Supplementary Material

Nanomaterial synthesis in ionic liquids and their use on the photocatalytic degradation of emerging pollutants

Raquel Corchero¹, Rosario Rodil², Ana Soto¹, and Eva Rodil^{1*}

 CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago, E-15782 Santiago de Compostela, Spain; raquel.corchero@rai.usc.es (RC); ana.soto@usc.es (AS)
² Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain; rosario.rodil@usc.es (RR)

* Correspondence: <u>eva.rodil@usc.es</u> (ER)

Index:

•	Figure S1: ¹ H and ¹³ C spectra of [P _{6, 6, 6, 14}]Cl	. S2
•	Figure S2: UV-Vis-absorbance of AgCl nanoparticles	S 3
•	Figure S3: XRD diffraction pattern of AgCl nanoparticles	. S3
•	Figure S4: XPS spectra of AgCl nanoparticles: Ag3d (a) and Cl2p (b)	. S3
•	Figure S5: EDS spectrum of TiO ₂ @Fe ₃ O ₄ nanocomposite	. S4
•	Figure S6: XRD patterns of TiO ₂ @Fe ₃ O ₄ nanocomposite	. S4
•	Figure S7: XPS spectra of TiO ₂ @Fe ₃ O ₄ nanocomposite: Fe2p (a) and Ti2p (b)	. S4
•	Figure S8: EDS spectrum of AgCl@Fe ₃ O ₄ nanocomposite	. S5
•	Figure S9: XRD patterns of AgCl@Fe ₃ O ₄ nanocomposite	. S5
•	Figure S10: XPS spectra of AgCl@Fe ₃ O ₄ nanocomposite: Ag3d (a) and Fe2p (b)	. S5

¹H NMR (300 MHz, CDCl₃) δ ppm 0.80-0.97 (unresolved, 12H, 4 × C<u>H</u>₃), 1.15-1.70 (unresolved, 48H, PCH₂(C<u>H</u>₂)₁₂CH₃ and 3 × PCH₂(C<u>H</u>₂)₄CH₃), 2.35-2.65 (unresolved, 8H, 4 × PC<u>H</u>₂).

¹³C NMR (75.4 MHz, CDCl₃) δ ppm 12-32 (unresolved, P(<u>C</u>H₂)₁₃<u>C</u>H₃ and $3 \times P(\underline{C}H_2)_{5}\underline{C}H_3$).

Figure S1: 1 H and 13 C spectra of [P_{6, 6, 6, 14}]Cl

Figure S2: UV-Vis-absorbance of AgCl nanoparticles

Figure S3: XRD diffraction pattern of AgCl nanoparticles

Figure S4: XPS spectra of AgCl nanoparticles: Ag3d (a) and Cl2p (b) scans

Figure S5: EDS spectrum of TiO2@Fe3O4 nanocomposite

Figure S6: XRD patterns of TiO₂@Fe₃O₄ nanocomposite

Figure S7: XPS spectra of TiO₂@Fe₃O₄ nanocomposite: Fe2p (a) and Ti2p (b)

Figure S8: EDS spectrum of AgCl@Fe₃O₄ nanocomposite

Figure S9: XRD patterns of AgCl@Fe₃O₄ nanocomposite

