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Abstract: Microbubbles have already reached clinical practice as ultrasound contrast agents for
angiography. However, modification of the bubbles’ shell is needed to produce probes for ultrasound
and multimodal (fluorescence/photoacoustic) imaging methods in combination with theranostics
(diagnostics and therapeutics). In the present work, hybrid structures based on microbubbles with
an air core and a shell composed of bovine serum albumin, albumin-coated gold nanoparticles, and
clinically available photodynamic dyes (zinc phthalocyanine, indocyanine green) were shown to
achieve multimodal imaging for potential applications in photodynamic therapy. Microbubbles
with an average size of 1.5 ± 0.3 µm and concentration up to 1.2 × 109 microbubbles/mL were
obtained and characterized. The introduction of the dye into the system reduced the solution’s
surface tension, leading to an increase in the concentration and stability of bubbles. The combination
of gold nanoparticles and photodynamic dyes’ influence on the fluorescent signal and probes’
stability is described. The potential use of the obtained probes in biomedical applications was
evaluated using fluorescence tomography, raster-scanning optoacoustic microscopy and ultrasound
response measurements using a medical ultrasound device at the frequency of 33 MHz. The results
demonstrate the impact of microbubbles’ stabilization using gold nanoparticle/photodynamic dye
hybrid structures to achieve probe applications in theranostics.

Keywords: microbubbles; albumin; gold nanoparticles; photodynamic dyes; photoacoustics; fluores-
cence imaging; ultrasound; zinc phthalocyanine; indocyanine green

1. Introduction

Microbubbles filled with air and various gases have been widely studied over the
past decades. Air microbubbles are widely used in medicine [1], food chemistry [2],
technology [3], as micromotors [4], and other fields [5]. The chemical composition of
microbubbles can be different, and the structure of the shell varies from lipids, polymers,
proteins to small bifunctional molecules [6–9]. The bubbles’ shell structure and their
stability are important factors to consider for their potential uses, which depends on the
core-shell engineering methods [10,11].

One of the most interesting agents for producing vesicles is protein [2,8,12,13], partic-
ularly bovine serum albumin (BSA), which is used in this work. The chemical nature of
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these microbubbles and the origin of their extremely long life span have been investigated.
The chemical mechanism by which high-intensity ultrasound creates air-filled protein
microbubbles from aqueous protein solutions is described in [14]. The microbubbles are
held together mainly by protein–protein crosslinking of cysteine residues. The main cross-
linking agent is superoxide, which forms as a result of the extremely high temperatures
generated during acoustic cavitation [15]. However, another study [16] showed that mi-
crobubbles can be produced with proteins lacking cysteine residues. The formation and
stability of microbubbles are due to hydrophobic interactions. In 2008, lysozyme-based
microbubbles with additional available thiol groups were obtained [15], in which the bind-
ing was carried out both due to hydrophobic interactions and due to crosslinking with
disulfide bridges.

Biomedical microbubbles are mainly used as ultrasound (US) contrast agents [17–20].
Another application of microbubbles is for intravenous oxygen delivery [21–23]. To ensure
unimpeded movement through the circulatory system, such microbubbles have an opti-
mum diameter of less than 10 µm. An interesting research topic involves the addition of a
second functionality—magnetic resonance imaging (MRI) contrast, dye or a photodynamic
therapy (PDT) agent. The achievement of microbubble stability is required for a wide
range of biomedical applications, which can be provided by proteins and lipids whereas
the use of a polymer as a shell material can create an overly rigid shell, which can reduce
the usefulness of microbubbles as ultrasonic contrast agents [24].

To perform bimodal tasks such as simultaneous US and photoacoustic (PA) imaging,
i.e., the combination of ultrasound imaging with MRI and CT, additional modules must be
introduced into the vesicle structure. For instance, in articles [25,26], gold nanorods were
obtained and introduced into the structure of bubbles as a double PA/US contrast agent.
Subsequently, the application can be extended for diagnostic purposes if gold surface can
be modified with targeted functional ligands [27]. The hybrid method can simultaneously
display anatomical and functional information, and show images with fair spatiotemporal
resolution. Besides, various contrast agents’ physical characteristics can expand the field of
application to a therapeutic effect. It is known that gold nanorods have tunable plasmon
resonance and other remarkable optical properties [28,29]. In another study, the authors
of [30] prepared smart gold nanoparticle-stabilized microbubbles composed of a gas-filled
core and a shell including smart gold nanoparticles (SAuNPs), which can be aggregated in
tumors and used in ultrasound-mediated cancer theranostics. Microbubbles aggregated in
tumors allow photoacoustic monitoring and photothermal treatment of tumors.

Photodynamic therapy is now well established for the treatment of cancer, and mul-
tiple autoimmune and infectious diseases [31,32]. Chemical compounds that are used as
photosensitizers can be divided into several groups, including non-porphyrin compounds,
the most developed drugs based on cyanines (for example, indocyanine green (ICG)),
as well as phthalocyanines, which are aromatic heterocycles consisting of four isoindole
rings connected by nitrogen atoms and capable of coordinating metal in the center of the
molecule (Photosens, Holosens) [33,34]. The main advantages of these compounds are
chemical homogeneity, absorption of light in the long-wavelength range of the spectrum
(675–700 nm), high extinction coefficient, and high quantum yield of singlet oxygen. The
possibility of chemical modification is an essential chemical feature of these photosensitiz-
ers. In this work, these molecules were used for cross-linking using a protein molecule that
makes it possible to quantitatively introduce a photosensitizer-dye into the structure of
bovine serum albumin, and then into microbubbles. This is a new topic that has not yet
been studied in the literature. The combination of PDT agents with microbubbles opens up
many possibilities for multifunctional diagnostics and therapy. It will also allow the use of
sonodynamic therapy [35], which combines ultrasound, oxygen and the use of photosensi-
tizers as an adjunct to PDT. The literature [36–38] mentions the use of indocyanine green
for sonodynamic therapy, but without bubbles.

Many parameters influence the number, size, stability and other physicochemical
characteristics of microbubbles including initial protein concentration, pH, ionic strength
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of the solution, the temperature of the initial solution and synthesis, time and intensity of
sonication, and storage conditions [13,15,39–41]. It was shown that increasing the protein
concentration from 0.5% (w/v) to 5.0% (w/v) resulted in an increase in the yield and
stability of microbubbles, and affected the size. In the literature, the effect of preheating
and ionic strength on the yield and stability of microbubbles is only partially described.
In [16], the authors found that microbubbles are less stable at higher temperatures while
storage in a refrigerator at 4 ◦C prolongs bubbles’ life and stability. Results [2,13] have
shown that the bubbles are stable when stored at 5 ◦C and that the size of microbubbles
decreases during storage. This is because the microbubble shell is less rigid at high
temperatures. The above studies provide some insight into the influence of the preparation
parameters on the quality and quantity of microbubbles.

In this work, it will be shown that a number of parameters affect the bubble size. The
number of microbubbles obtained, their size and their stability over time were studied
depending on the protein concentration, ionic strength (saline solutions were used), the
significance of the preheating temperature and storage temperature. Also, we report
on experimental studies conducted with regard to the synthesis, storage stability and
in vitro stability of bovine serum albumin (BSA)-coated microbubbles containing air core.
These microbubbles were obtained by sonication using formulations containing BSA and
additives that provide the resulting bubbles’ functional characteristics. As additives, we
used gold nanoparticles coated with bovine serum albumin (AuNPs), as well as dyes cross-
linked with a protein using photodynamic activity—zinc phthalocyanine (ZnPc) and ICG.
These additives were used in various combinations, resulting in 6 basic samples: bubbles
based on pure bovine serum albumin, bubbles containing ZnPc, bubbles containing ICG,
bubbles containing gold, and complex structures containing gold and ZnPc, gold and ICG.
Freshly prepared polydisperse samples were purified by dialysis against a saline solution.
In this work, we studied the stability of the samples over time, bubbles physicochemical
characteristics, and their potential uses in the biomedical field. Spectroscopic analyses
were performed to study the effects of dye and gold additions. It was found that the
addition of gold to the composition, even at low concentrations, increased the stability of
the samples and the mono-dispersity of the resulting microbubbles. Microbubbles were
obtained and tested in saline, which enables further in vivo studies to be carried out. In
addition to this, in vitro US studies performed using modified microbubbles have also
shown promising results.

2. Materials and Methods
2.1. Materials

Bovine serum albumin (BSA), Chloroauric acid (HAuCl4*3H2O), Sodium citrate monoba-
sic (HOC(COONa)(CH2COOH)2), N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hy-
drochloride (EDC), N-Hydroxysuccinimide (NHS), Sodium chloride (NaCl), and agarose
were all purchased from Sigma-Aldrich (Darmstadt, Germany). Holosens®, octachloride oc-
takis [N(2-hydroxyethyl)-N,N,-(dimethylammoniomethyl)] zinc (II) phthalocyanine (ZnPc)
was chosen as a photodynamic dye [33,42] and purchased from the Organic Intermediates
and Dyes Institute (Moscow, Russia). Indocyanine green was also used as a photodynamic
dye because of its long-time clinical application and approval for use by the U.S. Food and
Drug Administration [43] and was purchased from Dynamic Diagnostics (Plymouth, MI,
USA). Deionized (DI) water with specific resistivity, higher than 18.2 MΩm from a Milli-Q
Integral 3 water purification system (Millipore, Burlington, MA, USA), was used to make
all solutions.

2.2. Methods
2.2.1. AuNPs Synthesis

The synthesis was carried out according to the modified synthesis of Turkevich [44].
A solution of 75 mg gold tetrachloroaurate in 110 mL of distilled water was placed in a
250 mL round-bottom flask equipped with a reflux condenser and the solution was brought
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to a boil. Then, 26.25 mL of 1% sodium citrate solution was quickly added and boiling was
continued for one hour. On boiling, the solution color changed from light yellow to cherry
through dark tones. With stirring, the solution was cooled to room temperature. Then the
particles were used in the form of a colloidally stable solution.

The modification of the surface of gold nanoparticles was carried out according to the
technique developed by our group. A similar technique was proposed by the authors [45]
for replacing cetyltriethylammonium bromide with bovine serum albumin. In this work,
citrate, which stabilizes the surface of nanoparticles, was replaced by protein. A solution of
gold nanoparticles (concentration 130 ± 4 mg/L, 1014 particles/L) with a volume of 10 mL
was slowly poured into a solution containing bovine serum albumin with a concentration
of 10 mg/mL, sodium citrate 0.1% and having pH = 12 in a ratio of 1:1 by volume. The
resulting solution was kept in an ultrasonic bath for 30 min. Then the nanoparticles were
centrifuged, washed with a protein solution (10 mg/mL) and re-suspended in 5 mL BSA
solution (1 mg/mL, pH = 7). Zeta-potential and dynamic light scattering measurements
for AuNPs before and after BSA coating are provided in Table S1.

2.2.2. BSA-ZnPc Preparation

The synthesis of a complex of BSA with zinc phthalocyanine (ZnPc) was carried
out by carbodiimide synthesis. 30 mg of bovine serum albumin was dissolved in 7 mL
of phosphate buffer (pH = 8), 775 µL of EDC (solution in PBS with a concentration of
1 mg/mL) was added to the resulting solution, stirred for 15 min, then a solution of N-
hydroxysuccinimide 1.05 mL (solution in PBS 1 mg/mL) was added, mixed for another
15 min, and 1 mL of Holosens (1 mg/mL) was added. The solution was stirred for 12 h in
the cold (4 ◦C). The solution was then washed by dialysis against water.

2.2.3. BSA-ICG Preparation

Bovine serum albumin (100 mg) was dissolved in 6 mL of phosphate buffer (pH = 7.4)
and mixed with 1 mL of indocyanine green (ICG) solution with a concentration of 7 mg/mL,
then the mixture was stirred for 3 h. The solution was then washed by dialysis against
water for 48 h in the cold (4 ◦C). After dialysis the solution was diluted twice.

2.2.4. Mass Spectrometry Measurements

Samples containing BSA were analyzed using a time-of-flight mass spectrometer with
matrix laser desorption/ionization (MALDI-TOF/TOF) rapifleX MALDITOF/TOF MS
System (Bruker Daltonik GmbH, Bremen, Germany). The operating mode was as follows:
linear mode, positive ionization, analysis range m/z 5000–70,000, accelerating voltage
20 kV, SmartBeam III laser, laser frequency 10 kHz, frequency 200 Hz. Before analysis,
the device was calibrated using a mixture of proteins, “Protein Calibration Standard I”
(Bruker Daltonik GmbH, Bremen, Germany). The mixture included the following proteins:
insulin ([M + H] = m/z 5734.5), ubiquitin I ([M + H] = m/z 8565.76), cytochrome C
([M + H] = m/z 12,361.2), myoglobin ([M + H] = m/z 16,952.5). 2.5-dihydroxybenzoic acid
(Bruker Daltonik GmbH, Bremen, Germany) with purity > 99.0% was used as the matrix.
A 20 mg/mL matrix solution was prepared in a mixture of 30% acetonitrile:70% water:0.1%
trifluoroacetic acid. An aqueous solution of the samples was mixed with the matrix in a
ratio of 1:1 and 1 µL of the mixture was applied to the target plate.

The ZnPc sample was analyzed using a time-of-flight mass spectrometer with matrix
laser desorption/ionization (MALDI-TOF/TOF) rapifleX MALDITOF/TOF MS System
(Bruker Daltonik GmbH, Bremen, Germany). The operating mode was: reflector mode,
positive ionization, analysis range m/z 300–2000, accelerating voltage 20 kV, SmartBeam III
laser, laser frequency 10 kHz, frequency 200 Hz. Before analysis, the device was calibrated
using a mixture of peptides, “Peptide Calibration Standard II” (Bruker Daltonik GmbH,
Bremen, Germany). The mixture includes peptides with a mass range of 700–3200 Da. 2.5-
dihydroxybenzoic acid (Bruker Daltonik GmbH, Bremen, Germany) with purity > 99.0%
was used as the matrix. A 20 mg/mL matrix solution was prepared in a mixture of
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30% acetonitrile:70% water:0.1% trifluoroacetic acid. An aqueous solution of the sample
was mixed with the matrix in a ratio of 1:1 and 1 µL of the mixture was applied to the
target plate.

2.2.5. Surface Tension Measurements

Custom software implemented in Matlab (Mathworks, Natick, MA, USA) and de-
scribed in detail previously, was used to capture and process pendant drop images for
surfactant characterization [46,47]. The actual update rate of the surface tension measure-
ments, droplet volume, and surface area was 2 s, constrained by the time needed to perform
the necessary calculations on a particular computer used by us (Dell Latitude 7280). At
the preprocessing step, the pendant droplet boundary was determined by converting a
grayscale image into a binary image by using the threshold value calculated by Otsu’s
method [48]. For each row of pixels, a midpoint between boundary points of the droplet
was determined. The vertical centerline position that divides the droplet into two sym-
metrical halves was then obtained by averaging midpoint values obtained for each row
of pixels. The surface tension of the drop was then found by solving the Young-Laplace
equation at each time point by using the system identification theory that minimizes the
difference between the theoretically predicted and the imaged shape of the interface [49].
For each measurement, a pendant drop was formed, and surface tension was obtained in
real-time for 10 min at room temperature using the described Matlab software v. R2019a
(Mathworks, Natick, MA, USA). The measurement was repeated 4 times. The final result
represents the average surface tension and standard deviation of the last 2 min of the
4 repeated measurements.

2.2.6. Microbubbles Preparation

Microbubbles were obtained by the modified sonication method [2,14,50]. Briefly,
for each sample, 150 mg of BSA were dissolved in 1 mL of 2.7% NaCl aqueous solution,
in order to produce each microbubbles sample from the components dissolved in saline
solution. For samples labeled with ZnPc, BSA-ZnPc solution (1 mL) was added in each
sample; then, for the sample containing AuNPs (BSA-ZnPc-AuNPs MBs), AuNPs solution
(1 mL) was added, while for sample labeled with ZnPc only (BSA-ZnPc MBs), an aqueous
solution (1 mL) was added. Likewise, for samples labeled with ICG, BSA-ICG solution
(1 mL) was added in each sample; then, AuNPs solution (1 mL) was added for the sample
containing BSA coated AuNPs (BSA-ICG-AuNPs MBs), while for sample labeled with ICG
only (BSA-ICG MBs), only an aqueous solution (1 mL) was added. For the preparation of
bubbles with the BSA shell without any additional shell modification, 2 mL of DI water
were added to 1 mL of BSA solution obtained as described above. All samples were stored
in a glass vial and heated to a temperature of 50 ◦C to lower the solution’s surface tension.
Each sample was sonicated for 5 min at the maximum power of 100 W on the Bandelin
Sonopuls HD4100 sonicator with the TS103 sonotrode probe (Bandelin Electronic GmbH
& Co KG, Lueneburg, Germany). The tip of the sonotrode was placed at the interface
between the phases of liquid solution and air. After sonication, each sample was stored at
4 ◦C for 30 min for further stabilization. Then, all produced samples with microbubbles
were dialyzed at 4 ◦C for 12 h in saline solution.

2.2.7. Optical Microscopy

Optical microscopy (OM) was carried out on an Olympus CX33 (Olympus Corpora-
tion, Tokyo, Japan). The size distribution of microbubbles was evaluated using images of
200 microbubbles.

2.2.8. Microbubbles Concentration Measurements

Microbubbles concentration was determined with the use of the Gorjaev’s chamber:
briefly, 10 µL solution with microbubbles after dialysis (without dilution and with 5- or 10-
times dilution) were injected between the glass slides, then stored at room temperature for
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5 min in order for the bubbles to float to the upper glass slide. Then, photographs were
taken with the optical microscope within the grid of the chamber. For each sample, more
than 200 microbubbles were counted to determine the concentration of the sample. For
each bubbles probe, concentrations were determined 30 min after the sonication and (0 h),
after storage at 4 ◦C for 12 h before and after dialysis, and after storage at 4 ◦C for 36 h
before and after dialysis. Each measurement was repeated 5 times.

2.2.9. Transition Electron Microscopy

Transmission electron microscopy (TEM) images were obtained on a Titan Themis Z
(TFS (ThermoFisherScientific), Breda, The Netherlands)—gold nanoparticles, Zeiss M912
Omega transmission electron microscope (Carl Zeiss Microscopy GmbH, Jena, Germany)—
MBs at an operating voltage of 300 kV.

2.2.10. Zeta-Potential Measurements

Zeta-potential measurements were performed on the ZetaSizer Nano ZS analyzer
(Malvern Panalytical, Malvern, UK); all measurements were diluted 20 times in DI water
and placed in a U-cuvette, carried out at 25 ◦C and repeated three times.

2.2.11. Extinction Spectra Measurements

Extinction spectra were measured using a multifunctional microplate reader Tecan
Infinite M Nano+ (Tecan Trading AG, Männedorf, Switzerland) at room temperature
(25 ◦C), where samples were placed in a plastic 96-well plate. All samples were diluted in
saline with concentrations of 1× 108, 5× 107, 2.5× 107, 1.25× 107, 6.25× 106 bubbles/mL.

2.2.12. Fluorescence Tomography Measurements

For fluorescence tomography measurements, each sample was diluted in saline and
added in a 96 well plate in the same manner as for extinction spectra measurements. The
plate with samples was then imaged by the IVIS CT Spectrum In Vivo system (Xenogen
Corp., San Francisco, CA, USA) at room temperature (25 ◦C). Sequence images were
acquired with the Excitation/Emission pair of 675/720 nm for samples containing ZnPc
and the pair of 745/840 nm for samples containing ICG. Exposure time is auto, FOV = C.
Photons were quantified with the LivingImage software v.4.5.3 (Xenogen Corp., Alameda,
CA, USA).

2.2.13. Raster-Scanning Optoacoustic Mesoscopy Measurements

A raster-scanning optoacoustic mesoscopy system (RSOM) Explorer P50 (iTheraMedi-
cal GmbH, Munich, Germany) was used to collect optoacoustic signals from samples. The
optoacoustic signals were collected by a custom-made, spherically focused LiNbO3 de-
tector (center frequency—50 MHz; bandwidth—11–99 MHz; focal diameter—3 mm; focal
distance—3 mm). The samples were irradiated by a frequency-doubled flashlamp-pumped
Nd:YAG laser (wavelength—532 nm, pulse duration—2.5 ns; pulse energy—200 µJ; repeti-
tion rate—1 kHz). The repletion rate of 1 kHz was used from the options of 0.5, 1 or 2 kHz.
Light from the laser is delivered through a glass fiber 2-arm bundle (spot size—3.5–5 mm).
The scanning head is mounted to two motorized stages (field view up to 12 × 12 × 4 mm3).
The samples were tested in the agarose phantom. For the preparation of a phantom, agarose
(100 mg) was diluted in DI water (10 mL) at room temperature, then the solution was
stirred intensively at a temperature of 100 ◦C, and then degassed to avoid the presence of
small air bubbles in the solution. Briefly, for a phantom formation, a droplet of agarose
(30 µL) was placed on the bottom of the reservoir, and then after 15 s, a droplet of a sample
(7 µL) was injected into the upper third of the formed agarose droplet, forming a liquid
reservoir of the sample inside the phantom. Additional storage at fridge conditions (4 ◦C)
was applied for 15 min to solidify the phantom, and then the phantom with the sample
was covered with a layer of DI water (1.5 cm) to carry out the measurements. The scan
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head was coupled to the sample by a water-filled reservoir, and the samples were scanned
over the field of view (8 × 8 mm2) with a predefined depth (4 mm).

2.2.14. Ultrasound Characterization

The DUB® Skinscanner (Taberna Pro Medicum GmbH, Lueneburg, Germany) was
used to evaluate ultrasound contrast of obtained bubbles with a 33 MHz applicator (depth
of scanning 8 mm, axial resolution 42 µm). The received signals from the applicator
were processed using DUB SkinScanner software v.5.31 (Taberna Pro Medicum GmbH,
Lueneburg, Germany).

3. Results and Discussion
3.1. Optimization of the Experiment and Microbubbles’ Stabilization with Hybrid Structures

The modified sonication method was used to produce the bubbles, and the following
conditions were examined: the power amplitude of the sonotrode, time of sonication
procedure, and temperature were varied. The most suitable conditions for preparing
stable probes were the following: power of 100 W, sonication for 5 min, and the sonotrode
tip’s location at the surface of a solution. Additionally, the temperature of the solution
was raised to 50 ◦C to reduce the surface tension of the initial solution, which caused
the reduction in the mean size of the produced microbubbles. It should be noted that
to complete the formation of bubbles and to obtain stable microbubbles after ultrasonic
treatment, the bubbles were placed in a refrigerator for 30 min (4 ◦C). Therefore, all samples
were prepared using the method presented in Figure 1. After the preparation, all bubble-
containing samples were stored in fridge conditions for further stabilization and dialyzed
for 12 h to purify the sample.
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with photodynamic dyes, zinc phthalocyanine (ZnPc) and indocyanine green (ICG), (BSA-ZnPc and BSA-ICG) were used
for further bubbles’ shell stabilization. All compounds were dissolved in saline and then obtained solutions were sonicated
for 5 min to obtain microbubbles. Resulting microbubbles with BSA shell (BSA MBs), shell stabilized with AuNPs only
(BSA-AuNPs MBs), shell stabilized with BSA-ZnPc/BSA-ICG conjugates only (BSA-ZnPc MBs, BSA-ICG MBs, respectively),
and shell stabilized both with conjugates and AuNPs (BSA-ZnPc-AuNPs MBs, BSA-ICG-AuNPs MBs) were then dialyzed
in saline to remove free components from the solution.

The gaseous core of obtained air-filled microbubbles provides excellent acoustic
properties and the potential to serve as an ultrasound (US) contrast agent. [51].

For the implementation of fluorescent (FL) imaging modality and the possibilities of
photodynamic therapy approach implementation, two clinically available photodynamic
dyes were chosen—zinc phthalocyanine (ZnPc) and indocyanine green (ICG)—and cova-
lently bound to BSA for conjugation of BSA and ZnPc, BSA and ICG, respectively. Such
binding was confirmed by mass spectrometry measurements, as one can see in Figure 2.
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Figure 2. Mass spectrometry measurements for (a) BSA aqueous solution, (b) BSA-ICG conjugate aqueous solution, and
(c) BSA-ZnPc conjugate aqueous solution were carried out to confirm the covalent binding of BSA-ICG and BSA-ZnPc
conjugates.

About one molecule of ZnPc/ICG was bound to one molecule of albumin on each
albumin-dye conjugate. As shown in Figure 2c, the curve shape of or the BSA-ZnPc
conjugate in the range of 67–70 kDa demonstrated the same behavior as the curve shape
observed for the original dye spectrum (presented in Figure S1).

For the implementation of photoacoustic (PA) imaging and shell stabilization of
bubbles, gold nanoparticles (AuNPs) were chosen as functional additives. The results of
TEM provided in Figure 3a proved the shape of the nanoparticles and the presence of a
protein shell of ~2 nm, which were used for microbubble stabilization.
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Additionally, TEM images were taken for dried samples of AuNPs-containing probes:
BSA-ZnPc-AuNPs MBs (Figure 3b) and BSA-ICG-AuNPs MBs (Figure 3c). For both sam-
ples containing dried bubbles, the presence of AuNPs was observed, and ~50–60 particles
were placed on each bubble. The presence of AuNPs was indirectly confirmed during the
extinction spectra measurements of bubbles after dialysis (Figure S2): a slight increase in
absorption was observed at a wavelength of 520 nm for the BSA-AuNPs MBs and BSA-
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ZnPc-AuNPs MBs samples, but was less significantly observed for the BSA-ICG-AuNPs
MBs sample due to the significant influence of the dye (ICG) extinction used in the system.
However, for all AuNPs-containing samples, a broadening of the nanoparticles’ character-
istic peak was observed due to the protein envelope: BSA’s influence was observed.

3.2. Samples Characterization: Concentration and Mean Size of Stabilized Microbubbles

The concentration for each probes’ sample was evaluated with Gorjaev’s chamber
using optical microscopy (OM) images. The concentration of the bubbles are presented
in Figure 4. The sample concentration was evaluated for probes without dialysis during
storage time at 1, 12, and 36 h after preparation, and for dialyzed probes at 12 and 36 h after
preparation. All samples were stored at similar fridge conditions to measure the stability
of probes.

Nanomaterials 2021, 11, x FOR PEER REVIEW 10 of 18 
 

 

 

 
Figure 4. Bubbles concentrations and stability during storage time for probes without dialysis at 1, 12, and 36 h after prep-
aration, and for dialyzed probes at 12 and 36 h after preparation: (a) microbubbles with the BSA shell only (BSA MBs), (b) 
microbubbles functionalized with ZnPc (BSA-ZnPc MBs), (c) microbubbles functionalized with ICG (BSA-ICG MBs), (d) 
microbubbles stabilized with AuNPs (BSA-AuNPs MBs), (e) microbubbles stabilized with AuNPs and ZnPc (BSA-ZnPc-
AuNPs MBs), (f) microbubbles stabilized with AuNPs and ZnPc (BSA-ZnPc-AuNPs MBs). All samples were stored at 4 
°C. 

In ascending order of the number of bubbles immediately after preparation, the sam-
ples can be arranged as follows: BSA MBs (with concentration of 4.4 × 108 MBs/mL), BSA-
AuNPs MBs (5.4 × 108 MBs/mL), BSA-ZnPc MBs (8.5 × 108 MBs/mL), BSA-ZnPc-AuNPs 
MBs (8.9 × 108 MBs/mL), BSA-ICG MBs (1.1 × 109 MBs/mL), BSA-ICG-AuNPs MBs (1.2 × 
109 MBs/mL). The dye’s inclusion in the bubble shell increased the initial concentration of 
bubbles during preparation compared to the shell consisting of albumin only, and ICG 
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Figure 4. Bubbles concentrations and stability during storage time for probes without dialysis at 1, 12, and 36 h after
prep-aration, and for dialyzed probes at 12 and 36 h after preparation: (a) microbubbles with the BSA shell only (BSA
MBs), (b) microbubbles functionalized with ZnPc (BSA-ZnPc MBs), (c) microbubbles functionalized with ICG (BSA-ICG
MBs), (d) microbubbles stabilized with AuNPs (BSA-AuNPs MBs), (e) microbubbles stabilized with AuNPs and ZnPc
(BSA-ZnPc-AuNPs MBs), (f) microbubbles stabilized with AuNPs and ZnPc (BSA-ZnPc-AuNPs MBs). All samples were
stored at 4 ◦C.
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In ascending order of the number of bubbles immediately after preparation, the sam-
ples can be arranged as follows: BSA MBs (with concentration of 4.4 × 108 MBs/mL),
BSA-AuNPs MBs (5.4 × 108 MBs/mL), BSA-ZnPc MBs (8.5 × 108 MBs/mL), BSA-ZnPc-
AuNPs MBs (8.9 × 108 MBs/mL), BSA-ICG MBs (1.1 × 109 MBs/mL), BSA-ICG-AuNPs
MBs (1.2 × 109 MBs/mL). The dye’s inclusion in the bubble shell increased the initial con-
centration of bubbles during preparation compared to the shell consisting of albumin only,
and ICG had the greatest influence compared with ZnPc. Additionally, the stabilization of
the probes’ shell with AuNPs increased the concentration after preparation and optimized
the stability properties for the obtained probes, which is especially apparent in a pairwise
comparison of BSA MBs: BSA-AuNPs MBs, BSA-ZnPc MBs, BSA-ZnPc-AuNPs MBs, and
BSA-ICG MBs and BSA-ICG-AuNPs MBs samples.

Dialysis resulted in bubbles-containing samples free from impurities of components
that are not bound in the shell structure; however, mechanical effects introduced dur-
ing the procedure may affect the samples’ stability. After 12 h of storage, the bubbles
containing AuNPs only (BSA-AuNPs MBs with a concentration of 3.6 × 108 MBs/mL)
were more stable than the ZnPc-containing bubbles (BSA-ZnPc MBs with a concentration
of 1.4 × 108 MBs/mL, and BSA-ZnPc MBs with a concentration of 3.0 × 108 MBs/mL),
while the samples containing ICG were the most stable. The BSA-ICG MBs had the most
excellent stability with a concentration of 7.0 × 108 MBs/mL, and BSA-ICG-AuNPs MBs
demonstrated a concentration of 5.4 × 108 MBs/mL. OM images for samples with and
without dialysis 12 h after preparation demonstrated such behavior as the addition of
stabilization and functionalization components influence on concentration, as presented in
Figure 5.
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Figure 5. Optical microscopy (OM) images of air-filled bubbles 12 h after the preparation: (a) BSA MBs, (b) BSA-AuNPs
MBs, (c) BSA-ZnPc MBs, (d) BSA-ZnPc-AuNPs MBs, (e) BSA-ICG MBs, (f) BSA-ICG-AuNPs MBs without dialysis, and (g)
BSA MBs, (h) BSA-AuNPs MBs, (i) BSA-ZnPc MBs, (j) BSA-ZnPc-AuNPs MBs, (k) BSA-ICG MBs, (l) BSA-ICG-AuNPs MBs
with dialysis.

The zeta-potential of all the bubbles stabilized with nanoparticles- and/or dyes- hybrid
structures revealed good stability with values of −5.3 ± 0.9 mV for BSA-ZnPc-AuNPs MBs
and −4.8 ± 0.2 mV for BSA-ICG-AuNPs MBs samples, while the probe with BSA-only
shell revealed moderate stability with a value of −8.4 ± 0.6 mV for BSA MBs sample, as
presented in Table S2. Surface tension measurements coincide with microbubble stability
as BSA-only shell showed the highest surface tension of 52.1 ± 0.4 mN/m while BSA-
ZnPc, BSA-ZnPc-AuNPs, BSA-ICG and BSA-ICG-AuNPs showed 50.5 ± 0.4, 50.8 ± 0.4,
51.1 ± 0.3 and 50.9 ± 0.4 mN/m, respectively (average ± standard error of the last 2 min
of the dynamic surface tension measurement). Throughout the 10 min surface tension



Nanomaterials 2021, 11, 415 11 of 17

measurement, the average difference between BSA-only and BSA-ZnPc, BSA-ZnPc-AuNPs,
BSA-ICG, BSA-ICG-AuNPs surface tension was 1.5 ± 0.3, 1.1 ± 0.3, 1.2 ± 0.3 and 1.5 ± 0.3,
respectively. The introduction of dye (ICG/ZnPc) and gold (AuNPs) reduced the surface
tension of the initial solution used for the probes’ preparation, which can lead to an increase
in the concentration and stability of the obtained samples.

The average size measurements are shown in Figure 6. The measurements were made
for all samples treated with or without dialysis at the same storage conditions (4 ◦C) and
at a time after bubble preparation (12 h). As one can see, all bubbles have a mean size of
1–2 µm with a small size dispersion, and the use of dialysis led to a slight decrease (~0.1–
0.2 µm) in the average size of the samples. In descending order, samples without dialysis
can be arranged as follows: BSA-ICG MBs (1.473± 0.482 µm), BSA MBs (1.465± 0.276 µm),
BSA-ICG-AuNPs MBs (1.464± 0.536 µm), BSA-ZnPc-AuNPs MBs (1.416± 0.322 µm), BSA-
AuNPs MBs (1.403± 0.278 µm), and BSA-ZnPc MBs (1.291± 0.229 µm). Samples after dial-
ysis can be arranged as: BSA-AuNPs MBs (1.344 ± 0.281 µm), BSA MBs (1.264 ± 0.234 µm),
BSA-ICG MBs (1.262 ± 0.273 µm), BSA-ZnPc-AuNPs MBs (1.233 ± 0.192 µm), BSA-ZnPc
MBs (1.219 ± 0.239 µm), BSA-ICG-AuNPs MBs (1.205 ± 0.265 µm).
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Figure 6. Mean size measurements for obtained microbubbles: measurements were made for samples treated with and
without dialysis 12 h after probes’ preparation. All samples were stored at 4 ◦C.

All the described samples had a mean size corresponding to the criteria for contrast
agents (they were less than 10 µm) [52,53], and a relatively small size dispersion for bubbles
prepared by the sonication method, which confirmed the selected conditions for agents’
preparation and functionalization. Thus, characterization of imaging properties is needed
to determine the potential biomedical applications for such probes.
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3.3. Characterization of Fluorescent, Photoacoustic and Ultrasound Imaging Properties
of Microbubbles

Since multimodal imaging can be achieved as a combination of fluorescent (FL), op-
toacoustic (OA), and acoustic/ultrasound (US) imaging modalities, potential applications
of obtained microbubbles in imaging were tested.

The results of the fluorescence tomography measurements are presented in Figure 7.
All microbubbles modified with photodynamic dyes (ZnPc and ICG) revealed significant
fluorescence intensity at relevant excitation/emission pairs (675/720 nm for ZnPc and
745/840 nm for ICG), while microbubbles containing only BSA shell or shell modified with
AuNPs only did not demonstrate comparable fluorescence signals.
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Figure 7. Fluorescence imaging of probes: comparison of total radiant efficiency dependencies on the concentration of MBs
for (a) BSA MBs, BSA-AuNPs MBs, BSA-ZnPc MBs and BSA-ZnPc-AuNPs MBs at excitation/emission pair of 675/720 nm,
(b) BSA MBs, BSA-AuNPs MBs, BSA-ICG MBs and BSA-ICG-AuNPs MBs at excitation/emission pair of 745/840 nm. Inlets
on each figure show fluorescence imaging of a plate with BSA-ZnPc MBs, BSA-ZnPc-AuNPs MBs, and BSA-ICG MBs,
BSA-ICG-AuNPs MBs solutions, respectively, in concentrations used in the plot.

The combination of gold nanoparticles and photodynamic dyes’ influence on the
fluorescent signal can be seen in Figure 7a,b. The implementation of AuNPs for the
bubble shell modified with dyes (BSA-ZnPc-AuNPs MBs and BSA-ICG-AuNPs MBs)
led to a decrease in the fluorescent signal compared with probes containing dye only
(BSA-ZnPc MBs and BSA-ICG MBs), and fluorescence quenching was observed. The
fluorescence total radiant efficiency for BSA-PcZn MBs and BSA-ICG MBs was 1.8 times
higher than for BSA-PcZn-AuNPs and MBs BSA-PcZn-AuNPs MBs, respectively, still, the
introduction of AuNPs led to an increase in stability of probes and led to the path for
potential photoacoustic imaging. The highest fluorescence total radiant efficiency signal
was observed for microbubbles containing ICG only. BSA-ICG MBs revealed a 7.8 higher
fluorescence signal than BSA-PcZn MBs, and the same phenomena were observed in a
comparison of nanoparticles-containing probes (BSA-ICG-AuNPs MBs and BSA-ZnPc-
AuNPs MBs pair). As one can see in Figure S3, similar behavior can be observed regarding
the dependence of fluorescence on concentration for the obtained microbubbles. At the
wavelength of 700 nm for ZnPc, the fluorescence signal of BSA-ZnPc MBs was 2.3 higher
than that of BSA-ZnPc MBs; the fluorescence signal of BSA-ICG MBs was 1.7 higher than
that of BSA-ZnPc MBs; BSA-ICG MBs demonstrated 3.3-times higher fluorescence than
BSA-PcZn MBs, and the fluorescence of BSA-ICG-AuNPs MBs was 4.6 times higher than
that of BSA-ZnPc-AuNPs MBs.
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Thus, FL imaging modality can be successfully achieved with all dye-containing
probes, which can be placed in descending order according to their fluorescence intensity:
BSA-ICG MBs, BSA-ICG-AuNPs MBs, BSA-ZnPc MBs, BSA-ZnPc-AuNPs MBs.

Next, probes were tested for their potential application in PA imaging. Since AuNPs
are well-known probes for such imaging modalities [54–56], such particles were used for
bubble shell stabilization and PA imaging implementation. Thus, AuNPs-containing MBs
(BSA-AuNPs MBs, BSA-ZnPc-AuNPs MBs, BSA-ICG-AuNPs MBs) and related solutions
(AuNPs, BSA-ZnPc, and AuNPs, BSA-ICG and AuNPs in the same concentrations of
components used for probes preparation, respectively) were measured by raster-scanning
optoacoustic mesoscopy (RSOM), as one can see in Figure 8.
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Figure 8. Schematic representation of the agarose phantoms and raster-scanning optoacoustic mesoscopy measurements of
(a) AuNPs solution, (b) BSA-AuNPs MBs, (c) BSA-ZnPc and AuNPs solution, (d) BSA-ZnPc-AuNPs MBs, (e) BSA-ICG and
AuNPs solution, (f) BSA-ICG-AuNPs MBs. Projections of measurements in X and Y, X and Z axes are presented, and the
corresponding projections are marked in gray in the schematic representations for each measurement.

The presence of microbubbles in BSA-AuNPs MBs, BSA-ZnPc-AuNPs MBs, and BSA-
ICG-AuNPs MBs can be seen by its localization in the upper part of samples due to bubbles
floating, as can be seen in X-Z projections on Figure 8b,d,f, respectively. Additionally,
the occurrence of a high-frequency PA signal in the range with a frequency of 33 MHz
can be seen for all bubbles-containing samples. It can be seen in the comparison of ZnPc-
containing samples (Figure 8c,d) where the specific signal for microbubbles demonstrated
a higher specific PA signal compared to the signal shown by gold particles.

Comparing the PA signal obtained for AuNPs saline solution and BSA-AuNPs MBs,
one can observe that AuNPs had a higher response. This can be explained by differences in
the concentration of particles in the initial solution and of dialyzed bubbles samples, and
localization of particles in a bubble. Still, AuNPs saline solution’s response primarily in
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low frequencies was achieved in the phantom’s entire sample volume, which correlates
with the examples in the literature. The same behavior was observed for ICG-containing
samples (BSA-ICG and AuNPs solution, BSA-ICG-AuNPs MBs).

Bubbles containing both AuNPs and photodynamic dyes (ICG, ZnPc) demonstrated
a higher photoacoustic response during measurements than bubbles where the shell was
stabilized by AuNPs only; the highest PA signal corresponded to the BSA-ICG-AuNPs MBs
sample. Still, all bubbles-containing samples had comparable extinction properties at the
wavelength of 532 nm used for photoacoustic imaging characterization (Figure S2) and the
same concentration of bubbles in the sample. Thus, the frequency of 33 MHz was validated
as the optimal for PA imaging modality and suggested for further characterization in
US imaging.

Next, acoustic characterization revealed the possibility of using the obtained probes as
US contrast agents. Microbubbles were tested at a frequency of 33 MHz. The saline solution
was taken as a control sample. All microbubbles-containing samples revealed a significant
acoustic response compared with saline solution only, which showed no acoustic response,
as shown in Figure 9.
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The bubble’s gas core provided an excellent acoustic response for US imaging; similar
behavior was observed for MBs containing dyes, only in the shell (BSA-ZnPc MBs and
BSA-ICG MBs) and for MBs stabilized with AuNPs/dyes structures (BSA-ZnPc-AuNPs
MBs and BSA-ICG-AuNPs MBs), respectively.

Thus, BSA-ICG-AuNPs MBs and BSA-ZnPc-AuNPs MBs demonstrated the possibility
of using trimodal (FL/PA/US) imaging; BSA-ICG-AuNPs MBs were the most efficient
imaging probe described in this article. Bubbles’ shell modification with photodynamic
dyes, such as ICG and ZnPc, has promising potential for use in sono-/photodynamic
therapy for dye-containing probes (BSA-ICG-AuNPs MBs, BSA-ICG MBs, BSA-ZnPc-
AuNPs MBs, BSA-ZnPc MBs), opening up the possibility of theranostics applications based
on the use of microbubbles.
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4. Conclusions

The preparation conditions for microbubbles used in the modified sonication method
(which were chosen as optimal during the work) allowed us to produce stable monodis-
perse microbubbles with an average size of 1.5 ± 0.3 µm. Additional stabilization of
bubbles’ shell consisted of BSA with AuNPs/ICG, and AuNPs/ZnPc hybrid structures,
which revealed an improvement in concentration, stability and the mean size of microbub-
bles This also opened the possibility of PA/FL imaging applications, in addition to the
US imaging modality provided by the gas core, and promising applications in photo-
dynamic/sonodynamic therapy to achieve combinations for theranostics. Due to the
choice of components (BSA-coated gold nanoparticles and clinically available photody-
namic dyes) and methods of preparation (all components were dissolved and dialyzed in
saline solutions), biocompatibility, and further transition into preclinical (in vivo experi-
ments) practice can be achieved. It was shown that even at low concentrations, AuNPs
demonstrated increase stability and monodispersity of the produced probes. Cross-linking
between photodynamic dyes (ZnPc, ICG) with a protein (BSA) was confirmed by the mass
spectrometry measurements. The introduction of the dye into the system reduced the
surface tension of the solution, leading to an increase in the concentration and stability of
the bubbles. During imaging applications characterization, the use of bubbles stabilized
both with ICG/ZnPc dye and AuNPs was observed—these probes demonstrated effec-
tive response during fluorescent tomography measurements, raster-scanning optoacoustic
mesoscopy measurements, and ultrasound characterization.

The most relevant protein-dye pair for further applications in medicine was BSA-
ICG. Subsequently, bubbles were obtained on the basis of such a multifunctional additive.
Since ICG is widely used in clinical practice and an FDA-approved agent, albumin is a
biocompatible protein present in the human body, and ICG-containing bubbles (BSA-ICG
MBs and BSA-ICG-AuNPs MBs) provide the greatest stability, a higher concentration of
bubbles and optimal signal enhancement for FL/PA/US multimodal imaging.

Supplementary Materials: The following are available online at https://www.mdpi.com/2079-4
991/11/2/415/s1, Figure S1. Mass spectrometry measurements for zinc (II) phthalocyanine (ZnPc)
used as a dye for microbubbles preparation; Table S1. Zeta-potential and dynamic light scattering
measurements of gold nanoparticles containing samples; Table S2. Zeta-potential measurements
of microbubbles-containing samples; Figure S2. Extinction spectra of obtained bubbles; Figure S3.
Fluorescence dependence on concentration for obtained microbubbles.
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