure
in all the thin films was semi-circular rings due to buckling inside the scratch track. The
chipping of the films (LC2) shows the first delamination in the scratch track. Finally, the
complete delamination of the thin film from the substrate occurred and is represented in
the images as failure at LC3.
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Scratch adhesion test confirms that produced thin films have good adhesion with the
substrate. All the critical loads as a function of silver content in the Ti-Cu thin films are
represented in the Figure 8. The critical load LC1 increases with the significant increase
in silver content up to 20–25 at.% and decreases for higher silver content. The silver
containing thin films show significantly higher LC2 and LC3 values as compared to TiCu.
The complete delamination of the thin films at higher critical load (20–25 N) reflects good
adhesion with the substrate. The increase of critical load for increasing silver content is
probably associated to the increase of ductility associated to the reduction of hardness for
higher silver content [58,59].
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3.5. Residual Stress Measurement

The relaxation strain for the Ti-Cu and Ti-Cu-Ag thin films determined by the FIB-DIC
method is shown in Figure 9. It represents a measure of the variation of the residual stress
state induced during processing and as a consequence of the thermal expansion mismatch
of a thin film and a substrate across the thin film thickness. The relaxation strain for the Ti-
Cu thin films shows positive and constant values throughout the entire thin film thickness,
which corresponds to a steady compressive residual stress state in the thin films. All the
Ag-containing Ti-Cu-Ag thin films show negative relaxation strain values increasing from
the thin film surfaces towards the thin film/substrate interface, which reflects a gradient in
the tensile residual stress in the thin films. The development of the tensile stress state is
obviously an effect related to the Ag addition, which correlates well with the decrease of
hardness as the tensile residual stress in the thin films, together with the presence of Ag
atoms, allows for more pronounced plastic deformation during nanoindentation.
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(FIB-DIC) method for Ti-Cu and Ti-Cu-Ag thin films with a various Ag content as a function of the
milling depth.

Besides the absolute values, the slope of individual curves also gives us information
about stress development in the thin films. The relaxation strain of the Ti-Cu-Ag thin film
with 30 at.% of Ag reveals a larger slope of the curve compared to other Ti-Cu-Ag thin
films, which indicates a greater residual stress gradient in the thin film, which is likely
associated with the polycrystalline nature of the thin film microstructure. In fact, larger
tensile stress developed in the thin films deposited under identical process conditions but
different crystallite sizes is given by the interaction of surface atoms across individual
growing islands in the initial growth stages of polycrystalline materials and reduction of
the surface area when adjacent growing islands form the grain boundaries [60]. Another
important contribution to the tensile stress, which may be more significant than grain
boundaries effects, is an increasing thermal expansion mismatch strain between the high
Ag-containing thin films and the Si substrate, especially for the Ti-Cu-Ag thin film with the
Ag content higher than 25 at.% [61].

A comparison of average residual stress determined by using the FIB-DIC method
and from the substrate curvature measurements is given in Figure 10. The residual stress
obtained from both techniques shows a similar trend, with a clear transition from compres-
sive to tensile stress in the thin films after the addition of silver. The Ti-Cu thin film exhibits
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compressive residual stress of −36.5 MPa and tensile stresses ranging from 228.5–314 MPa
developed in the thin films after the addition of silver from 10–35 at.%. It is noteworthy that
the values calculated by FIB-DIC are roughly 35% higher than the values obtained by the
substrate curvature method according to the Stoney’s equation. This difference in the stress
values determined from those two methods was already observed in our recent work and
related to the difference of the representative volume element (RVE) in the two cases [48].
The curvature method takes into consideration the whole volume of the sample which can
also include the stress relaxation effects associated with the microdefects and interfaces.
On the other hand, FIB-DIC measures only a few cubic micrometers of the material that
does not consider relaxation effects related to micro-cracks. Another important point to
consider is that the wafer curvature method only takes into consideration the biaxial elastic
modulus of the substrate, while the FIB-DIC method uses both the elastic modulus and the
Poisson’s ratio of the thin film and substrate for calculating the residual stress.
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In summary, the microstructural and nanomechanical characterization activities show
a remarkable effect of silver addition on Ti-Cu-Ag co-sputtered thin films, where a transition
from amorphous to crystalline and a more significant decrease of the mechanical properties
are observed for Ag addition above 25 at.%.

The present study, therefore, suggests that Ti35.5-Cu39.5-Ag25 thin film, with increased
adhesion, sufficiently good hardness, and partially crystalline structure, can be considered
as the optimal composition out of produced thin films. The proposed configuration,
therefore, could be a suitable candidate for the evaluation of biocompatibility, antibacterial,
and antiviral properties of the coatings, which will be the focus of the next work by
the authors.

4. Conclusions

The binary Ti-Cu and ternary Ti-Cu-Ag thin films were deposited by PVD magnetron
co-sputtering using a multi-target reactor. The purpose of this study is to understand the
influence of Ag on the mechanical and structural properties of the thin films. All the thin
films were homogenously thick and very smooth, with a maximum average roughness of
1.2 nm. With regards to the silver content, thin films showed amorphous structure up to
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20 at.% of Ag that changed to partially crystalline at 25 at.% and then completely crystalline
at higher Ag content in the thin film. The addition of silver content contributed to a
significant increase of the thin film adhesion, but reduced both elastic modulus from 124.5
to 105.5 GPa and hardness from 7.8 to 6 GPa. Ti-Cu thin films showed compressive residual
stress and changed to completely tensile stresses with the addition of silver in the thin
films. Based on the multi-technique characterization, it can be concluded that a suggested
Ag composition of about 25 at.% exists to find the optimal mechanical properties of Ti-
Cu-Ag sputtered thin films (i.e., improved adhesion and sufficiently good hardness), still
maintaining the potential of improving antibacterial properties thanks to silver addition
and very small average surface roughness. Further work will focus on the optimization of
the Ti-Cu-Ag composition and structure in order to investigate the biocompatibility and
antibacterial (or even antiviral) properties of the thin films.
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