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Abstract: Wood-derived nanofibrillated cellulose (NFC) has emerged as a sustainable material with
a wide range of applications and increasing presence in the market. Surface charges are introduced
during the preparation of NFC to facilitate the defibrillation process, which may also alter the
toxicological properties of NFC. In the present study, we examined the in vitro toxicity of NFCs with
five surface chemistries: nonfunctionalized, carboxymethylated, phosphorylated, sulfoethylated, and
hydroxypropyltrimethylammonium-substituted. The NFC samples were characterized for surface
functional group density, surface charge, and fiber morphology. Fibril aggregates predominated
in the nonfunctionalized NFC, while individual nanofibrils were observed in the functionalized
NFCs. Differences in surface group density among the functionalized NFCs were reflected in the
fiber thickness of these samples. In human bronchial epithelial (BEAS-2B) cells, all NFCs showed
low cytotoxicity (CellTiter-GloVR luminescent cell viability assay) which never exceeded 10% at
any exposure time. None of the NFCs induced genotoxic effects, as evaluated by the alkaline comet
assay and the cytokinesis-block micronucleus assay. The nonfunctionalized and carboxymethylated
NFCs were able to increase intracellular reactive oxygen species (ROS) formation (chloromethyl
derivative of 2/,7'-dichlorodihydrofluorescein diacetate assay). However, ROS induction did not
result in increased DNA or chromosome damage.

Keywords: nanofibrillated cellulose; surface chemistry; genotoxicity; nanotoxicity; nanocellulose;
reactive oxygen species; human bronchial epithelial cells

1. Introduction

Cellulose nanofibers have emerged as sustainable and environmentally friendly mate-
rials with a wide range of industrial and medical applications [1]. There are several types
of nanocelluloses that can be obtained from different raw materials, the most common
sources being hard- and softwood chemical pulp fibers [2]. Wood pulp fibers are processed
with chemical and enzymatic pretreatments to facilitate the structural deconstruction of the
fibers into two main types of nanocelluloses: nanofibrillated cellulose (NFC) and cellulose
nanocrystal [2,3]. Wood NFC is composed of amorphous and crystalline domains [4] and
is characterized by having a high-aspect ratio, with a typical diameter of 2-10 nm and
length in the micrometer-scale (>1 um) [5,6]. NCFs are obtained from wood pulp fibers by
mechanical fibrillation, which can be performed by using, e.g., homogenizers, fluidizers
and grinders [7]. Prior to the mechanical fibrillation, various chemical and enzymatic
pretreatments can be applied to ease the fibrillation of fibers into homogeneous nanofibril
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dispersions. Chemical pretreatments introduce for example carboxyl, carboxymethyl, and
aldehyde groups or phosphoryl side groups on the surface of NFC [8]. Such pretreat-
ments affect not only the surface chemistry of the nanofibrils but also properties like fiber
dimensions, specific surface area, and degree of branching of the nanofibrils [9].

The increasing use of nanocelluloses in multiple applications should be accompanied
by an adequate assessment of their safety—especially in occupational settings, where
inhalation is considered the primary route of exposure [10]. A life cycle risk assessment of
nanocelluloses identified inhalation of dry nanocellulose powders or, in the case of wet
slurry, airborne nanocellulose-containing droplets, as the most relevant exposure scenarios
during the production and manufacturing of nanocelluloses [11].

Due to their natural origin, cellulosic materials are often assumed not to be toxic [10].
However, the long pulmonary biopersistence of these materials [12-15], together with
the high aspect ratio, raise concerns about potential effects on human health, especially if
inhaled [10]. Furthermore, some features of NFCs, such as nanometer size, large surface
area, and modified surface chemistry, may impart novel material properties and biological
behavior, as compared with macro-scale materials [16]. Therefore, it is necessary to address
the human health and environmental safety aspects of nanocelluloses before scaling up
their production.

There is still scarce knowledge on the potential adverse health effects of NFCs, despite
the increasing number of studies performed during the last few years. As summarized in
different reviews on this topic [17-21], toxicological studies show contradictory findings.
The conflicting results may partly be due to variation among NFCs because of different fac-
tors, e.g., cellulose source, mechanical fibrillation procedure, or pretreatments [21], which
can modify the material properties. It is well-recognized that the physicochemical features
of nanomaterials may affect their toxicity [16,22,23], surface chemistry being one of the most
relevant ones [18]. Surface modifications can impart new beneficial properties to nanocel-
luloses, increasing their applicability in, e.g., healthcare products and food packaging [24].
However, different functionalization will determine differences in the agglomeration rate,
hydrophobicity, surface charge, and surface chemistry of nanocelluloses, which may affect
their cellular uptake, interaction with subcellular organelles, and downstream biological
responses [19]. Surface chemistry was reported to drive in vitro inflammatory response to
NEFC [25], while no differences in cell metabolic activity or cell membrane integrity were
observed when diverse in vitro cell models where exposed to differently functionalized
NFC materials [14,24,25].

Studies addressing the genotoxic potential of NCF are too scarce to allow clear con-
clusions [2,19]. Genotoxic effects were observed in mouse 3T3 fibroblasts exposed to
curaua- and brown cotton-derived NFC [26]. Ventura et al. [27] also reported an increase in
chromosome damage, but not DNA damage, in human lung epithelial alveolar A549 cells
cocultured with THP-1 macrophages after being treated with a TEMPO (2,2,6,6-tetramethyl-
piperidin-1-oxyl) oxidized NFC. Furthermore, genotoxic effects were observed in the lung
tissue of mice exposed to an enzymatically pretreated NFC [13,15] and to a TEMPO ox-
idized NFC [28]. On the other hand, no DNA or chromosome damage was induced by
unmodified and enzymatically or chemically pretreated NFC on human bronchial epithelial
BEAS-2B cells [13]. However, none of these studies compared NFC derived from the same
source with different surface chemistry.

In the present study, we investigated the role of surface chemistry in modulating the
in vitro toxic potential of NFC, by analyzing the ability of the materials to induce cytotoxic
effects, the formation of reactive oxygen species (ROS), and DNA and chromosomal dam-
age in human bronchial epithelial BEAS-2B cells. Additionally, fluorescent staining of the
nanofibrils was used to assess the cellular uptake of NFC. Four NFC materials with vari-
ous surface functionalization (carboxymethylation, hydroxypropyltrimethylammonium
substitution, phosphorylation, and sulfoethylation), together with nonfunctionalized NFC,
were included in this study. While other studies have investigated the influence of surface
modified NFC on several toxicological endpoints using different cell models, to the best of
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our knowledge, this is the first study investigating the genotoxic response to NFCs that
only differ in their surface chemistry.

2. Materials and Methods
2.1. Synthesis and Surface Modification of the NFC Materials

The NFC materials were provided by RISE Bioeconomy (Stockholm, Sweden) and
were produced from commercial never-dried bleached sulfite softwood dissolving pulp
(Domsjo Fabriker AB, Sweden). Nonfunctionalized NFC, herein referred as unmodi-
fied (U-NFC), was produced by enzymatic pretreatment of the wood pulp following the
protocol presented by Pddkoo et al. [29]. Carboxymethylated NFC (C-NFC) and hydrox-
ypropyltrimethylammonium NFC (H-NFC) were prepared as described by Hua et al. [30].
Phosphorylated NFC (P-NFC) was produced following the method described by Naderi
etal. [31], using a 4:1 phosphorous:glucopyranose molar ratio, followed by 5 microfluidizer
passes at 1700 bar. To prepare sulfoethylated NFC (S-NFC), the protocol described by
Naderi et al. [32] was followed. The surface functional group density of all NFC samples
was determined as described in Lopes et al. [24].

The chemical structures of the NFC materials are shown in Figure 1.
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Figure 1. Chemical structures of the nanofibrillated cellulose (NFC) materials under study.

2.2. Preparation of the NFC Exposure Suspensions

The stock suspensions of the NFCs were prepared in phosphate buffer (PBS) at
5 mg/mL and dispersed as previously described [25]. Briefly, the stock suspensions were
dispersed using a Branson Sonifier 450D (400 W, 60 Hz; Danbury, CT, USA) with a 13-mm
horn for 12 min. The suspensions were then sterilized by autoclaving, except for H-NFC
which was subject to ultraviolet radiation (UV) treatment during two cycles of 45 min each.
Then, the stock suspensions were diluted in cell culture medium and sonicated for 30 min
in a 37 kHz Elmasonic S15H ultrasonic bath cleaner (Elma Schmidbauer GmbH, Singen,
Germany) before being added to the cells.

2.3. Characterization of the NFC Materials
2.3.1. Bacterial Contamination, Endotoxin and (1,3)-3-D-Glucan Levels

Bacterial contamination was tested using the 3M™ Petrifilm™ Aerobic Count Plates,
whereas bacterial lipopolysaccharide content (endotoxin level) was measured using the
Pierce™ LAL Chromogenic Endotoxin Quantitation Kit (Thermo Fisher Scientific, Waltham,
MA, USA), following the instructions provided by the manufacturer. Prior to the test, the
samples were heated at 75 °C for 15 min, to promote the release of endotoxins from
the material.



Nanomaterials 2021, 11, 389

40f17

The level of (1,3)--D-glucans in the NFC samples was investigated using the (1,3)-3-
D-glucan detection kit Glucantell with diazo-reagents for endpoint assay (Associates of
Cape Cod Inc., Liverpool, UK), according to the protocol described by the manufacturer.
The analyzed samples were extracts obtained after incubating the NFC suspensions at
75 °C for 15 min.

2.3.2. Fiber Morphology

Transmission electron microscopy (TEM) imaging was used to investigate the mor-
phology of the fibers. Samples were prepared as described by Usov et al. [33]. Briefly,
5 pL of NFC suspension (0.1% in deionized water, dispersed through ultrasonication as
described in Section 2.2) were deposited onto copper TEM grids with formvar carbon
support film for 1 min. Thereafter, the sample grids were stained by adding 5 uL of 2%
uranyl acetate for 1 s and again 5 uL of 5% uranyl acetate for 15 s. After each step, the
excess of moisture was drained along the periphery using filter paper. The grids were
examined using a FEI Titan Themis TEM (Thermofisher Scientific, Waltham, MA, USA)
operated at 200 kV.

2.3.3. Zeta-Potential

The z-potential of the NFC materials was determined in 10 mM NaCl and in cell
culture medium (serum-free LHC-9 medium). The measurements in 10 mM NaCl were
done following the protocol described by Lopes et al. [24]. For the measurements in cell
culture medium, z-potential was determined as an average of three separate measurements
with Zetasizer Nano ZS (Malvern Instruments Ltd., Malvern, UK). Dispersions of 0.001%
(w/w) of the NFC were prepared in cell culture medium, following the same dispersion
protocol as used for the in vitro exposures. The measurements were conducted at 37 °C in
folded capillary cell directly after dispersing the fibers.

2.4. Cell Culture

Transformed human bronchial epithelial BEAS-2B cells, exhibiting an epithelial phe-
notype [34], were obtained from the American Type Culture Collection through LGC
Promochem AB (Boras, Sweden). The BEAS-2B cells were grown in serum-free LHC-9
medium (Gibco, Life Technologies Corporation, Grand Island, NY, USA) at 37 °C in a
humidified atmosphere of 5% CO,. Log-phase BEAS-2B cells were plated on 48-well plates
(comet assay), 96-well plates (cytotoxicity and ROS assays) and 2-well chamber slides
(micronucleus assay) from one to three days prior to exposure to the NFC materials.

2.5. Cellular Internalization of NFC

To assess the potential internalization of NFC by BEAS-2B cells, NFC was stained
with the Calcofluor White Stain (Merck KGaA, Darmstadt, Germany). The staining was
performed on the same slides that were used for the scoring of the micronucleus frequency
(for slide preparation, see below). At harvest, the cells were treated for 15 min at 25 °C
with cellulase (8.7 uL/mL, Cellic CTec2, Novozymes, Bagesvaerd, Denmark) to remove
excess NFC outside the cells. The procedure of the calcofluor staining has previously been
described [35]. In brief, a drop of calcofluor was applied onto acridine orange-stained slides
and incubated under a cover slip for 1 min. The sample was thereafter examined with a
fluorescence microscope (ZEISS Axio Imager Z1, Carl Zeiss AG, Oberkochen, Germany),
using DAPI/FITC/TRITC triple filter and 40x objective lens.

2.6. Cytotoxicity Assessment

BEAS-2B cells were seeded in white clear flat bottom 96-well plates (Corning, NY,
USA) at a density of 2 x 10* cells/well (200 uL/well; culture area 0.32 cm?/well) and
grown to semiconfluency, after which they were exposed to NFC dispersions for 24 and
48 h at eight doses: 3.9,7.8, 15.6, 31.2, 62.5, 125, 250, and 500 pg/mL (equivalent to 2.4, 4.9,
9.8,19.5,39.1,78.1,156.2, and 312.5 ug/ cm?). 0.1% Triton X-100 (AppliChem, Darmstadt,
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Germany) was used as positive control, while untreated cells served as negative control
at each time point. All treatments were performed in quadruplicate, and the experiments
were repeated three times.

Cytotoxicity was measured using the CellTiter-GloVR Luminescent Cell Viability As-
say (Promega, Madison, WI, USA) according to instructions provided by the manufacturer
(Technical bulletin, Promega Corporation, revised 6/09, part# TB288). This assay estimates
the number of metabolically active viable cells in the culture, based on the quantization of
ATP, using Ultra-Glo™ Recombinant Luciferase and measurement of relative luminescence
by Fluoroskan Ascent FL (Thermo Electron Corporation, Vantaa, Finland). Because some
nanomaterials have been described to have optical interference [36], the measurements also
included the cellulose materials without cells. However, the NFCs showed no interference
with the luminometric determinations.

Cytotoxicity was expressed as relative luminescence in the treated cultures in compar-
ison with the untreated cultures. This assay reflects all treatment-related effects (necrosis,
cell cycle delay and apoptosis) that reduce the number of viable or living cells. In addition,
as requested by the OECD TG 487 [37], cytostasis was always measured when performing
the micronucleus assay, as a way of assessing cytotoxicity in the same cultures that were
used for the micronucleus assay. In this way, the adequacy of the chosen dose range based
on the luminometric assay could be confirmed.

2.7. Formation of Intracellular Reactive Oxygen Species (ROS)

The levels of intracellular ROS were measured using the chloromethyl derivative
of 2/,7'-dichlorodihydrofluorescein diacetate (CM-H,DCFDA) (Invitrogen, Eugene, OR,
USA), according to the manufacturer’s guidelines. DCFDA is a lipophilic cell permeable
compound that is deacetylated in the cytoplasm by cellular esterases and later oxidized by
ROS to a highly fluorescent molecule [25]. Derivatives with a thiol-reactive chloromethyl
group allow for covalent binding to intracellular components, permitting even longer
retention within the cell.

BEAS-2B cells were plated on black clear flat bottom 96-well plates (Corning, NY,
USA) at a density of 20,000 cells/well (200 uL/well; culture area 0.32 cm?/well) and
grown to semiconfluency for two days. After being washed with Gibco™ Dulbecco’s
Phosphate-Buffered Saline (DPBS, Thermo Fisher Scientific, Paisley, Scotland), the cells
were loaded with 2.5 uM CM-DCFDA in PBS for 30 min at 37 °C. Thereafter, the loading
buffer was removed, and the cells were washed with PBS. Then the cells were treated
with the NFC dispersions at eight doses: 3.9,7.8, 15.6, 31.2, 62.5, 125, 250 and 500 pg/mL
(equivalent to 2.4, 4.9,9.8,19.5, 39.1, 78.1, 156.2 and 312.5 ug/cmz). 2 mM H,0, (Sigma-
Aldrich Chemie, Steinheim, Germany) was used as a positive control, while untreated
cells served as a negative control at each time point. Fluorescence was recorded at 3, 6,
and 24 h (excitation 485 nm, emission 538 nm) using a plate reader (Fluoroskan Ascent
FL, Vantaa, Finland). The average fluorescent intensity was calculated by subtracting
background values. All treatments were performed in quadruplicates, and the experiments
were repeated three times.

2.8. Genotoxicity Assessment
2.8.1. Comet Assay

The comet (single cell gel electrophoresis) assay was used to study DNA strand breaks
and alkaline labile sites in BEAS-2B cells after exposure to the NFC materials. BEAS-2B
cells in log phase were plated in 48-well plates (culture area 0.95 cm? /well, culture medium
volume 250 uL/well; Corning, NY, USA) two days prior to exposure. Exposure time
was 24 h, and the cells were exposed to 6, 19, 56, 167, and 500 pg/mL (corresponding
to 1.6, 5.0, 14.7, 43.9, and 131.6 pg/ cmz) of each NFC. Untreated controls and positive
controls treated with hydrogen peroxide (20 mM, Riedel-de Haen, Seelze, Germany) were
included in all series. All treatments were performed in duplicate, and the experiments
were repeated twice.
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The comet assay was performed in alkaline conditions (pH > 13) as described previ-
ously [38]. The slides were coded, and one scorer performed the comet analysis using a
fluorescence microscope (Axioplan 2, Zeiss, Jena, Germany) and an interactive automated
comet counter (Komet 5.5, Kinetic Imaging Ltd., Liverpool, UK). The percentage of DNA in
the comet tail from 200 cells per dose and experiment (two replicates per dose, two slides
per replicate, 50 cells/slide) was used as a measure of the amount of DNA damage.

2.8.2. Cytokinesis-Block Micronucleus Assay

The cytokinesis-block micronucleus assay was applied to study chromosomal damage
in BEAS-2B cells after exposure to the NFCs. The cells were plated on 2-well chamber slides
(culture area 4.2 cm? /well, culture medium volume 2 mL/well; Nunc, Roskilde, Denmark)
at a density of 300,000 cells per well and incubated for 24 h, to reach semiconfluency, prior
to the treatment.

Based on the cytotoxicity assay, the cells were exposed for 48 h to five doses of the
dispersed materials: 6, 19, 56, 167, and 500 pg/mL (the corresponding doses were 2.8,
9.0, 26.7, 79.5, and 238.1 pg/ sz). Cytochalasin B (9 pg/mL; Sigma-Aldrich Chemie,
Steinheim, Germany) was added to the cell cultures 6 h after starting the treatment, to
induce binucleation of dividing cells. Untreated cultures and cultures treated with the
positive control mitomycin C (MMC; Sigma-Aldrich, Steinheim, Germany; 150 ng/mL)
were included in all experiments. All cultures were prepared in duplicate.

After the exposure, the cells were briefly rinsed in PBS, treated for 15 min at 25 °C
with cellulase enzyme blend (8.7 uL/mL), and rinsed again with PBS. Cellulase treatment
was performed to get rid of the noninternalized nanofibrils that could interfere with the
micronucleus scoring. The slides were air-dried for 2 h, fixed for 10 min in absolute
methanol at 25 °C, air-dried, and kept at —20 °C until staining. The cells were stained
with acridine orange (32 mg/mL) for 1 min after which the slides were rinsed three times
in Sorensen buffer (pH 6.8), stained with 4,6-diamidino-2-phenylindole (DAPI, 1 pg/mL)
for 5 min, rinsed in tap water, and allowed to dry. The slides were kept at 4 °C protected
from light. Immediately before analysis, the slides were mounted in Sérensen buffer and
covered with a coverslip.

The slides were coded for a blinded analysis. All analyses were performed by one
scorer. Cell proliferation was first measured to assess the possible effect of the treatments on
cell cycle delay (cytostatic effect), as a means to ensure that the treatments were conducted
at appropriate levels of cytotoxicity. To this end, cytostasis, based on the cytokinesis-
blocked proliferation index (CBPI; OECD 2016), was calculated from 100 cells per replicate
culture (200 cells per dose) as follows:

%Cytostasis = 100 — 100[(CBPIyeated — 1)/ (CBPLeontrol — 1)1

where: CBPI = [(No. mononucleate cells) + 2(No. binucleate cells) + 3(No. multinucleate
cells)]/ (total No. cells).

To evaluate the frequency of micronucleated cells, micronuclei were scored in 4000 bin-
ucleate cells per treatment (2000 binucleate cells per replicate; two replicates per treatment)
using ZEISS Axio Imager Z1 microscope (Carl Zeiss AG, Oberkochen, Germany). Binu-
cleate cells and micronuclei in them were identified using a 40x objective lens using a
FITC/TRITC double filter for acridine orange, and the micronuclei were verified with DAPL

2.9. Statistical Analyses

One-way analysis of variance (ANOVA), followed by Dunnett’s multiple comparison
post hoc test, was used to assess the effect of the dose in all the assays. Dose-response in
the formation of ROS and in the comet and micronucleus assays was evaluated by linear
regression analysis. Comparisons between the positive and negative control groups were
performed by unpaired one-tailed ¢-test for all the assays. All analyses were performed
using GraphPad Prism 8, version 8.3.1 (GraphPad Software, San Diego, CA, USA). The
effects were considered significant if p < 0.05.
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3. Results
3.1. Characterization of the NFCs

Table 1 summarizes the properties of the NFC samples under study. P-NFC had the
highest surface group density among the functionalized materials, followed by H-NFC,
S-NFC, and C-NFC. Low levels of carboxyl groups were quantified in U-NFC, which can
be attributed to the presence of residual hemicellulose.

Table 1. Properties of the nanofibrillated cellulose (NFC) materials under study.

z-Potential (mV)

NFC o Functional Group Fiber Diameter NaCl (10 mM, Cell Culture Medium
Sample Surface Modification Content (Aqueous Suspension) 1 pH 7.5) 2 LHC-9 ,
(umol/g) (pH 6-8)
U-NFC None 304 10-30 nm aggregates —10£25° —14.1 452
Some individual fibrils,
C-NFC Carboxymethylation 371 fiber aggregates (10-15 —-209+138 —20.8+0.6
nm)
Hydroxypropyl-
H-NFC trimethylammonium 634 4-5 nm individual fibrils 17.4 4225 187 £1.0
substitution
P-NFC Phosphorylation 1109 4-5 nm individual fibrils —31.1+12° —296+1.1
Some individual fibrils,
S-NFC Sulfoethylation 444 fiber aggregates (10-12 —23.84+1.65 —-17.8 £0.7
nm)

1 Estimated by TEM images; 2 measurements done at 25 °C, 3 measurements done at 37 °C; # residual carboxyl groups; 5 From Lopes et al. [24].

Z-potential measurements of the NFC suspensions in 10 mM NaCl reflected the
presence of the surface charged groups, with positive values for the NFC material with
the hydropropyltrimethylammonium substitution (H-NFC) and negative values for the C-
NFC, P-NFC, and S-NFC samples. The differences in surface group density were reflected
in the z-potential absolute values, with the highest degree of functionalization (P-NFC)
corresponding to the highest z-potential value. The z-potential values obtained for the
suspensions in cell culture medium did not significantly differ from the values obtained
with the NaCl suspensions. The absence of proteins in the cell culture media and the similar
pH compared with the NaCl suspensions explain this similarity.

The morphology of the NFC materials can be observed in the TEM images displayed
in Figure 2. As expected, due to the lack of surface charged groups in U-NFC (only low
levels of residual carboxy groups were detected), the fibers formed aggregates (10-30 nm
in diameter; Figure 2a), while the functionalization of the NFC materials resulted in better
dispersion of the individual fibers. However, some differences were found between the
functionalized materials, where the density of the surface groups seemed to influence the
fiber morphology. H-NFC and P-NFC (Figure 2c,d, respectively) presented individual
fibrils (4-5 nm in diameter), while C-NFC with the lowest surface group density of all
functionalized materials showed fiber aggregates with thickness up to 15 nm (Figure 2b).
Slight fiber aggregation was observed in the S-NFC sample (Figure 2e), which may also be
related to its slightly lower surface group density compared with the highly defribrillated
H-NFC and P-NFC.

No bacterial contamination was found in the dispersed NFC suspensions after being
sterilized by autoclaving or UV treatment.

The results from the LAL assay showed that the NFC materials, except H-NFC, had
a high level of endotoxins, which was above the upper detection limit (>1.2 EU/mL) of
the assay. H-NFC showed a level of 0.12 EU/mL which was below the 0.5 EU/mL limit
value established by the US Food Drug Agency for inhalation studies [39]. No test kit
interference was detected with any of the materials. However, the potential contribution of
B-glucan contaminants in the NFC samples to the observed endotoxin levels could not be
dismissed, since the endotoxin kit employed did not inhibit the reaction with (3-glucans.
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When the presence of (1,3)-p-D-glucans in extracts of NFC was measured, values in
the concentration range 250-20 pg/mL were found (Figure S1), thus indicating low levels
of (1,3)-B-D-glucan contaminants in the NFC materials [40].

Figure 2. Representative TEM images of nanofibrillated cellulose (NFC) aqueous suspensions showing the morphology of
the nanofibers. (a) U-NFC, (b) C-NFC, (¢) H-NFC, (d) P-NFC and (e) S-NFC.

3.2. Internalization of NFCs

As calcofluor staining was performed on cellulase pretreated slides, noninternalized
NFC was not expected to be present, and hence detected by the staining, in these prepara-
tions. Therefore, stained NFC that appeared associated with some cells (Figure 3a,b) may
have reflected cellular internalization. However, it may also have been due to NFC material
attached to the cell membrane that was not efficiently eliminated by the cellulase treat-
ment. Nevertheless, most cells did not show calcofluor-stained material, suggesting that
the possible NFC internalization concerned a minority of the cells. No calcofluor-stained
material could be found in the untreated cultures (Figure 3c). As NFC on the cells could
not reliably be distinguished from internalized NFC, it remains unclear how much the
NFCs were actually taken up.

Figure 3. Examples of calcofluor staining (blue) in cells treated with U-NFC (167 ug/mL) (a), H-NFC (56 ug/mL) (b) and

untreated cells (c). Counterstaining by acridine orange.
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3.3. Cytotoxicity

None of the tested NFCs significantly reduced the number of living cells present in
the culture as compared with the negative control (Figure 4).
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Figure 4. Cytotoxicity of the nanofibrillated cellulose (NFC) materials. The total number of living
cells was counted at 24 and 48 h exposure to (a) U-NFC, (b) C-NFC, (¢) H-NFC, (d) P-NFC and
(e) S-NFC, and the results were normalized with the unexposed control. Results are presented as the
mean = standard error of the mean. Graphs are plotted with 95% confidence interval (colored areas).
The range of 45 & 5% living cells (corresponding to the 55 £ 5% cytotoxicity) is indicated by the grey
area in each graph.

The purpose of the cytotoxicity assay was also to choose the range of doses of each
NFC to be tested in the genotoxicity assays. According to OECD guidelines on the in vitro
micronucleus test [37], the highest test substance concentration to be included in the
assay (in the absence of micronucleus induction at earlier doses) should produce 55 £ 5%
cytotoxicity. Higher levels may induce chromosome damage as a secondary effect of
cytotoxicity [41] and should, therefore, be avoided. In the present study, the highest tested
dose (500 pg/mL) did not reach the cytotoxicity limit for any of the NFCs (Figure 4). On
the other hand, more concentrated dispersions were not stable enough. Hence, 500 pg/mL
was chosen as the highest dose to be tested in the other assays.

The positive control, 0.1% Triton X-100, induced a statistically significant decrease
in the number of living cells in all the experiments at both 24 h (3.31 £ 0.14% living cells
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in comparison with the negative control, p < 0.001) and 48 h (1.73 % 0.06% living cells
in comparison with the negative control, p< 0.001) exposure, confirming the validity of
the experiments.

3.4. Induction of Intracellular ROS

Figure 5 shows the induction of intracellular ROS at three different times of exposure
(3, 6, and 24 h) to each of the NFCs. U-NFC induced a significant increase in ROS formation
in comparison with the negative control at 500 nug/mL in the 24 h exposure (p = 0.0327). In
addition, there was a significant linear dose-response (p = 0.0078) at this time point but not
at earlier ones (Figure 5a). C-NFC did not induce a statistically significant increase in ROS
formation at any dose or time point. However, there was a significant linear dose-response
at3 h (p =0.0023), 6 h (p = 0.0004), and 24 h (p < 0.0001) of C-NFC exposure (Figure 5b).
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Figure 5. Induction of intracellular reactive oxygen species (ROS) by the nanofibrillated cellulose
(NFC) materials. The production of ROS was assessed at 3, 6, and 24 h exposure to (a) U-NFC,
(b) C-NFC, (c) H-NFC, (d) P-NFC and (e) S-NFC. Data are expressed as relative fluorescence units
(RFU) and presented as the mean =+ standard error of the mean. Significant linear dose-responses
are plotted with 95% confidence interval (colored areas). Statistical significance in comparison with
control cultures (one-way ANOVA): * p < 0.05. Statistical significance, linear regression: i p <0.01;
1t p <0.001; 7 p < 0.0001.
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H-NFC, P-NFC, and S-NFC induced neither a significant increase in ROS formation nor
a significant linear dose-response, at any dose or exposure time (Figure 5c—e, respectively).
The positive control, HyO, (2 mM), statistically significantly increased ROS production
over the negative control values in all the experiments performed at 3 h (8.12 £ 0.25-fold
increase; p < 0.05), 6 h (6.87 & 0.53-fold increase; p < 0.01) and 24 h (3.58 £ 0.07-fold increase;
p < 0.05) exposure, confirming the validity of the experiments.

3.5. Genotoxicity

None of the NFC materials were able to induce an increase in DNA damage compared
with the negative control at any of the tested doses (Figure 6a). A significant linear dose-
response (p = 0.04) was only found for P-NFC (Figure 6b).
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Figure 6. Induction of DNA damage by the nanofibrillated cellulose (NFC) materials. DNA strand
breaks were assessed at 24 h exposure to (a) U-NFC, C-NFC, H-NFC, P-NFC, and S-NFC. A significant
linear dose response (p = 0.0427) was induced by P-NFC (b). Data are expressed as percentage of
DNA in tail and presented as the mean =+ standard error of the mean. Significant linear dose-response

is plotted with 95% confidence interval (colored area).

The positive control, HyO, (20 mM), induced a statistically significant increase in the
percentage of DNA in tail over the negative control values in all the experiments performed
(19.43 £ 2.06-fold increase; p < 0.0001), confirming the validity of the experiments.

As requested by OECD TG 487 [37], cytotoxicity or cytostasis should be assessed in all
cultures that are scored for micronuclei, to demonstrate appropriate cell proliferation. The
results showed that 55 £ 5% cytostasis, set as the upper limit for testing by the guideline,
was exceeded by none of the cellulosic materials, at none of the tested doses (Figure 7). The
cytostasis values were <10% for all the NFC materials.

None of the NFC materials were able to induce an increase in chromosome damage
compared with the negative control at any of the tested doses (Figure 7).

The positive control, MMC (150 ng/mL), induced a statistically significant increase in
the frequency of micronucleated cells over the negative control values in all the experiments
performed (22.4 £ 3.4-fold increase; p < 0.01; 79.0 £ 1.0% cytostasis), confirming the validity
of the experiments.
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Figure 7. Induction of micronuclei by the nanofibrillated cellulose (NFC) materials. Micronucleus

induction was assessed at 48 h exposure to (a) U-NFC, (b) C-NFC, (c) H-NFC, (d) P-NFC and

(e) S-NFC. Purple symbols show the frequency of micronucleated cells in 2000 binucleated cells

(MNCs/2000 BNCs). Blue symbols show the percentage of cytostasis. Data are presented as the

mean + standard error of the mean.

4. Discussion

As NFC is expected to have a wide range of industrial and biomedical applications
and thereby an increasing presence in the market, the safety assessment of various forms
of the material becomes a priority [10]. The present study aimed at increasing knowledge
about the possible interactions of NFC with human lung cells, with a special focus on
the effect of surface chemistry. Surface chemical modification of NFC is commonly used
as a strategy to facilitate the fibrillation process during production and to endow NFC
with distinct properties for different applications [8,9]. By altering the physicochemical
properties of nanofibers, functionalization may in turn influence NFC interactions with
biological systems. The NFC materials investigated in this study included four different
functionalized NFCs (C-NFC, H-NFC, P-NFC and S-NFC) and a nonfunctionalized NFC
(U-NFC). Material characterization showed that the introduction of surface charged groups
had a marked effect on the morphology of the fibers. The individual nanofibrils observed
in the functionalized NFC samples could be a consequence of electrostatic repulsion
between the fibers, due to the presence of the surface charged groups [8], while fiber
aggregates predominated in U-NFC. Moreover, differences in surface group density among
the functionalized NFC materials influenced the extent of fiber aggregation, with thicker
fibers being observed for the less substituted C-NFC and S-NFC compared with H-NFC
and P-NFC.
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Human bronchial epithelial BEAS-2B cells constituted the in vitro model used to
investigate cellular response to the NFC materials. This cell line (wild-type for p53),
able to be grown in serum-free medium and to enter squamous differentiation, has a
normal antioxidant capacity and has been reported to be very similar to primary bronchial
cells and to human lung tissue in terms of gene expression pattern [42,43]. Hence, it is
assumed to be a good model for human lung research. In addition, BEAS-2B has been
suggested to be an appropriate in vitro model in asbestos and nanotoxicological research
and is capable of material endocytosis while undergoing cell division [44,45]. However,
the NFC materials investigated in the present study did not seem to be efficiently taken
up by the BEAS-2B cells, as most cells showed no associated calcofluor-stained NFC. In
agreement with these results, NFCs with the same surface modifications (U-NFC, C-NFC
and H-NFC) as those assessed in the present study were not internalized by human THP-1
macrophages [25]. Two other types of NFC (freeze-dried powder and 0.9% wt gel) were
neither internalized by human lung alveolar epithelial A549 cells treated with 45 pg/cm? of
the materials for 72 h [46]. Instead, the NFCs were mostly localized at the cell boundaries.
Interestingly, cellulose nanocrystals analyzed in parallel were clearly seen inside the A549
cells [46]. Furthermore, Tomi¢ et al. [35] found that unmodified NFC materials were
partially or completely internalized by monocyte-derived dendritic cells, depending on
whether they were larger or smaller in size, respectively. In contrast, cellulose nanocrystals
were completely internalized by these cells.

No remarkable toxic effects were induced by the NFC materials on the pulmonary
BEAS-2B cell line. None of the tested NFC materials significantly affected the number of
metabolically active viable cells, the highest reduction (~10% compared to the untreated
cultures) being induced by the highest tested dose (500 pg/mL) of U-NFC, C-NFC and
H-NEFC at 24 h exposure. Our results agree with those reported by Lopes et al. [24] for the
same types of surface modified NFC materials and dose range. These authors found no
signs of cytotoxicity, as evaluated by metabolic activity and cell membrane integrity, in
human intestinal Caco-2 cells exposed to the NFCs for 24 and 48 h. Similarly, no cytotoxic
effect was induced by another type of unmodified NFC when Caco-2 cells were exposed
up to 48 h [47]. Cytotoxicity was neither seen when predigested NFCs were assessed in an
in vitro triculture model where Caco-2 cells were included [7]. Likewise, a previous study
with NFCs chemically modified in a similar way as in the present study (U-NFC, C-NFC
and H-NFC) reported a lack of cytotoxicity in human dermal fibroblasts, lung cells, and
macrophages [25]. Exposure of human dermal fibroblasts and human lung MRC-5 fibrob-
lasts to 50-500 ug/mL of each NFC for 24 h showed similar metabolic activity and cellular
membrane damage as the nontreated cells. Human THP-1 differentiated macrophages
treated in the same way had a significantly higher metabolic activity but similar membrane
integrity as compared with untreated cells [25]. Furthermore, no cytotoxic effects were ob-
served in BEAS-2B cells treated for 24 and 48 h with 9.5-950 pug/mL of four different NFCs
(carboxylated, carboxymethylated, and two NFCs without chemical pretreatment) [13].
However, one of these NFC materials (enzymatically pretreated) induced a statistically
significant increase in the percentage of dead macrophages after treatment with 100 pg/mL
for 3, 6, and 24 h [14]. Other types of wood-derived NFC materials tested in lung cell lines
have given contradictory results. The two previously described NFCs analyzed by Menas
et al. [46] in A549 cells caused a significant decrease in cell viability at 72 h postexposure.
On the other hand, the viability of the same cell line was not affected by freeze-dried
powder of hydrophilic and hydrophobic forms of NFCs [48], although both NFCs induced
dose-dependent cytotoxic and inflammatory responses in THP-1 cells.

In the present work, the formation of intracellular ROS in BEAS-2B cells was triggered
by U-NFC after 24 h and by C-NFC after 3 h, 6 h and 24 h exposure. H-NFC, P-NFC, or
S-NFC did not induce a significant formation of intracellular ROS at any of the exposure
times. The ROS induction by U-NFC and C-NFC detected in our study may have been
triggered by the endotoxins present in the NFC samples. All tested NFC materials tested
by us, except H-NFC, showed a high endotoxin level above the upper detection limit. As
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the endotoxin content of these four NFCs could not be determined accurately, it remains
unclear whether the ROS induction could have reflected a substantially higher amount
of endotoxin in C-NFC and U-NFC compared with the other NFCs. However, although
the involvement of endotoxins in inducing oxidative stress in different cell types cannot
be excluded [49], evidence in favor of endotoxin affecting in vitro toxicity endpoints other
than immunological responses is limited [50]. It should also be noted that although (1,3)-3-
D-glucans, impurities commonly present in cellulose-based materials [51], are known to
have a wide range of bioactivities including immunomodulatory properties [40,52], there
are no documented effects on the response of BEAS-2B cells to these bioactive molecules.
Moreover, all NFC materials under study showed (1,3)-3-D-glucan levels below the limit
for glucan contaminants in biomedical products and therefore such levels are not expected
to induce a significant biological response [40]. Overall, we found a distinct response in
terms of ROS production to the differently functionalized NFCs. However, the contribution
of endotoxin contamination to such response cannot be completely dismissed.

In a previous study, U-NFC and C-NFC materials, as well as another one with the
same surface modification as the present H-NFC, showed no significant ROS increase in
THP-1 macrophages treated for up to 120 min with the same doses [25]. The differences in
the ROS formation reported in both studies may be due to differences in the sensitivity of
the used cell lines (BEAS-2B cells vs. THP-1 macrophages) or the length of the exposure
treatments (minimum of 3 h vs. 120 min). Oxidative stress was induced in human bronchial
alveolar A459 cells after 24 h and 72 h exposure of gel and powder forms of NFC [46].
However, no induction of oxidative stress was reported in the immortalized fibroblast
cell-line 1929 treated with an unmodified NFC for 48 h [53] or in an in vitro triculture
model treated with a predigested NFC for 30 min [7].

To date, few studies have investigated the genotoxic potential of NFCs [2,19]. In the
present study, none of the tested NFCs induced a statistically significant increase in micronu-
cleated cells. P-NFC was the only material that showed a linear dose-response (p = 0.04)
in DNA damage. However, as none of the doses significantly differed from the untreated
cultures, P-NFC was not considered to be genotoxic. The present results agree with our pre-
vious ones using BEAS-2B cells [13]. None of the assessed NFCs (two nonfunctionalized—
one of them enzymatically pretreated—carboxylated and carboxymethylated NFCs) were
able to induce DNA or chromosomal damage after treating the cells with up to 950 pg/mL
of the materials for 24 and 48 h, respectively. However, the enzymatically pretreated NFC
induced a significant dose-dependent increase in DNA damage in the lung cells of mice
24 h after administration (up to 18 pug/mouse [15] and 200 pg/mouse [13]). The effect could
still be observed 28 days postadministration in one of the studies [13]. On the other hand,
the unmodified nonenzymatically pretreated NFC also induced a significant increase in
DNA damage at 24 h postadministration, although no dose-dependency was observed [13].
None of the NFCs induced chromosome damage in peripheral blood erythrocytes of mice
at any of the postadministration times [13]. The lack of agreement between the in vitro and
in vivo results observed in the study of Lindberg et al. [13] suggests that the mechanisms
responsible for the effects observed in vivo may not adequately be present in the in vitro
cell systems used. One possibility is that the observed in vivo genotoxicity is induced by
a secondary mechanism mediated by an inflammatory response [54]. In fact, all NFCs
analysed by Lindberg et al. [13] triggered a pulmonary inflammatory response in mice
24 h after treatment (with up to 18 ng/mouse [15] or 40 ug/mouse [14]), although the
inflammation subsided within one month. Furthermore, the enzymatically pretreated NFC
also induced a significant increase in the proinflammatory cytokines IL-13 and TNF-«
in THP-1 cells [14]. Secondary genotoxic effects of nanomaterials could be detected in
coculture systems, which may better mimic the in vivo toxicological response as compared
with monocultures [55,56]. In fact, a TEMPO oxidized NFC induced a significant increase in
chromosome damage, assessed by the micronucleus assay, in lung epithelial alveolar A549
cells cocultured with THP-1 macrophages [27]. No inflammatory response was reported
in this system, although the assessment was only based on measuring the production of
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the proinflammatory cytokine IL-13. A more sophisticated 3D in vitro triple cell coculture
model of the human epithelial airway barrier was used by Clift et al. [57] to assess the
cytotoxicity and inflammatory response of cellulose nanowhiskers isolated from cotton.
The model consisted of human monocyte derived macrophages, dendritic cells, and human
bronchial epithelial 16HBE140- cells. A dose-dependent cytotoxic and proinflammatory
response was observed for the nanowhiskers. However, this system has so far not been
used for testing NFC. Considering that a significant release of IL-1 and TNF-« was in-
duced by U-NFC, but not by C-NFC or H-NFC, in THP-1 macrophages treated with up
to 500 nug/mL for 24 h [25], it would also be interesting to find out whether U-NFC could
induce genotoxic effects by an inflammatory-mediated mechanism, and if the introduction
of surface-groups could modulate this effect.

5. Conclusions

In conclusion, our findings show that none of the NFC materials tested, including
different types of surface functionalization with different surface charges, can induce
genotoxic effects in human bronchial epithelial BEAS-2B cells in vitro. The NFCs neither
elicited cytotoxic effects. The nonfunctionalized and carboxymethylated NFCs were able
to increase intracellular formation of ROS. However, the ROS increase did not result in an
increased DNA or chromosome damage.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/2079-499
1/11/2/389/s1, Figure S1: Levels of (1,3)-B-D-glucans in extracts of the NFC materials under study.
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