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Abstract: The lithium-polysulfide (LiPS) dissolution from the cathode to the organic electrolyte is the
main challenge for high-energy-density lithium-sulfur batteries (LSBs). Herein, we present a multi-
functional porous carbon, melamine cyanurate (MCA)-glucose-derived carbon (MGC), with superior
porosity, electrical conductivity, and polysulfide affinity as an efficient sulfur support to mitigate the
shuttle effect. MGC is prepared via a reactive templating approach, wherein the organic MCA crystals
are utilized as the pore-/micro-structure-directing agent and nitrogen source. The homogeneous
coating of spherical MCA crystal particles with glucose followed by carbonization at 600 ◦C leads to
the formation of hierarchical porous hollow carbon spheres with abundant pyridinic N-functional
groups without losing their microstructural ordering. Moreover, MGC enables facile penetration
and intensive anchoring of LiPS, especially under high loading sulfur conditions. Consequently, the
MGC cathode exhibited a high areal capacity of 5.79 mAh cm−2 at 1 mA cm−2 and high loading
sulfur of 6.0 mg cm−2 with a minor capacity decay rate of 0.18% per cycle for 100 cycles.

Keywords: lithium–sulfur batteries; high loading sulfur cathodes; hierarchical porous structures;
pyridinic N functional groups; molecular cooperative assemblies; reactive templates

1. Introduction

Grid-scale energy systems and electric vehicles require high-energy-density batteries.
The current-state-of-the-art energy storage technology, i.e., lithium-ion batteries (LIBs),
has already reached its theoretical limit [1,2]. To become more competitive with LIBs,
the next-generation battery technologies must consider energy density, power density,
cycle performance, and cost. Among the various energy storage systems, rechargeable
lithium–sulfur batteries (LSBs) are widely considered as one of the most promising can-
didates [3,4]. Notably, LSBs have a high theoretical energy density (~2500 Wh kg−1 or
~2800 Wh L−1) and are also cost-effective because they use inexpensive, abundant, and
eco-friendly elemental sulfur (S8) as their cathode active material [5]. In addition, the same
manufacturing process now existing for LIBs can be employed for the LSBs [6]. Given
the operating voltage of ~2.1 V vs. Li/Li+, the practical LSBs to replace the commercial
LIBs of 2–4 mAh cm−2 require an areal capacity of 3–7 mAh cm−2, corresponding to an
areal sulfur loading of 3–7 mg cm−2 at a sulfur utilization efficiency of 60%. The typical
efficiency of such high-sulfur-loading LSB cells is, however, below 50% even at initial cycles,
which quickly degrades to a lower value during cycling. This is attributed to (1) volume
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expansion (~180%) of sulfur during discharging, which induces pulverization of cathode
composite; (2) lithium-polysulfide (LiPS) dissolution into the electrolyte and the corre-
sponding shuttle effect, which diminishes cycle stability and Coulombic efficiency (CE);
and (3) the final products (S8 and Li2S) during charging and discharging procedure, which,
respectively, are fundamentally electronic/ionic insulating leading to large polarization
and cell degradation [7–9].

A representative effort, which has been proven to be highly efficient at improving the
electrochemical performance of the high sulfur loading LSBs, includes the development
of multi-functional sulfur host materials featuring (1) porous structure exerting capillary
force and accommodating volume expansion during the lithiation of sulfur, (2) high electri-
cal/ionic conductivity for efficient redox reaction of S8 and Li2S, and (3) a catalytic active
site for specific chemical interaction with LiPS [10–12]. Among the various sulfur host ma-
terials such as transition metal oxide/nitride/sulfide, metal-organic frameworks (MOFs),
conductive polymer, carbon-based materials, etc., carbon-based materials are of particular
interest [13]. They can be synthesized from an inexpensive precursor and feature tailorable
structural/electronic properties. In particular, hierarchical porous carbon (HPC) is very
attractive in view of the systematic multi-pore structures of micro-/meso-/macro-pores,
which enable efficient polysulfide retention, mass diffusion/transport, and accommodation
of volume expansion, respectively [14]. The main challenges in the HPC materials for
LSBs include the counterbalance among pore-, micro-, and chemical structure as well as
the complicated synthesis procedures using harmful chemicals. For example, increasing
porosity and heteroatom-doped in carbon materials deteriorate the microstructure and
thus the electronic conductivity, leading to poor chemical performance, especially under
high sulfur loading conditions. In addition, high porosity often decreases the tap density
and thus volumetric energy density of the electrode, rendering the porous carbon-based
LSBs impractical in comparison to the state-of-the-art LIBs.

In general, the tunable physical/chemical properties of the carbon matrix can be
achieved by simply employing different temperatures, gas environments, and precursors.
They introduce different carbonization modes and thereby modify the carbonization inter-
mediates/products in terms of the degree of aromatic condensation, quality of graphitic
crystallites, and chemical composition, wherein the electronic properties of carbon materials
are dictated [15]. Such tunability would also facilitate the systematic studies toward reveal-
ing the microstructure, chemical composition, and electrochemical function correlated to
LSBs. Herein, we demonstrated in this work that MCA-glucose-derived carbon (MGC)
with both high porosity and electronic conductivity is beneficial for polysulfide retention,
mass-transfer of electrolyte and active species, and accommodation of volume change
(180%) from elemental sulfur to Li2S during the discharge process. The MGC contains
mass-producible spherical carbon particles with three-dimensional interconnected arrays
and a hierarchical porous structure of micro-, meso-, and macro-pores. More importantly, it
achieves a high content (~10 wt.%) of nitrogen by using a melamine-cyanuric acid network
of MCA as a reactive template, strengthening affinity to polysulfide dissolved in organic
electrolyte solvent, with little affecting the microstructure and electronic properties of MGC.
Thus, a cathode for the high sulfur-loading was successfully fabricated using the MGC for
high areal capacity LSBs. The micro-structure, pore-structure, and chemical composition of
the carbon supports showed an areal capacity of 5.79 mAh cm−2 at areal 6.0 mgSulfur cm−2

and achieved a minor capacity decay rate of 0.18% per cycle by simple carbonization of the
mixture of glucose and molecular cooperative assembly of the organic crystals. The mor-
phologies, porosity, lateral size of graphite-like crystallite, and nitrogen content of the MGC
were comprehensively evaluated. Thereafter, the structure-electrochemical performance
correlation was investigated by galvanostatic cycling with potential limitation (GCPL),
cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS).
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2. Materials and Methods
2.1. Materials

Melamine (99%), cyanuric acid (98%), 1,3-dioxolane (DOL, 99.8%), 1,2-dimethoxyethane
(DME, 99.5%), lithium bis(trifluoromethylsulfonyl)imide (LiTFSI, 99.5%), and sulfur (99.5%)
were purchased from Sigma-Aldrich (Darmstadt, Germany). Lithium sulfide (Li2S, 99.9%),
lithium nitrate (LiNO3, 99.99%), and lithium metal (99.9%) were purchased from Alfa
Aesar (Haverhill, MA, USA). N-methyl pyrrolidone (NMP, 99.0%, DAEJUNG Co., Siheung,
Korea), polyvinylidene fluoride (PVdF, MTI Co., Richmond, CA, USA), Super P (Timcal
Co., Bodio, Switzerland), dimethyl sulfoxide (DMSO, 99.5%, DAEJUNG Co., Siheung,
Korea), glucose (98%, JUNSEI Co., Tokyo, Japan), and ethanol (94.5%, DAEJUNG Co.,
Siheung, Korea) were also used. All the reagents were purchased commercially and used
without purification.

2.2. Synthesis of MGC and GLC

MCA was synthesized using a previously reported method [16]. Glucose (1 g) was
totally dissolved in ethanol (10 mL) and triple-distilled water (10 mL) by sonication for 1 h.
Thereafter, MCA (1 g) was added to the glucose solution and stirred overnight. The mixed
powder was obtained by the evaporation of the mixed solution at room temperature in a
fume hood (>1.0 m s−1). Next, MCA-glucose carbon (MGC) was carbonized at 600 ◦C with
2.3 ◦C min−1 and retained for 4 h in an inert N2 atmosphere. The glucose carbon (GLC)
was prepared at the same carbonization process, without MCA.

2.3. Characterization

An X-ray photoelectron spectroscopy (XPS, K-ALPHA) from Thermo Scientific, Waltham,
Massachusetts, United States, was employed to analyze the material’s chemical state and ele-
mental composition using Al monochromatic X-ray source. The extent of nitrogen sorption
of the material was quantified by sorption isotherm using an instrument of Micromeritics
TriStar II 3020 analyzer from Norcross, Georgia, United States at −196 ◦C. The materials
were pre-treated by deaeration at 150 ◦C for 12 h before the trigger of the analysis. A 3D
high-resolution X-Ray Diffractometer (XRD, EMPYREAN, Malvern Panalytical, Malvern,
United Kingdom) was used to analyze the crystal structure of the materials by Cu Kα radia-
tion (λ = 1.54056 Å). A laser Raman spectrophotometer (NRS-5100, JASCO Inc., Easton, MD,
USA) was utilized to assume the material’s structural footprint precisely using the laser
excitation line at 532 nm. The material’s morphological characterization was conducted by
an FE-SEM (Field emmision scanning electron microscope, HITACHI, SU-70, Tokyo, Japan)
and HR-TEM (high-resolution transmission electron microscope, FEI Company, TECNAI
F20 UT, Hillsboro, OR, USA).

2.4. Electrochemical Measurements

Initially, carbon, Super P, and polyvinylidene fluoride (PVdF) were mixed (80:10:10,
w/w/w). Thereafter, the mixture was dispersed on NMP followed by sonication for 1 h
and stirring overnight. Finally, the slurry was evenly drop-casted on a carbon cloth (CC)
and dried at 120 ◦C for 24 h.

For blank electrolyte, 1 M lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) was
mixed in 1,3-dioxolane (DOL) and 1,2-dimethoxyethane (DME) (1:1; v/v) with 1 wt.%
lithium nitrate (LiNO3). to make a blank electrolyte. Elemental sulfur and Li2S were mixed
with blank electrolyte to make the catholyte (1 M Li2S6). The cells were assembled in an
argon-filled glove box from Koreakiyon Company, Korea. A CR-2032 coin-type cell with a
lithium foil and separator (MTI Co., Richmond, CA, USA) was used to assemble the cell.

GCPL tests were conducted using WMPG 1000S from WonATech, Korea (voltage
range: 1.8–2.6 V vs. Li/Li+; current density: 1 mA cm−2). According to the experimental
condition, the mass loading of sulfur was maintained at either 2.0 mg cm−2 or 6.0 mg cm−2.
A VSP Biologic potentiostat instrument from Biologic company, France, was used for
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CV (voltage range: 1.8–2.6 V vs. Li/Li+) and EIS (frequency range: 250 kHz–50 mHz)
measurements.

Capacity decay rate per cycle was calculated as follows. Qm, Qf, Cm, and Cf correspond
to maximum capacity, final capacity, cycle number at maximum capacity, and final cycle
number, respectively.

Capacity decay rate per cycle = Qm − Q f

Qm
× 100/C f − Cm

3. Results

A molecular cooperative assembly-mediated synthesis method was used to generate
porous N-containing carbon supports without sacrificing the structural order (or integrity).
A 1:1 hydrogen-bonded complex between melamine and cyanuric acid (MCA), the so-
called reactive template, was used as a structure-directing agent as well as a nitrogen
source for MGC (Figure 1a) [15]. According to the previously reported procedure, MCA
was combined with an additional carbon source, i.e., glucose, via simple solution mixing in
EtOH followed by carbonization at 600 ◦C to generate MGC in a gram scale (Scheme 1).
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Glucose forms irregular rectangular chunks (GLC) ranging from 100 nm to 1 µm with-
out porous structures at 600 ◦C (Figure 1b). Such MGC particles are completely transformed
into interconnected uniform hollow spheres (MGC) of 1–2 µm, thereby demonstrating
the successful templating of MCA by glucose (Figure 1c). Furthermore, MGC spheres
essentially consist of thin graphene-like particles of 200–300 nm, matching well with the
size of MCA hexagonal crystals, where macropores of 100 nm seen in SEM and TEM images
result from the structural shrinkage during high-temperature polyaromatic condensation
(Figure 1d). The HR-TEM image reveals the well-developed, ordered graphitic crystallites
of 2–3 nm with abundant interstitial voids of 1.2 nm on the edge site, which is in marked
contrast to the GLC (Figure 1e,f). XRD analyses combined with the Scherrer equation
estimate that the graphitic crystallites have a lateral size of 2.72 nm and a stacking height
of 0.92 nm for MGC, indicating the superior structural ordering of MGC compared to GLC.
N2 sorption analysis shows that the interstitial voids and macropores contribute a high
Brunauer-Emmett-Teller surface area and pore volume of 400 m2 g−1 and 0.51 cm3 g−1,
respectively (Figure 1g,h).

Glucose is wrought as a microporous and highly aromatic condensed carbonaceous
material with reactive templating MCA [15]. Most significantly, a temperature of 600 ◦C
is maintained for the carbonization of the precursors to remove carbon nitride formed
at 550 ◦C from the MCA on the carbon materials. If not, carbon nitride restrains electric
conductivity because of its structural nitrogen content. It has been previously revealed that
glucose is successfully carbonized on MCA’s surface, maintaining its parental morphology,
rosette-like hollow sphere, and introducing porous structure, which might be beneficial
for the retention of lithium-polysulfide (LiPS). Moreover, during the condensation of
MCA, nitrogen, which is considered to have an affinity with the sulfur content in LSBs,
will be doped easily in the resulting carbonaceous material and prevent the polysulfide
shuttle effect.

Powder XRD analysis was carried out to investigate the microstructural characteristics
of MGC (Figure 2a). One obvious change is that the peak corresponding to the (002)
reflection, which represents the stacking distance between two-dimensional (2D) graphitic
layers, is shifted from 0.42 nm (GLC) to 0.40 nm (MGC). In addition, according to Table 1,
as calculated from the XRD patterns of the samples using Scherrer equation and Bragg’s
law, MGC has a smaller size of the c-axis crystallite (Lc = 0.92 nm), larger lateral size
(La = 2.72), and increased R factor (1.91) than those of GLC (Lc = 1.22 nm, La = 2.45, and R
factor = 1.85). These factors indicate that the MGC is a few-layered, graphitized carbon
with a higher degree of aromatic condensation in a 2D fashion. The homogeneous coating
of glucose on 2D MCA sheets induces the microstructure-controlled carbon. The higher
degree of aromatic condensation in MGC is further evidenced by the deconvolution of the
(002) reflection peak into two peaks: one is a disordered region and the other is a graphitic
region, similar to the previous work (Figure 2b) [15]. Notably, MGC is composed of a
much more areal contribution of the graphitic region (50.34%) than that of GLC (40.94%),
indicating a higher degree of aromatic condensation. To further evaluate the degree of
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graphitic in carbon materials, a Raman spectroscopy assay was conducted to calculate
the IG/ID ratio, wherein the lower the density of the defects, the higher the IG/ID ratio
(Figure 2c). The corresponding G-vibration peak centered on 1580 cm−1 corresponds to the
sp2-hybridized carbon, and D-vibration peak on 1350 cm−1 corresponds to the sp3-carbon,
indicating the defect region in a locality to sp2-carbon. Previous work revealed that the
nitrogen-containing carbon prepared from MCA-glucose mixtures as a precursor showed
a higher IG/ID ratio than that of the bulk counterpart [15]. This is due to the presence of
reactive template MCA, where the polyaromatic condensation of carbonaceous is more
favorable on the 2D-organized sheet-like structure of MCA. However, this result is contrary
to the previous one because of the vulnerability of the bulk counterpart, as the in-situ
decomposition of the carbon-based structure and further graphitization occurred during
Raman spectroscopy even by the visible light (532 nm), increasing the intensity of the
G-vibration peak [17].
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Table 1. Crystal structure of GLC and MGC; interlayer space, Lc, La, stacking number, R factor, and IG/ID.

Materials d002
(nm)

(002) Peak Position
(2 theta)

Lc
(nm)

La
(nm)

Stacking
Number R factor IG/ID

GLC 0.42 21.15 1.22 2.45 3.89 1.85 1.05
MGC 0.40 22.41 0.92 2.72 3.33 1.91 1.00

Unlike GLC, the reactive template MCA endows MGC a high N content of 11.69%
(Figure 3a,b Table 2). Identifying those species is important because of their characteris-
tics, which affect the chemical and electronic properties of carbon materials, where the
pyridinic N and graphitic N enable to increase affinity to the polysulfide and the electri-
cal conductivity of the carbon-based material, respectively [18]. The high-resolution N
1s spectrum of MGC could be deconvoluted into four peaks at 398.3, 399.5, 400.5, and
402.6 eV corresponding to pyridinic, pyrrolic, graphitic, and oxidized N atoms, respectively
(Figure 3c) [19,20]. MGC contains substantial amounts of graphitic N (38.82%), which is
responsible for the increased IG/ID ratio in Raman spectra [15]. In addition, the nitrogen
in MGC is mainly composed of pyridinic nitrogen (41.98%), expecting the capability to
quench the polysulfide shuttling effect. Indeed, it was shown that MGC could adsorb most
of the 2.5 mM Li2S6 in the electrolyte solution (DOL:DME = 1:1 v/v) within 12 h, whereas
GLC adsorbs a small amount of Li2S6 within the same time (Figure 3d). MGC as sulfur host
material having increased the surface area and the amount of nitrogen contents obviously
shows the improved anchorage of intermediated lithium polysulfide.
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Table 2. The elemental weight percentage of elemental analysis.

Materials Carbon
(wt.%)

Nitrogen
(wt.%)

Hydrogen
(wt.%)

Oxygen
(wt.%)

GLC 89.16 0.28 2.41 2.42
MGC 71.44 11.69 2.97 8.01

Galvanostatic cycling with potential limitation (GCPL), rate capability, cycle voltam-
metry (CV), and electrochemical impedance spectroscopy (EIS) were conducted to identify
the electrochemical performance of MGC as conductive sulfur supports. Figure 4a depicts
that GLC generates only a specific capacity of 1023 mAh g−1, which is similar to previously
reported CC as a carbon supports, whereas MGC generates 1383 mAh g−1 at a constant
current density of 1 mA cm−2 [21]. This can be explained by the physical adsorption and
capillary force induced from the meso-/micro-porosity of MGC, which make it adsorb LiPS
efficiently [22]. The hierarchically porous structure of MGC enables the improvement in
polysulfide trapping and further redox reactions of liquid to solid reaction, low polysulfide
formation reaction; Li2Sx (x = 1 or 2), which is evidenced by the increased capacity of the
low plateau region below 2.1 V vs. Li/Li+ in discharge profile. Figure 4b shows the CV
curves of GLC and MGC in the range of 1.8–2.6 V vs. Li/Li+ at a scan rate of 0.1 mV s−1

,
which indicates a similar result to GCPL. It seems that the first cathodic currents are almost
similar due to the presence of CC current collector [21]. However, the second cathodic
peaks have different currents: GLC; −2.88 mA and MGC; −4.35 mA. Moreover, MGC,
with a higher surface area and pyridinic N content, enables serving enough space for the
formation of Li2S and generation of additional capacity derived from the anchored LiPS.

The EIS results of GLC and MGC were fitted with the constant phase element (CPE)
model and the Nyquist plots with two semicircles in the HF region (250 kHz–1 kHz), MF
region (1 kHz–1 Hz), and one sloping line in the LF region (1 Hz–50 mHz) to investigate the
electrochemical response of the carbon material (Figure 4c,d). Four types of resistance can
be categorized from the model as follows: bulk cell resistance (Rb), corresponding to the
resistance of the electrolyte; interphase contact resistance (Rint), reflecting the interphase
electron conduction from current collector to reaction sites; charge-transfer resistance
(Rct), representing the charge-transfer between the solid and liquid (conductive agent and
electrolyte); and Warburg impedance (Rw), which represents Li-ion diffusion (Table 3) [23].
Rint and Rct of GLC (8.82 Ω and 90.43 Ω, respectively) are significantly higher than those
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of MGC (3.55 Ω and 3.27 Ω, respectively), indicating the improved electrical conductivity
and wettability induced by the higher aromatic condensation and increased polarity with
the introduction of nitrogen.
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Table 3. EIS fitting results using a CPE model.

Cell Rb (Ω) Rint (Ω) Rct (Ω) Rw (Ω−0.5)

GLC-before 2.71 8.82 90.43 29.41
MGC-before 2.79 3.55 3.27 1.97

To achieve an areal capacity higher than those of the commercially available LIBs
(4 mAh cm−2), electrochemical analyses were conducted under a high areal sulfur loading
of 6.0 mg cm−2. The MGC is little passivated by the charge/discharge product (S8 and
Li2S) under the high sulfur loading condition, showing minimal change in polarization
between charge and discharge profile (Figure 5a). It exhibits a gradual activation at initial
cycles and a maximum areal capacity of 5.79 mAh cm−2 at the 39th cycle. The cycle stability
is maintained over 100 cycles with a capacity decay rate per cycle of 0.18% (Figure 5b).
N-containing porous carbon, which has an affinity to LiPS, suppresses the shuttle effect,
and thus suffers no severe degradation of sulfur utilization. The rate capability investigated
with galvanostatic charge and discharge with 1, 2, and 3 mA cm−2 is illustrated in Figure 5c.
At 2 and 3 mA cm−2, the discharge capacity was generated at 91.2% and 81.1%, respectively,
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of that of 1 mA cm−2. The three-point-contact among the electrolyte, electrons, and active
materials is facilitated, thereby preventing severe discharge capacity loss even at the high
current densities. It retains 97.2% of the initial discharge capacity at 1 mA cm−2 after
several current density alterations. Before and after cycling, Rint and Rct of MGC decrease
from 3.77 Ω and 3.78 Ω to 2.18 Ω and 1.53 Ω, respectively (Figure 5d, Table 4).
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Table 4. EIS fitting results of MGC using a CPE model under sulfur loading 6.0 mg cm−2.

Cell Rb (Ω) Rint (Ω) Rct (Ω) Rw (Ω−0.5)

MGC before cycling 2.80 3.77 3.78 1.78
MGC after cycling 3.04 2.18 1.53 0.99

The Ragone plot to compare this material with variable carbon-based sulfur host
materials is illustrated in Figure 5e. The electrochemical performance obtained in this study
(areal sulfur loading of 6.0 mg cm−2 and areal capacity of 5.79 mAh cm−2) is remarkable.
Figure 5e and Table 5 summarize the electrochemical performance, including sulfur loading,
maximum areal capacity, sulfur utilization, capacity decay rate, and cycle stability, of the
recently reported carbon-based sulfur cathode in LSBs, are provided. In this work, MGC-
based LSB cells achieved a sulfur utilization efficiency of 93.60% and 57.71% at an areal
sulfur loading of 2.0 mg cm−2 and 6.0 mg cm−2, respectively. It can be seen that these
values are superior or comparable to those of the current state-of-the-art LSBs. We note
that the enhanced LiPS affinity resulting from rationally hierarchical pore structure and
enough pyridinic N species leads to excellent sulfur utilization and cycle stability with a
minor capacity decay rate per cycle.
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Table 5. Electrochemical performances of present studies with tuning cathode.

Label Sulfur Loading
(mg cm−2)

Maximum Areal Capacity
(mAh cm−2)

Sulfur
Utilization(%)

Capacity Decay Rate
(% per cycle)

Cycle
Number Reference

[a] 1.36 2.22 97.63 0.27 100 [24]
[b] 5.5 4.95 53.83 0.042 1200 [25]
[c] 5.6 6.4 68.35 0.472 100 [26]
[d] 4.4 3.82 51.92 0.55 100 [27]
[e] 3.1 2.07 39.94 0.05 500 [28]
[f] 3.2 2.93 54.76 0.23 100 [29]
[g] 2.4 2.45 61.05 0.09 100 [30]
[h] 2.5 2.46 58.85 0.13 100 [31]
[i] 4.2 5.4 76.90 0.051 100 [32]
[j] 2.0 1.56 46.65 0.36 100 [33]

This work 2.0 3.13 93.60 0.21 100 -
This work 6.0 5.79 57.72 0.18 100 -

4. Conclusions

In conclusion, this study proposes multi-functional carbon-based sulfur host material
supports to suppress the polysulfide dissolution and generate high areal capacity in LSBs.
To achieve these, (1) hierarchically porous structure, (2) pyridinic N-functional groups,
and (3) more aromatically condensed structure possessing carbon is prepared. This was
obtained through the simple mixing of glucose as a carbon source and MCA as a reactive
template and then by carbonization of the mixture. Although MGC had a high nitrogen
content of up to 7.59%, the sp2-hybridized 2D structure was well-linked without severe
detriment, resulting in low charge transfer resistance (3.27 Ω). With high loading sulfur
cathode in LSBs, MGC exhibited a good ability toward the physi-/chemisorption of soluble
LiPS, and thus the improved high areal capacity of 5.79 mAh cm−2 was obtained at a
constant areal current density of 1 mA cm−2 with a capacity decay rate of 0.18% per
cycle over 100 cycles. This study presents an efficient way to prepare carbon supports for
high-sulfur-loaded LSBs while effectively suppressing the shuttle effect.
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