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Abstract: The metal oxides/graphene nanocomposites have great application prospects in the fields
of electrochemical energy storage and gas sensing detection. However, rational synthesis of such mate-
rials with good conductivity and electrochemical activity is the topical challenge for high-performance
devices. Here, SnO2/graphene nanocomposite is taken as a typical example and develops a universal
synthesis method that overcome these challenges and prepares the oxygen-deficient SnO2 hollow
nanospheres/graphene (r-SnO2/GN) nanocomposite with excellent performance for supercapacitors
and gas sensors. The electrode r-SnO2/GN exhibits specific capacitance of 947.4 F g−1 at a current
density of 2 mA cm−2 and of 640.0 F g−1 even at 20 mA cm−2, showing remarkable rate capability. For
gas-sensing application, the sensor r-SnO2/GN showed good sensitivity (~13.8 under 500 ppm) and
short response/recovering time toward methane gas. These performance features make r-SnO2/GN
nanocomposite a promising candidate for high-performance energy storage devices and gas sensors.

Keywords: oxygen vacancy; r-SnO2/GN; supercapacitors; gas sensors

1. Introduction

With the development of society and the improvement of the level of science and
technology, people are increasingly improving their own quality of life. In particular, terms
such as health, safety, and convenience frequently appear in the public’s field of vision [1–3].
Therefore, environmental safety monitoring, human safety monitoring and green energy
are facing huge business opportunities and challenges, including electrochemical energy
storage devices [4–6], gas sensor devices [7–9], pressure sensor devices [10–12], and so
on. This also puts forward higher requirements for the comprehensive performance of
the material.

Whether in electrochemical energy storage devices or gas sensors, metal oxides such
as NiO [13,14], ZnO [15,16], Co3O4 [17,18], SnO2 [19,20], etc. play a very important role in
their material design and composition. However, these metal oxides themselves have poor
electrical conductivity. Moreover, it is inevitable to introduce polymers used as binders
when assembling devices. Even a very small amount will cause the electron or ion transport
channels to be cut off and significantly reduce the performance. In recent years, a large
number of researches have been conducted on the use of metal oxide nanomaterials as the
matrix and the selection of suitable carbon materials for doping to form metal oxide/carbon
nanocomposites [21–23]. The synergistic effect due to compounding can effectively improve
the overall characteristics, especially the conductivity. However, carbon nanomaterials
such as graphene are prone to agglomeration due to their own characteristics, so the
performance improvement effect is not obvious, which greatly limits the advantages of this
method [24]. Fortunately, recent studies have shown that changing the surface properties
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of metal oxides by creating oxygen vacancies can effectively improve performance, which
provides a new idea for the synthesis of metal oxide/carbon composites [25–29].

SnO2 is an important semiconductor material for gas sensors and supercapacitors.
At present, the main method to improve the gas-sensing performance of SnO2 materi-
als is to increase the crystal defects by creating oxygen vacancies or doping impurities,
thereby increasing its carrier density [30]. Bunpang et al. synthesized flame-spray-made
Cr-doped SnO2 nanoparticles to improve its gas-sensing performance toward CH4 [31].
Bonu et al. studied the influence of in-plane and bridging oxygen vacancies of SnO2
nanostructures on CH4 sensing at low operating temperatures [32]. Kooti et al. prepared
SnO2 nanorods–nanoporous graphene hybrids and speculated that the substantial en-
hancement in the gas detection of SnO2 NRs-NPG nanohybrid should be attributed to
its larger specific surface area, the nanoporous graphene as a good conductor, and the
synergistic effect [33]. In contrast, SnO2 as a supercapacitor electrode material has not
achieved satisfactory electrochemical performance, and even the use of carbon materials
for compounding cannot effectively improve its specific capacitance and rate performance.
Notably, the effect of oxygen vacancies on the electrochemical property of SnO2 has never
been systematically investigated.

In this work, graphene modified oxygen-deficient SnO2 nanocomposite (r-SnO2/GN)
was successfully synthesized via the solvothermal method and annealing treatment. Differ-
ent from the reported SnO2 nanostructures [34–37], this paper synthesized SnO2 hollow
spheres with large specific surface area and stable structure by means of concentrated acid
and organic solution at appropriate reaction temperature and reaction time. At the same
time, chemical treatment and heat treatment were reasonably combined in the introduction
of oxygen vacancies, which not only achieved the deep reduction of GO but also introduced
a large number of oxygen vacancies in SnO2 under the premise of ensuring the phase sta-
bility. A series of characterizations such as XRD, Raman, SEM, TEM, BET, and XPS were
conducted to reveal its stable hybrid microstructure, perfect composition and abundant
oxygen vacancies before the assembling of r-SnO2/GN nanomaterials. Both as the electrode
material of supercapacitors and gas-sensing material, it shows excellent performance.

2. Materials and Methods
2.1. Material Preparation

Preparation of GO: GO nanomaterials were synthesized from natural graphite by the
popularly used Hummers method [38].

Synthesis of Hollow SnO2 nanospheres: 0.190 g of SnCl4 (Reagent. Chengdu Kelong
Co. Ltd., Chengdu, China) was fully dissolved in a mixed solution of 5 mL of deionized
water and 50 mL of absolute ethanol, and then 0.5 mL of 37% HCl (Reagent. Chongqing
Chuandong Chemical Co., Ltd., Chongqing, China) was added. The above solution was
ultrasonically stirred for 30 min and then transferred into 100 mL Teflon-lined stainless
steel autoclave at 200 ◦C for 24 h. The white precursor was centrifuged and washed with
deionized water and absolute ethanol three times. The powder was annealed further at
400 ◦C in air for 2 h.

Preparation of r-SnO2/GN nanocomposite: As-obtained SnO2 (60 mg) and GO (10 mg)
were dispersed in 40 mL of deionized water for 1.5 h using an ultrasonic reactor, then
stirred with a planetary mixer for 5 min. The mixture was immersed in NaBH4 solution
(10 mg mL−1) for 10 h. After centrifugal cleaning and drying, the black powder was then
placed in a tube furnace filled with nitrogen and calcined at 500 ◦C for 3 h.

2.2. Material Characterization

Morphologies and nanostructures were characterized with FE-SEM (JEOL, JSM-7800F,
Tokyo, Japan) and TEM (FEI, TALOS F200, Waltham, MA, USA). The composition and
phase of the samples were evaluated by XRD (BRUKER, D2 PHASER, Karlsruher, Germany)
and XPS (Thermo Fisher Scientific, ESCALAB 250Xi, Waltham, MA, USA). Raman spectra
of the samples were obtained by a micro-Raman system (HORIBA Jobin Yvon, LabRAM
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ARAMIS, Paris, France). Nitrogen adsorption−desorption isotherm was used to examine
the specific surface area and pore structure (MicrotracBEL, BELSORP-max II, Japan).

2.3. Electrochemical Measurements

Preparation of working electrodes: Samples SnO2 and r-SnO2/GN were separately
blended with carbon black and Polyvinylidene Fluoride (PVDF) at a mass ratio of 7:2:1
in NMP. The above slurry was smearing immediately onto the as-cleaned Ni foam sub-
strate and then dried at 50 ◦C in vacuum for 12 h (the coating area was controlled to be
1 cm × 1 cm).

Measurement conditions: Pt foil, saturated calomel electrode (SCE), and 3.0 M KOH
solution was used as counter electrode, reference electrode, and electrolyte, respectively.
The specific capacitance was calculated by the common formula Cm = I∆t/m∆U in the
discharge measurements, where I is discharge current density, ∆t is the discharging time, m
is the mass of the active materials, and ∆U is the width of the potential window [39]. The
frequency of the electrochemical impedance spectra was collected from 0.01 Hz to 100 kHz.
The mass loading of the active material for SnO2 and r-SnO2/GN electrodes was about
3.6 mg cm−2 and 3.5 mg cm−2, respectively.

2.4. Gas-Sensing Measurements

Preparation of gas sensors: Typically, samples SnO2 and r-SnO2/GN were separately
dispersed into distilled water using an ultrasonic cleaner. The obtained slurries were uniformly
coated onto the surface of specific alumina ceramic tubes and then dried in an oven [40].

Measurement conditions: Gas-sensing properties were measured by a chemical gas
sensor-8 intelligent gas-sensing analysis system (Beijing Elite Tech. Co., Ltd., Beijing,
China). The response (S) was defined as S = Ra/Rg, where Ra and Rg were initial and
real-time resistance, respectively.

3. Results and Discussion

Figure 1a shows XRD patterns of two samples SnO2 (I) and r-SnO2/GN (II). For
sample I, it can been seen that six characteristic peaks at 26.6◦, 33.9◦, 37.9◦, 51.8◦, 54.8◦, and
65.9◦ correspond to (110), (101), (200), (211), (220), and (301) planes of the tetragonal phase
of SnO2 (JCPDS 41-1445). All these peaks are sharp and clean without any impurity peaks.
It can also be seen from the figure that the diffraction pattern of r-SnO2/GN is very similar
to that of SnO2. In addition, there is no obvious characteristic peak at 25.1◦ corresponding
to GN. Raman spectra for SnO2 (I) and r-SnO2/GN (II) are shown in Figure 1b. Compared
with pure SnO2, r-SnO2/GN nanocomposite exhibits intense peaks at 1360 and 1575 cm−1,
corresponding to the D and G bands of GO. As we know, the ratio of ID/IG can be used to
measure the redox degree of the graphite oxide. The value of ID/IG for the r-SnO2/GN
is about 1.16 higher than that of GO (about 0.98), indicating the successful reduction of
GO to rGO after the chemical and heat treatments. In addition, there is a wide band with
a peak near 570 cm−1 corresponding to SnO2, which reveals the successful formation of
r-SnO2/GN nanocomposite. In addition to Raman spectra, the following SEM, TEM, and
XPS results will provide more evidence. Therefore, it can be inferred that the surface of
SnO2 is coated with disordered stacking but uniform dispersing of GN [41].

SEM images of two samples are shown in Figure 2. At low magnification (Figure 2a),
it can be found that the SnO2 powder is composed of spheres with uniform size and rough
surface. The diameter of each sphere is about 300 nm. Moreover, it can be observed that the
rough spherical surface is composed of countless tiny particles under higher magnification
(Figure 2b). Figure 2c,d shows the morphologies of sample r-SnO2/GN. Even after a long
time immersion in NaBH4 solution and another heat treatment, the SnO2 nanostructure
did not break and still appeared as a sphere with a rough surface. The difference is that the
surface is obviously wrapped with gauze-like nanomaterials. Compared with the former,
the latter has a small amount and no obvious agglomeration, which verifies the typical
GN morphology inferred from XRD results. Besides, EDS mapping including Sn, O, and C
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elements is also collected and shown in Figure 2e. It can be seen that all these elements
are uniformly distributed comparing to the original SEM image, indicating the successful
deposition of GN on the surface of r-SnO2 spheres to form a stable composite.
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Figure 1. (a) XRD patterns of two samples SnO2 (I) and r-SnO2/GN (II); (b) Raman spectra of two
samples SnO2 (I) and r-SnO2/GN (II).

The nanostructures of SnO2 and r-SnO2/GN were further investigated by conducting
TEM and HRTEM imaging, as shown in Figure 3. Figure 3a,b shows a close-up of the
internal morphology of sample SnO2, revealing its hollow structure. HRTEM image
(Figure 3c) of a nanoparticle on the spherical shell exhibits clear and uniformly arranged
lattice fringes. The interplanar spacing is about 0.26 nm corresponding to (101) crystal plane
of the SnO2 phase. Herein, the formation mechanism of SnO2 hollow sphere is speculated.
Due to the presence of concentrated hydrochloric acid, ethanol will be dehydrated to
produce H2O. SnCl4 will initially hydrolyze and condense to produce primary SnO2
nanocrystals. Subsequently, these SnO2 nanocrystals aggregate and form large solid
microspheres. This process is very fast and completes after a few hours. Therefore, the
new solid spheres cannot crystallize well, especially for the nanoparticles inside the solid
spheres. Furthermore, these internal nanoparticles with higher surface energy will dissolve
under solvothermal conditions to form a core-shell structure. The dissolved Sn4+ will be
further hydrolyzed and condensed to form SnO2 nanocrystals on the surface of the sphere.
In addition, the temperature of 200 ◦C and the reaction time of 24 h are also guarantees for
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uniformly dispersed SnO2 hollow spheres. From Figure 3d, one can see sample r-SnO2/GN
maintaining the hollow structure and successfully being covered by gauze-like nanosheets.
HRTEM image focusing on the interface (red rectangle in Figure 3e) has been shown in
Figure 3f. Obviously, in addition to the lattice fringes corresponding to SnO2, another one
with interplanar spacing of 0.35 nm can be determined, which is indexed to (002) crystal
plane of the hexagonal phase of C. Moreover, the few-layer GN are curled up and tightly
combined with SnO2 grains.
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Pore size distribution curve and N2 adsorption–desorption isotherm of two samples
are shown in Figure 4. According to the experimental data, the specific surface area of
sample SnO2 is 43.58 m2 g−1 and the average pore size is about 3.86 nm. By contrast, sample
r-SnO2/GN has a larger specific surface area of 57.86 m2 g−1 and a smaller average pore
size of 3.76 nm. Based on these results, it can be confirmed that the sample r-SnO2/GN is
mesoporous and has the larger specific surface area. XPS spectrums of sample r-SnO2/GN
and sample SnO2 are further obtained and shown in Figure 5. All binding energies are
referenced to the C1s at 284.6 eV. Figure 5a displays a survey of r-SnO2/GN indicating the
predominant presence of Sn, C, and O elements. According to the high-resolution spectrum
(Figure 5b), it can be seen that Sn 3 d spectrum of r-SnO2/GN exhibits two major peaks at
487.4 eV and 495.8 eV, which shifts about 0.9 eV to a higher binding energy comparing to
SnO2 (486.5 eV and 494.9 eV). Abundant oxygen vacancies introduced in SnO2 crystals give
a high electron-attracting effect to nearby Sn, resulting in the decrease of the electron density
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of nearby Sn [42–44]. The decrease of electron density further gives rise to the increase of
the electron binding energy. The above result evidently confirms the abundant oxygen
vacancies in r-SnO2/GN. In addition, Figure 5c shows the bonding information for C 1 s
including C−C, C−O, and C=O. Obviously, the less intense residual oxygen containing
functional group peaks indicates that GO has been reduced more completely [45]. Figure 5d
illustrates that O 1 s spectrum of r-SnO2/GN exhibits two major peaks at 530.5 eV and
531.8 eV. The peak located at 530.5 eV is indexed to the lattice oxygen (OL) species, and the
peak located at 531.8 eV is assigned to the chemisorbed oxygen (OC) species.
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To evaluate their potential application as supercapacitors, electrochemical properties
of electrodes SnO2 and r-SnO2/GN were tested. CV curves of two electrodes at a scanning
rate of 50 mV s−1 are shown in Figure 6a for comparison. Both of them exhibit two redox
peaks revealing their pseudocapacitor characteristics. However, the region surrounded by
the CV curve for r-SnO2/GN is much broader than that for SnO2. At the same time, GCD
curves of two electrodes at a current density of 2 mA cm−2 are shown in Figure 6b. As
expected, the discharge time of electrode r-SnO2/GN is about 663.2 s much longer than
that of SnO2 (only 133.0 s). In detail, CV curves of electrodes SnO2 and r-SnO2/GN at
different voltage sweep rate are shown in Figure 6c,e, respectively. As the voltage sweep
rate increases from 10 to 100 mV s−1, the absolute value of the redox peak (for both current
density and potential) increases significantly, showing a relatively low resistance and a
rapid redox reaction at the interface between the electrode and the electrolyte, especially
for the electrode r-SnO2/GN [46]. GCD curves of two electrodes at different current
densities are shown in Figure 6d,f, respectively. When the current density changes from 2
to 20 mA cm−2, the discharge time of the electrode r-SnO2/GN is 663.2, 401.7, 213.6, 100.6,
and 44.8 s. Under the same condition, the electrode SnO2 shows 133.0, 82.5, 44.4, 15.8, and
4.7 s.
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Figure 4. N2 adsorption/desorption isotherms of two samples (a) SnO2 and (b) r-SnO2/GN; the inset is the pore size distribution.

Nanomaterials 2021, 11, x FOR PEER REVIEW 7 of 14 
 

 

 

 

Figure 4. N2 adsorption/desorption isotherms of two samples (a) SnO2 and (b) r-SnO2/GN; the inset is the pore size dis-

tribution. 

 

Figure 5. XPS of r-SnO2/GN and SnO2 (a) survey, (b) Sn 3 d, (c) C 1 s, and (d) O 1 s. 

To evaluate their potential application as supercapacitors, electrochemical proper-

ties of electrodes SnO2 and r-SnO2/GN were tested. CV curves of two electrodes at a 

scanning rate of 50 mV s−1 are shown in Figure 6a for comparison. Both of them exhibit 

two redox peaks revealing their pseudocapacitor characteristics. However, the region 

surrounded by the CV curve for r-SnO2/GN is much broader than that for SnO2. At the 

same time, GCD curves of two electrodes at a current density of 2 mA cm−2 are shown in 

Figure 6b. As expected, the discharge time of electrode r-SnO2/GN is about 663.2 s much 

longer than that of SnO2 (only 133.0 s). In detail, CV curves of electrodes SnO2 and 

r-SnO2/GN at different voltage sweep rate are shown in Figure 6c,e, respectively. As the 

voltage sweep rate increases from 10 to 100 mV s−1, the absolute value of the redox peak 

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

70

80

 

 

 

 

 SnO2

V
/m

l(
S

T
P

) 
g


1

Relative Pressure (P/P
0
)

Desorption





Adsorption

Surface area: 43.58 m
2
 g

1

0 20 40 60 80 100 120 140
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

 

 

d
V

/d
D

 (
cm

3
 g


1
 n

m


1
)

Pore diameter (nm)

Pore size: 3.861 nm

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100




Desorption

 

 

 

 r-SnO2/GN

V
/m

l(
S

T
P

) 
g


1

Relative Pressure (P/P
0
)

Surface area: 57.86 m
2
 g

1

Adsorption

0 20 40 60 80 100 120 140
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

 

 

d
V

/d
D

 (
cm

3
 g


1
 n

m


1
)

Pore diameter (nm)

Pore size: 3.763 nm

(a) (b) 

Figure 5. XPS of r-SnO2/GN and SnO2 (a) survey, (b) Sn 3 d, (c) C 1 s, and (d) O 1 s.

Figure 7a shows the curve chart of specific capacitance (F g−1). Based on the com-
mon formula mentioned in experimental part, the specific capacitance of the electrode
r-SnO2/GN can be calculated to be 947.4, 860.8, 762.9, 715.7, and 640.0 F g−1 at a current
density of 2, 3, 5, 10, and 20 mA cm−2, respectively. As a contrast, the electrode SnO2 only
has 184.7 F g−1 at the low current density of 2 mA cm−2. As far as we know, the observed
electrochemical performances are better than other SnO2-based materials, which have
been reported before, such as the pure SnO2 (138 F g−1) [34], SnO2-NGO (378 F g−1) [35],
SnO2/g-C3N4 (488 F g−1) [47], and the hollow SnO2 (332.7 F g−1) [30] (See Table 1). The cy-
cling stability of two electrodes is shown in Figure 7b. After 1000 GCD cycles, the electrode
r-SnO2/GN still retains about 88.2% of initial specific capacitance, better than that of the
electrode SnO2 (72.1% remain). Moreover, EIS Nyquist plots of two electrodes (Figure 7c,d)
were measured to understand their ion and electron transfer performance. EIS data were
fitted according to the equivalent circuit model (the inset of Figure 7c,d). Four main param-
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eters including the charge-transfer Rct, solution resistance Rs, double-layer capacitance Cdl,
and Warburg resistance W were considered [48]. Generally, the diameter of semicircle in
the high frequency range shows the Rct and the slope of the line at low frequency region
means W, which represent the charge transfer at the interface and the diffusion of the redox
species in the electrode, respectively. After comparing the EIS data of two electrodes, it
can be found that two values (Rct and W) read from the curve of the electrode r-SnO2/GN
are smaller than that of the electrode SnO2, indicating that that the former has better ion
and electron transport capability. Several advantages of the oxygen-deficient r-SnO2/GN
nanocomposite make them a promising candidate as the electrochemical supercapacitors.
These features include: (i) Abundant oxygen vacancies facilitate easy access of electrolyte
ions into the large surface area of the electrode. (ii) Highly reductive GN as facile electron
transfer paths provides good interfacial contact for r-SnO2.
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Figure 6. (a) CV curves of two electrodes measured at a scan rate of 50 mVs−1; (b) GCD curves of two electrodes tested at a
current density of 2 mA cm−2; CV curves for electrodes (c) r-SnO2/GN and (e) SnO2 measured at various voltage sweep
rates; GCD curves for electrodes (d) r-SnO2/GN and (f) SnO2 measured at various current densities.
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Figure 7. (a) Specific capacitance as a function of current density; (b) The cycle stability; EIS Nyquist plots and the equivalent
circuit model (the inset) for electrodes (c) r-SnO2/GN and (d) SnO2.

Table 1. The brief summary of electrochemical performance of SnO2-based supercapacitors.

Electrode Materials Electrolyte Current Density Specific Capacitance (F g−1) Ref.

SnO2 0.5 M Na2SO4 1 A g−1 138 [34]
SnO2-NGO 6.0 M KOH 4 A g−1 378 [35]

SnO2/g-C3N4 1.0 M Na2SO4 1 A g−1 488 [47]
Hollow SnO2 1.0 M KOH 1 A g−1 332.7 [30]
r-SnO2-GN 3.0 M KOH 2 mA cm−2 (0.57 A g−1) 947.4 This work

Furthermore, gas-sensing functionalities of two samples were also investigated (Figure 8).
Two gas sensors toward methane gas of 500 ppm at different working temperatures were
tested. Their response plots are shown in Figure 8a. It can be seen that the sensor r-
SnO2/GN exhibits much more remarkable response value than SnO2 from 100 to 200 ◦C.
The best working temperature for r-SnO2/GN is found around 140 ◦C. The above results
also indicate that the sensor r-SnO2/GN remains an n-type semiconductor material even
when doped with a certain amount of graphene. After setting the working temperature
as 140 ◦C, the resistances of sensor r-SnO2/GN and SnO2 in air are recorded, respectively.
The sensor SnO2 has a resistance of 14.71 MΩ in air. However, for the sensor r-SnO2/GN
exposed to air, it exhibits stable and lower resistance (about 0.36 MΩ). From Figure 8b, a
particular response curve of the sensor r-SnO2/GN toward methane gas at 140 ◦C, one
can see that the response value keeps stable when the sensor is exposed in air, yet goes
up rapidly once 500 ppm methane is injected into the system. It eventually maintains
at ~13.8 and decreases quickly when the methane gas is out. In addition, the response
values of the sensor r-SnO2/GN toward methane gas of various concentrations were tested
and shown in Figure 8c. From 100 to 5000 ppm, the response value is about 3.2, 6.9,
13.8, 16.2, 18.1, and 20.4, respectively, revealing the law that it first increases rapidly and
then tends to slow. Particularly, whether in low concentrations or high concentrations
(Figure 8d), the response and recovering time is short. It means that the sensor r-SnO2/GN
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achieves good response ability. The response of r-SnO2/GN is also compared with other
SnO2-based materials [36,37,49–51] (See Table 2). The long-term stability of the sensor
base on r-SnO2/GN is also investigated (Figure 8e). After 6 days testing, the response
nearly keeps at a constant value (13.65~13.8), demonstrating excellent long-term stability.
The sensitivities of the sensor r-SnO2/GN toward different gases are shown in Figure
8f. In addition to a maximum response value of 13.8 for methane gas, it also has a good
effect on ethanol and methanol gases. The sensor r-SnO2/GN possessing good gas-sensing
performance should be attributed to its self-characteristics. Large specific surface area with
abundant oxygen vacancies creates defect states close to the conduction band minimum,
resulting in low activation energy.
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Figure 8. (a) Two gas sensors toward methane gas of 500 ppm at different working temperatures; (b) A particular response
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Table 2. The brief summary of sensing performance of SnO2-based CH4 sensors.

Sensing Materials Temperature (◦C) CH4 Concentration Reponses Ref.

Pt-SnO2 400 1000 ppm 1.55 b [36]
Pd-SnO2 400 6600 ppm 20 b [37]
Pt-SnO2 350 1000 ppm 4.5 b [49]

SnO2-rGO 150 1000 ppm 47.6% a [50]
Pd–SnO2 340 3000 ppm 17.6 b [51]

r-SnO2-GN 140 1000 ppm
5000 ppm

16.2 b

20.4 b This work

a S = (∆R/Rg) × 100%. b S = Ra/Rg × 100%.

4. Conclusions

In summary, oxygen-deficient r-SnO2/GN nanocomposite with large specific surface
area was rationally designed and successfully fabricated. As the supercapacitor electrode,
it exhibited greatly improved electrochemical performances with an ultrahigh specific
capacitance of 947.4 F g−1 at a current density of 2 mA cm−2 and of 640.0 F g−1 even at
20 mA cm−2. For gas-sensing application, the sensor r-SnO2/GN showed good sensitiv-
ity and short response/recovering time toward methane gas. The synergistic effect of
vacancy-enriched SnO2 and GN wrapped on its surface makes r-SnO2/GN a promising
nanocomposite material for energy storage devices and gas sensors.
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