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Abstract: In this work, a mechanochemical route was proposed for the synthesis of the PrBaMn2O5+δ

(PMBO) double layered perovskite phase. The mechanochemical reaction between Pr6O11, BaO2, and
MnO powders with cationic stoichiometric ratios of 1/1/2 for Pr/Ba/Mn was performed using high-
energy milling conditions in air. After 150 min of milling, a new phase with perovskite structure and
cubic symmetry consistent with the A-site disordered Pr0.5Ba0.5MnO3 phase was formed. When this
new phase was subsequently annealed at a high temperature in an inert Ar atmosphere, the layered
PrBaMn2O5+δ phase was obtained without needing to use a reducing atmosphere. At 1100 ◦C, the
fully reduced layered PrBaMn2O5 phase was achieved. A weight gain was observed in the 200–300 ◦C
temperature range when this fully reduced phase was annealed in air, which was consistent with the
transformation into the fully oxidized PrBaMn2O6 phase. The microstructural characterization by
SEM, TEM, and HRTEM ascertained the formation of the intended PrBaMn2O5+δ phase. Electrical
characterization shows very high electrical conductivity of layered PBMO in a reducing atmosphere
and suitable in an oxidizing atmosphere, becoming, therefore, excellent candidates as solid oxide
fuel cell (SOFC electrodes).

Keywords: SOFCs; mechanochemistry; layered double perovskites; sinterability; electrical conductivity

1. Introduction

Solid oxide fuel cells (SOFCs) are one of the most promising and environmentally
friendly technologies for generating electricity from a variety of fuels. SOFCs directly trans-
form chemical energy into electricity without the need for combustion (electrochemical
conversion), resulting in much higher efficiencies, since losses derived from thermody-
namic considerations are minimized [1,2]. If hydrogen is employed as fuel, only water is
generated as a byproduct of the process. In addition, as SOFCs operate at high temper-
atures, 800–1000 ◦C, they are capable of producing hydrogen inside the cell by internal
reforming from natural gas and other fuels which are easier to handle and transport than
hydrogen [3,4]. However, operating directly with hydrocarbons produces carbon depo-
sition and sulfur poisoning in conventional Ni-based cermet anodes [5–7], and therefore
deactivation, which requires desulfurizing and/or external reforming units [8], with the
consequent increase in the complexity of the design and the stack costs.

This is one of the reasons why the search for alternative anode materials resistant to
carbon and sulfur is receiving special and continuous attention [9]. Oxides with perovskite
structure (with general formula ABO3) have been proposed as candidates for anodes, as
they are flexible in composition and allow a high degree of cationic substitution in A-
and B-sites, which permits the tailoring of the final properties, such as the electronic and
ionic conductivities, by properly adjusting the stoichiometry. The presence in the B-site
of transition metals with multiple oxidation states is of primary importance because it
largely determines the electrocatalytic properties and stability upon redox cycling [10,11].
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The different perovskite materials proposed to date as anodes can be found in several
reviews [12,13], in which their main advantages and disadvantages are highlighted.

Double perovskites with the general formula A2BB′O6, such as Sr2CoMoO6-δ,
Sr2MgMoO6-δ, or Sr2TiMoO6-δ [14–16], have also been investigated as anode materials,
but surface degradation, non-negligible reactivity with electrolytes, especially YSZ, and
low power densities have been frequently observed. Recently, double layered perovskite
oxides with different A-site compositions (AA′B2O6), and particularly double layered man-
ganites, including PrBaMn2O5+δ (PBMO), have been proposed as promising alternatives to
Ni/YSZ, not only as potential anode materials in SOFCs [17], but also as cathode materials
in solid oxide electrolysis cells (SOECs) [18], due to their interesting properties, such as
high electrical conductivity (mixed ionic and electronic), fast surface oxygen exchange, and
easy oxygen anion transport [19].

In PBMO structure, the Ba and Pr cations are not distributed randomly in the per-
ovskite A-site, but ordered in alternating Pr and Ba layers along (001). All the oxygen
vacancies in PBMO are located in the Pr A-site layers [20], which plays a key role in
creating fast oxygen ion diffusion paths. It has been shown that under SOFC anode condi-
tions, the oxygen site in the Pr-O plane is vacant or near-vacant (δ~0) [20]. Furthermore,
PBMO has proven to be very stable over a wide range of temperatures and oxygen partial
pressures [21]. In this sense, PBMO has shown almost complete reversibility between
the fully-reduced (δ~0) and fully-oxidized (δ~1) phases at relatively low temperatures
(200–500 ◦C) when the oxygen partial pressure is alternated between reducing and oxi-
dizing conditions [21,22]. Moreover, it has also been proven to withstand redox cycles at
higher temperatures (up to 950 ◦C) with only a small decrease in the maximum oxygen
storage capacity [23]. These features are due to the high order degree in A-sites, which
provides thermal and chemical stability under operating conditions, and the ability of
the transition metal cation to accommodate different valence states (Mn4+/Mn3+/Mn2+),
which favor the intake and release of oxygen within the vacancy rich Pr A-site layer during
the redox processes.

PBMO has shown an electrical conductivity of 8.16 S/cm at 800 ◦C in 5% H2 [17].
In an electrolyte-supported single cell with a configuration of PBMO/La0.4Ce0.6O2-δ
(LDC)/La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM)/NdBa0.5Sr0.5Co1.5Fe0.5O5+δ-Ce0.9Gd0.1O2-δ
(NBSCF50-GDC), a maximum power density of 0.66 W/cm2 was obtained at 800 ◦C
in humidified H2 (3% H2O) [24]. An LDC buffer layer is frequently added to avoid PBMO
chemical reactivity with the electrolyte material at high temperature [17,24]. Although
Mn-containing perovskites generally have reasonable activity for hydrocarbon oxidation,
for practical applications, the electrocatalytic activity of the PBMO anode should be further
enhanced by adding active metal catalysts. For example, power densities of 1.7 W/cm2

were obtained at 850 ◦C in humidified H2 when PBMO with a 15 wt.% Co-Fe catalyst was
used, with no observable degradation in H2S/H2 [17]. This same anode also showed good
coking resistance in humidified propane with a maximum power density of 1.3 W/cm2

at 850 ◦C [17]. The exsolution of catalyst nanoparticles on the surface of the PBMO anode
material under reducing conditions (during SOFC anode operation) when the B-site is
doped with catalytically active transition metals (Co, Fe, Ni) has also shown promising
results regarding the electrode performance and long-term stability [24,25].

PBMO powders are generally prepared by a two-step synthesis procedure. First,
a disordered Pr0.5Ba0.5MnO3 precursor is obtained from a sol-gel route using EDTA or
citric acid as the chelating agent, which includes a final pyrolysis step at high temperature
in air [17,20,24–27], or by a conventional solid-state reaction method [18]. Note that the
obtained Pr0.5Ba0.5MnO3 precursor is generally composed of a mixture of two phases with
cubic and hexagonal structures. The major cubic phase corresponds to the A-site disordered
perovskite, while the minor hexagonal phase is associated with the BaMnO3 secondary
phase, whose formation is favored by a high extent of oxidation from Mn3+ to Mn4+ under
the experimental conditions of synthesis. In a second step, the Pr0.5Ba0.5MnO3 precursor is
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annealed at ~800–900 ◦C in a reducing atmosphere, during which the hexagonal structure
is suppressed, and the A-site ordered layered PBMO is formed with a tetragonal symmetry.

Mechanochemistry has shown to be an efficient, reproducible, and relatively simple
way to obtain mixed oxides with simple perovskite structure that can be used as compo-
nents in SOFCs [28–33]. This methodology is based on the induction of solid-state reactions
at room temperature by applying mechanical energy (instead of heating) to a reactant
powder mixture using primarily high-energy ball milling equipment. In recent years, there
has been a strong revitalization of mechanochemistry, as it can be applied to a wide variety
of materials, from metals and alloys to organic compounds [34,35]. Note that by properly
adjusting the milling conditions, the contamination from the milling media, which has
been one of the main drawbacks for which mechanochemistry has been criticized for years,
can be reduced to low and permissible levels for most technological applications [36]. In
addition, the use of solvents can also be avoided and, therefore, the advantage of not pro-
ducing waste during preparation constitutes an additional benefit from an environmental
point of view.

Several studies can be found in the literature dealing with the mechanochemical syn-
thesis of selected layered perovskite oxides, such as the Ruddlesden-Popper (An+1BnO3n+1),
Aurivillius (Bi2O2) (An−1BnO3n+1) or double perovskites (A2BB′O6) phases, but in general,
an annealing step after the milling treatment of the reactant mixture was required to obtain
the intended final layered phase [37–43]. Regarding the double layered perovskite oxides,
milling procedures have only been used to prepare composite cathodes, such as, for ex-
ample, PrBa0.92Co2O6-δ-Ce0.8Sm0.2O1.9, from the different phases previously synthesized
by other methods [44], or to improve the oxygen storage properties of BaPrMn2O5+δ and
BaSmMn2O5+δ previously obtained at high temperatures [45].

In this work, the direct mechanochemical synthesis of the double layered PBMO
material by high-energy milling of the mixture of the corresponding binary oxides using a
planetary mill is proposed. The evolution of the PBMO conversion with the milling time
was studied and the chemical, structural, microstructural, and electrical properties of the
final product were fully characterized.

2. Materials and Methods

Praseodymium (III,IV) oxide (Pr6O11, CAS Number 12037-29-5, Alfa Aesar, 99% in
purity), barium peroxide (BaO2, CAS Number 1304-29-6, Aldrich, 95% in purity) and
manganese (II) oxide (MnO, CAS Number 1344-43-0, Alfa Aesar, 99% in purity) powders
were used as the starting reactants for the mechanochemical synthesis of PrBaMn2O5+δ.
For the experiments, the stoichiometric amounts of the powder reactants to produce 5 g
of PrBaMn2O5+δ and six tungsten carbide (WC) balls (d = 15 mm and m = 26.4 g) were
placed in a 60 mL tempered steel vial and milled in air in a planetary mill (Micro Mill
Pulverisette 7, Fritsch) at a spinning rate of 600 rpm. The milling process was stopped at
15 min intervals for X-ray diffraction (XRD) inspection. A total milling time of 150 min
was used.

The XRD patterns were collected on an X’Pert Pro MPD diffractometer (PANalytical)
equipped with a θ/θ goniometer, a graphite-diffracted beam monochromator and a solid-
state detector (X’Cellerator). The diffraction patterns were acquired using Cu Kα radiation
from 10◦ to 140◦ (2θ) in step-scan mode with a step size of 0.05◦ and a counting time of
300 s/step. The diffraction line positions were corrected with silicon powder (Standard
Reference Material 640c, NIST). Phase quantification, lattice parameters, crystalline domain
sizes (D) and microstrains (e) were calculated from the Rietveld refinement tool offered
by the X’Pert HighScore Plus software (Version 3.0.5, PANalytical) using pseudo-Voigt
functions to describe the line profiles.

For the microstructural characterization, the powder samples were dispersed in ace-
tone and droplets of the suspension were deposited onto a holey carbon copper grid. The
scanning electron microscopy (SEM) images were obtained on a Hitachi S-4800 SEM-FEG
microscope in secondary electron mode at an acceleration voltage of 5 kV. Energy-dispersive
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X-ray analysis (EDX) was performed with a detector coupled to the SEM microscope using
an acceleration voltage of 20 kV. The transmission electron microscopy (TEM) and high-
resolution (HRTEM) images, selected area electron diffraction (SAED) patterns, and EDX
spectra were taken on a 200 kV JEOL-2100-PLUS microscope equipped with a LaB6 filament
(point resolution = 0.25 nm). HR micrograph analysis, fast Fourier transform (FFT), and
phase interpretation were performed with the Gatan Digital Micrograph software (Gatan
Inc.) and the Java version of the electron microscope software (JEMS).

The thermogravimetric measurements were carried out in a simultaneous thermal
analysis equipment (STA 449 F5 Jupiter, Netzsch) on 60–80 mg of powders using an alumina
sample pan at a heating rate of 10 ◦C/min from room temperature up to 1100 ◦C in two
different flowing atmospheres, air (50 mL/min) and Ar (50 mL/min).

Impedance spectra of reduced and oxidized layered PrBaMn2O5+δ were measured
using an impedance analyzer model Solartron 1260A at open circuit voltage (OCV). All
measurements were made at from 800 to 100 ◦C, with a range of 100 ◦C. The specimens
were measured in synthetic airflow (150 mL/min) and Ar/10%H2 (150 mL/min) with
a frequency range of 1 MHz–0.1 Hz. All the spectra were analyzed with the ZView
software. Platinum wires were used as voltage and current collectors in a single chamber
configuration. For the impedance measurements, 0.6 g of the powder was compacted in
a disk shape (∅ = 12 mm and thick = 1 mm) using a uniaxial press at 100 MPa for 5 min
and further sintered at 1500 ◦C in argon for 12 h, at heating and cooling rates of 5 ◦C/min,
in a tubular furnace. Finally, the specimens were ground and polished to achieve a final
thickness of 1 mm.

3. Results and Discussion

A Pr6O11/BaO2/MnO powder mixture with a stoichiometric ratio according to
Equation (1) was milled using the experimental conditions described in the Materials
and Methods section.

1
6

Pr6O11 + BaO2 + 2MnO → PrBaMn2O5+δ (1)

The milling process was stopped every 15 min and the powder was inspected by XRD.
Figure 1 shows the XRD patterns of the mixture as a function of the milling time. The XRD
pattern at 0 min corresponds to the starting reactant mixture. Figure 1 clearly shows how
the intensity of the XRD peaks of reactants (especially BaO2) was considerably reduced after
only 15 min of milling. Moreover, the XRD peaks also suffered from a large broadening.
Both effects were the result of the high-intensity milling regime employed. At this short
time of 15 min, new XRD peaks began to develop suggesting the formation of a new phase
with a perovskite structure. With increasing milling time, the mechanochemical reaction
progressed and the amount of this new phase continuously increased. After 150 min, the
conversion was finished and the mechanochemical solid state reaction seemed to be nearly
complete (from now this sample will be named PBMO-m). Only the existence of a minor
amount of BaCO3, which was already present in the starting BaO2 as a minor phase, was
observed. The percentage of the newly formed perovskite phase as a function of the milling
time calculated from the XRD patterns in Figure 1 is plotted in Figure 2.

The XRD peaks of the new perovskite phase show extremely large broadening due
to the small size of the coherent diffraction domains (D = 14.3 nm) and the presence
of a high number of defects (microstrain, e = 0.434%) as a result of the high-intensity
milling conditions employed. The XRD pattern was consistent with the A-site disordered
Pr0.5Ba0.5MnO3 phase with cubic symmetry and space group Pm-3m (a = 3.8962(3) Å); the
corresponding (h k l) are marked in Figure 1. However, a similar cubic phase has also been
observed in perovskite materials with actual lower symmetry structure when obtained
by mechanochemistry [46]. Because of the large broadening of the XRD peaks, the real
structure of the perovskite phases obtained by mechanochemistry is hardly resolved, and
they always appear with a pseudo-cubic symmetry. Note that XRD patterns similar to that
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observed in Figure 1 for the PBMO-m sample were assigned in the literature to the layered
PBMO phase [17,24]. In this sense, lattice parameters a = 5.522(1) Å and c = 7.757(3) Å
were obtained from this XRD pattern (PBMO-m sample), assuming the tetragonal structure
with space group P4/nmm characteristic of the reduced-form of the PrBaMn2O5+δ phase.
Furthermore, the presence of the hexagonal phase associated with the BaMnO3 secondary
phase, as generally found in thermal-related synthesis processes, was not detected in this
mechanochemical route.
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Figure 2. Quantification by Rietveld refinement of the XRD patterns in Figure 1 of the new perovskite
phase formed when the Pr6O11/BaO2/MnO powder mixture is subjected at increasing milling time.

To better crystallize the structure and resolve the real crystal symmetry of the per-
ovskite phase obtained by mechanochemistry, the PBMO-m sample was annealed for 3 h at
increasing temperatures in an inert Ar atmosphere. Figure 3 shows the room temperature
XRD patterns of samples after annealing (500–1100 ◦C range). Note that after the thermal
treatment at 500 ◦C, BaCO3 impurity phase disappeared. It can be also observed that the
broadening of the XRD peaks slightly decreased at increasing annealing temperature as a
result of a better crystallinity. Moreover, the XRD peaks shifted to lower angles, indicating
larger lattice parameters in annealed samples. The pseudo-cubic symmetry seemed to
be maintained up to 800 ◦C. However, the larger broadening observed in the XRD peak
located at ~46◦ 2θ in the annealed sample at 800 ◦C compared to the same peak at 700 ◦C
suggests that at 800 ◦C the cubic structure has started to evolve toward the tetragonal
symmetry. At 900 ◦C, the tetragonal structure characteristic of the PrBaMn2O5+δ phase
(P4/nmm) was already well defined. The lattice parameters determined for this sample,
labelled as PBMO-m + 900 ◦C/Ar, were a = 5.6179(4) Å and c = 7.7695(7) Å. Annealing
at higher temperature (1100 ◦C) did not produce any new significant modification (just a
smaller peak broadening) and the sample, labelled as PBMO-m + 1100 ◦C/Ar, maintained
similar lattice parameters (a = 5.6219(5) Å and c = 7.7584(1)), which were in close agreement
with the literature values determined for the fully reduced PrBaMn2O5 phase [21,26].

As mentioned above and according to the literature, the fully reduced PrBaMn2O5
phase can be obtained from the disordered Pr0.5Ba0.5MnO3 or the fully oxidized PrBaMn2O6
phases when they are annealed at 800–900 ◦C in a reducing atmosphere [17,18]. Moreover,
it has been shown that while heating YBaMn2O6 and GdBaMn2O6 up to 980 ◦C under
an inert atmosphere leads to the formation of the half-reduced phase with an oxygen
stoichiometry close to 5.5, the same treatment for PrBaMn2O6 only produces a slight
decrease in the oxygen content in the oxidized phase [21]. Therefore, it seems surprising
that if the disordered Pr0.5Ba0.5MnO3 was obtained by mechanochemistry, the reduced
layered phase was formed when the PBMO-m sample was annealed (above 800 degrees) in
an inert atmosphere.
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To obtain new insights into the nature of the perovskite phase obtained by mechanochem-
istry and to estimate the oxygen content before and after the annealing treatments in Ar,
thermogravimetric measurements were performed in different atmospheres. The main
results are depicted in Figure 4.
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A weight loss of ~4.8% was observed when the PBMO-m sample was heated up to
850 ◦C in a flowing Ar atmosphere. This weight loss (Figure 4a) is even greater than
the theoretical loss corresponding to 1 formula unit of oxygen associated with the trans-
formation of Pr0.5Ba0.5MnO3 to PrBaMn2O5 (~3.3 wt.%) and it is the consequence of the
presence in the product of BaCO3, which decomposes in the temperature range stud-
ied. However, when the PBMO-m + 900 ◦C/Ar and PBMO-m + 1100 ◦C/Ar samples
were heated in air, a weight gain was observed in the 200–300 ◦C temperature range
(Figure 4b,c, respectively) according to the oxygen uptake associated with the transfor-
mation of the reduced PrBaMn2O5+δ phase into the oxidized PrBaMn2O6-δ phase. If we
assume that after the thermogravimetric measurements in air the layered perovskite is
fully oxidized, the weight gains of 2.75 and 3.26 wt.% determined are in agreement with an
approximated oxygen stoichiometry of PrBaMn2O5.20 and PrBaMn2O5.05 for the PBMO-m
+ 900 ◦C/Ar and PBMO-m + 1100 ◦C/Ar samples, respectively. Therefore, it is clear that
the reduced layered structure (PrBaMn2O5+δ) was obtained when PBMO-m was annealed
in Ar; the use of a reducing atmosphere is not necessary.

In Figure 5, the XRD patterns of the PBMO-m (Figure 5a) and PBMO-m + 1100 ◦C/Ar sam-
ples are compared with that of the fully oxidized layered phase obtained after the thermogravi-
metric measurements in flowing air (Figure 5c), labelled as PBMO-m + 1100 ◦C/Ar + TG/air.
The XRD pattern of this last sample was consistent with a tetragonal P4/mmm structure with
lattice parameters a = 3.9004(1) Å and c = 7.7582(2) Å in agreement with the literature values
for PrBaMn2O6 [21,26].

A microstructural characterization was carried out for the PBMO-m, PBMO-m +
1100 ◦C/Ar and PBMO-m + 1100 ◦C/Ar + ATG/air samples. According to SEM mi-
crographs obtained for the three samples (Figure 6), the morphological evolution can
be easily observed after the mechanochemical and thermal treatments. The PBMO-m
sample is formed by agglomerates of small rounded particles characteristic of powders
obtained by dry mechanochemical reaction (Figure 6a). After annealing at 1100◦ C in Ar
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(PBMO-m + 1100 ◦C/Ar sample), the size of small particles and crystalline domains (as
shown the XRD analysis) increased, displaying a wide range of sizes between 300 and
700 nm (Figure 6b) and a polygonal shape (inset). The PBMO-m + 1100 ◦C/Ar + ATG/air
sample, which was obtained after the TG experiment of the previous one, presents quite
similar morphology (Figure 6c); nevertheless, the crystal size, due to the TG heating,
increased, exceeding 1 µm.
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A TEM and related techniques study was carried out to deep into the microstructure
of the three samples. The results obtained for sample PBMO-m are depicted in Figure 7.
The crystalline domains form agglomerates (as was observed by SEM); however, the TEM
image presented in Figure 7b shows the size of the independent crystallites between 10 and
20 nm, corroborating the figures found by XRD measurements. The nanometric character
of the sample was also verified by the SAED pattern-rings (Figure 7c), where all of them
could be indexed to the pseudo-cubic perovskite structure (Pm-3m (a = 3.8962(3) Å). The
corresponding (h k l) planes are marked in the figure.

Figures 8 and 9 present the results corresponding to the TEM and HRTEM character-
ization of the PBMO-m + 1100 ◦C/Ar and PBMO-m + 1100 ◦C/Ar + ATG/air samples.
The difference in terms of symmetry between the tetragonal fully reduced layered phase
(P4/nmm; 129) and the tetragonal fully oxidized layered phase (P4/mmm; 123) is very slight.
They only diverge in a 45 degree rotation at the base of the structure in such a way that
a129=

√
2a123 and the c parameter is nearly the same. For this reason, it is quite difficult to

differentiate both structures by SAED. In the case of the PBMO-m + 1100 ◦C/Ar sample,
several high-resolution micrographs were found, where the FFTs could be indexed to both
structures. This fact can be seen when comparing FFTs with the electron diffraction ED
calculated diagrams for both symmetries (Figure 8c,d). However, it was possible to find
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HRTEM images whose FFT could only be assigned to the tetragonal P4/nmm structure. A
representative image is depicted in Figure 8e, oriented along the (3 1 1)129 zone axis and
the (h k l) are marked. On the other hand, the microstructural analysis of the PBMO-m +
1100 ◦C/Ar + ATG/air sample (Figure 9), the oxidized layered phase, permitted to obtain
HRTEM micrographs where the FFTs could only be indexed according to the P4/mmm
tetragonal symmetry. The two examples shown in Figure 9c,d correspond to (4 2 1)123 and
(2 1 1)123 zone axes, respectively. The (h k l) planes are marked in the figure. Therefore,
it can be confirmed that the reduced and oxidized layered samples possess P4/nmm and
P4/mmm tetragonal symmetry, respectively, in good agreement with the found XRD results.
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The chemical composition (regarding the cations) of the three samples (PBMO-m,
PBMO-m + 1100 ◦C/Ar and PBMO-m + 1100 ◦C/Ar + ATG/air) was analyzed by EDX
spectroscopy and the corresponding spectra and average atomic percentage of the cations
are presented in Figures 7d, 8b and 9b, respectively. Taking into account that the cation
atomic percentage according to the stoichiometric formula of the PBMO is: Pr = Ba = 25%
and Mn = 50%, the found experimental data are around these values with a maximum
standard deviation of ±2.3%.

Figure 10 shows the electrical conductivity of PBMO-m after sintering at 1500 ◦C as a
function of temperature in Ar/H2 and synthetic air from 100 to 800 ◦C. Remember that
after the sintering process in Ar atmosphere, the reduced layered PrBaMn2O5+δ phase was
obtained. The electrical conductivity reaches a maximum of 21.1 S·cm−1 when reduced and
96.8 S·cm−1 in its oxidized state (measurement in air atmosphere). The very high electrical
conductivity values reported for this layered PBMO double perovskite, particularly in
air, are comparable to the values obtained by Sendogan et al. [17], indicating that the
mechanochemical synthesis is an optimum method to obtain this phase, which can provide
efficient electron transfer paths to meet the requirements of both the anode and cathode
in SOFCs.



Nanomaterials 2021, 11, 380 12 of 16

Nanomaterials 2021, 11, x FOR PEER REVIEW 13 of 18 
 

 

can be confirmed that the reduced and oxidized layered samples possess P4/nmm and 
P4/mmm tetragonal symmetry, respectively, in good agreement with the found XRD re-
sults. 

 
Figure 8. Microcharacterization of PBMO-m + 1150 °C/Ar sample: (a) TEM image; (b) representa-
tive EDX spectrum and the average atomic percentage of the sample; (c), (d) and (e) HRTEM mi-
crographs and the corresponding fast Fourier transform (FFT) and simulated ED patterns (insets). 
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It is known [17,47] that the predominant defects in this type of double layered per-
ovskites, such as PBMO, are mobile electronic holes (h•= Mn•Mn). According to the
Kröger–Vink equation, the interaction between oxygen vacancies and mobile electronic
holes can be expressed as follows

2Mnx
Mn +

1
2

O2 + V••O
←
→ Ox

O + 2Mn•Mn (2)

This relationship implies that the concentration of oxygen vacancies will increase
under a reducing atmosphere, yielding in enhanced oxide-ionic conductivity and oxygen
ion transfer sites between the anode and the electrolyte. In an oxidizing atmosphere,
the electrical charge is mainly balanced by the conversion of Mn2+ to Mn3+ and even to
Mn4+ ions (although some Pr4+ may be present). In contrast, in a reducing atmosphere,
the electroneutrality is maintained by the formation of oxygen vacancies followed by the
reduction of Mn4+ to Mn3+ to Mn2+ ions.

The thermal dependence of conductivity for oxygen ionic conductors can be obtained
from the well-known Arrhenius plot. The activation energy values of 0.06 and 0.33 eV were
found in the oxidized and reduced specimens, respectively. The slopes obtained, and thus
the activation energies calculated from the linear fits, are also consistent with data reported
previously in layered PBMO double perovskites fabricated by other synthesis routes.

4. Conclusions

High-energy milling in air of a Pr6O11, BaO2 and MnO powder mixture with Pr/Ba/Mn
stoichiometric ratios of 1/1/2 led to the formation of a pseudo-cubic perovskite phase
consistent with Pr0.5Ba0.5MnO3. The presence of the hexagonal phase associated with
the BaMnO3 secondary phase, as generally found in thermal-related synthesis processes,
was not detected in this mechanochemical route, which yields in direct fabrication of the
layered perovskite, without further annealing in an reducing atmosphere. If the perovskite
phase obtained by mechanochemistry is annealed at an increasing temperature in an inert
Ar atmosphere, the layered PrBaMn2O5+δ phase is formed. This phase transforms into the
oxidized layered PrBaMn2O6-δ when treated in air at 200–300 ◦C. Electrical characterization
shows very high electrical conductivity of layered PBMO, becoming therefore excellent
candidates to be considered as SOFC electrodes.

5. Future Work

The fabrication of a full SOFC containing a PBMO anode or a symmetrical fuel cell
with PBMO in both electrodes, as well as the characterization of such fuel cell performance
is planned for future experiments. In addition, considering the benefits of this fabrication
method and the good properties of the fabricated PBMO double perovskite, authors plan
to incorporate other elements (B-site doping with transition metals) using this fabrication
method in the double perovskite in order to further enhance the electrical properties.
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