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Abstract: The efficient development and utilisation of magnetic nanoparticles (MNPs) for applications
in enhanced biosensing relies on the use of magnetisation dynamics, which are primarily governed
by the time-dependent motion of the magnetisation due to externally applied magnetic fields. An
accurate description of the physics involved is complex and not yet fully understood, especially in
the frequency range where Néel and Brownian relaxation processes compete. However, even though
it is well known that non-zero, non-static local fields significantly influence these magnetisation
dynamics, the modelling of magnetic dynamics for MNPs often uses zero-field dynamics or a static
Langevin approach. In this paper, we developed an approximation to model and evaluate its
performance for MNPs exposed to a magnetic field with varying amplitude and frequency. This
model was initially developed to predict superparamagnetic nanoparticle behaviour in differential
magnetometry applications but it can also be applied to similar techniques such as magnetic particle
imaging and frequency mixing. Our model was based upon the Fokker–Planck equations for the two
relaxation mechanisms. The equations were solved through numerical approximation and they were
then combined, while taking into account the particle size distribution and the respective anisotropy
distribution. Our model was evaluated for Synomag®-D70, Synomag®-D50 and SHP-15, which
resulted in an overall good agreement between measurement and simulation.

Keywords: modelling; magnetic nanoparticles; Néel relaxation; Brownian relaxation; Fokker-Planck
equation; particle response function; anisotropy

1. Introduction

Magnetic nanoparticles (MNPs) have become a popular research subject in biomedicine
thanks to their high biocompatibility, long shelf life and straightforward logistics when com-
pared to radioactive agents for similar applications. The biomedical application of MNPs
ranges from therapy, such as in magnetic hyperthermia or targeted drug delivery [1,2], to
diagnostics, where they are applied as contrast agents or tracers [3,4], or even theranos-
tics [5]. Sensing techniques that employ MNPs include AC magnetometry [6], differential
magnetometry [7,8], magnetic particle spectroscopy (MPS) [9], and magnetic particle imag-
ing (MPI) [10]. All of these techniques rely on the targeted magnetic manipulation and
accurate acquisition of the dynamic response of an individual MNP. Therefore, an accu-
rate model of the dynamics governing their magnetic properties to enhance the sensing
techniques is of vital importance. However, sensing technologies are often developed
sub-optimally regarding magnetisation dynamics. The options available for performance
optimisation include (for example) an improved signal-to-noise ratio (SNR) and optimised
excitation sequences. The main goals of this model are:

• To model the behaviour of particles: allow for the optimisation of particles for a given
application without the need for extensive empirical testing;
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• To predict a particle’s properties, magnetic field properties and environmental param-
eters, such as viscosity, based on the behaviour of the MNPs.

In recent years, many models have been developed to describe the individual aspects
of MNP magnetisation dynamics under certain conditions, including heat dissipation [11],
harmonic field response [12–15], viscosity effects [16], temperature dependence [17], core
distribution [18], one dimension [19] and damping of the magnetic field [20]. After Brown’s
seminal paper [21], the characteristic magnetic relaxation times were assessed for a par-
ticular case with a constant magnetic field under a step function regime [22]. However,
the dynamic behaviour of MNPs in changing magnetic fields is complex, especially in the
domain where simultaneous Brownian and Néel processes take place. Brownian relaxation
aligns the whole particle with the magnetic field, while Néel relaxation aligns the internal
magnetic dipole within the particle. The most frequently used approach to model MNP
behaviour under conditions of varying magnetic fields currently involves a phenomenolog-
ical model of the magnetisation response using the steady-state approximation of magnetic
particles rotating toward the field’s orientation [7,23–25]. However, a significant downside
to this approach is the fact that particle anisotropy and time-delay effects are ignored;
therefore, this approach often does not hold in practice.

The known relaxation mechanisms (Brownian and Néel) have been modelled using
two separate Fokker–Planck equations (FPEs) [22]. The magnetisation dynamics of the
spherical particles with a non-critical diameter (meaning that either Brownian or Néel
relaxation is dominant) can be well described with these equations, but not of particles
with a critical diameter (no dominant mechanism) because the FPEs are separate and lack
connection. Consequently, this publication presents a practical and effective way of simul-
taneously solving these FPEs, which accurately describes the non-linear magnetisation
dynamics of various superparamagnetic nanoparticles surprisingly well for non-spherical
particles. Its outcomes were validated with magnetometer measurements of three different
types of MNP. This model has potential as a tool for use in the design and validation
of optimised MNPs for biomedical applications. Furthermore, this enables the tailored
adjustments of new sensing devices to match the MNP characteristics and consequently to
maximise sensitivity.

2. Theory

The behaviour of monodisperse (meaning that the mixture only contains MNPs of the
same size) superparamagnetic MNPs of non-critical diameter can be described by solving a
set of equations that capture Brownian and Néel relaxation. The probability distribution of
MNP magnetic moments is defined as F(x, t), where θ is the polar angle between the MNP
dipole moment and the direction of the driving magnetic field, x ≡ cos θ and t is the time.
This set of equations (which is approximated by Equations (1) and (2)) is referred to as the
Fokker–Planck equations (FPEs). These FPEs are first-order non-linear partial differential
equations (PDE) that capture the time evolution behaviour of a probability density function
describing transient convection–diffusion with a quadratic space-dependent diffusion and
time-dependent driving magnetic field [22]:

∂

∂t
F =

1
2τB

∂

∂x

[
(1− x2)

(
∂

∂x
F− ξ(t)F

)]
(1)

∂
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1
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∂
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)( ∂
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F− ξ(t)F− 2σxF

)]
(2)

The driving field B(t) (with varying amplitude and frequency) was described using
the effective field parameter ξ = (m0/kBT)B(t) and the particle anisotropy constant K was
described by the parameter σ = KVc/kBT. Each particle was characterised by a constant
magnetic dipole moment with a magnitude of m0 = MsVc, with Ms for the saturation
magnetisation and Vc for the volume of a magnetic core. kB is Boltzmann’s constant, and
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T is temperature. Furthermore, the relaxation times τB and τN represent the effective
characteristic time constant for Brownian and Néel relaxation, respectively, and read:

τB ≡
3ηVh
kBT

(3)

τN ≡
Vc(1 + α′2)Ms

2γeα′kBT
(4)

Here, η is medium viscosity, α′ is the damping constant, γe is the electron gyromagnetic
ratio and Vh is the hydrodynamic volume of a particle submerged in medium.

Without a known analytical solution, under adiabatic approximation and solving for
space-dependent diffusion, the FPEs reduce to the well-known Langevin function [26,27].
Although this is an elegant solution, the Langevin function does not offer an accurate
description of superparamagnetism, especially at a frequency range where both relaxation
processes are equally important. Consequently, the Langevin function fails to accommodate
the influence of anisotropy and particle–particle interactions.

Another numerical pathway for solving F(x, t) is by approximating the space-dependent
diffusion using Legendre polynomials [13]:

F(x, t) =
∞

∑
l=0

al(t)Pl(x) (5)

Substituting this approximation into Equations (1) and (2) results in a new set of
ordinary differential equations (ODEs) for Brownian and Néel relaxation, respectively [22]:

2τB
l(l + 1)

dal
dt

=− al + ξ(t)
[

al−1
2l − 1

− al+1
2l + 3

]
(6)
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+ σ
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− (l + 1)al
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] (7)

These ODEs can be used to calculate the time average of x (again, x ≡ cos θ) which is
correlated with the magnetic moment:

〈x(t)〉 = 2
3

a1(t) (8)

d
dt

M(t) = nMsVc
d
dt
〈x(t)〉 (9)

However, this approach does not combine Brownian and Néel relaxation, and re-
sults in two separate magnetisation curves. The common practice to omit this prob-
lem for static fields and relaxation processes is to only consider the dominant relaxation
mechanism [28–30], or in the critical size range (where both processes are equally con-
tributing), use the geometric mean of both relaxation times [11]. However, neither of
these practices reflect reality. Alternative attempts have been made to describe the particle
response in terms of a superposition of both relaxation processes [29,31]. When the applied
field rapidly changes (e.g., in the case of AC magnetometry), a simple superposition fails
to describe the magnetic behaviour of the particles. This can be partially attributed to the
inaccurate assumption that these processes are fully independent.
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3. Methods
3.1. MNP Samples

Three different types of superparamagnetic MNPs were used to acquire the particle re-
sponse functions that are necessary to validate the model: Synomag®-D70, Synomag®-D50
(micromod Partikeltechnologie GmbH, Rostock, Germany) and SHP-15 (Ocean Nanotech,
San Diego, CA, USA). The first two are nanoflower-shaped particles, while the latter is a
‘normal’ particle; as can be seen in Figure 1. It has to be noted that the model was developed
with spherical particles in mind, which does not reflect the real-world properties of the
Synomag particles. Table 1 gives an overview of the characteristics for all three MNPs,
which are polydisperse (meaning that the mixture contains MNPs of varying size, instead
of only MNPs with the same size) with an anisotropy constant dependent on size (see
Equation (13)). The core diameter (spread) was determined using an analysis of TEM micro-
graphs, while the hydrodynamic diameter was determined using number-based dynamic
light scattering. All of our samples consisted of 140 µg iron dissolved in water, resulting in
a total volume of 140 µL contained in glass vials which were kept at room temperature.

Table 1. MNP parameters: dc: core diameter; dh: hydrodynamic diameter; Ka and Kb: anisotropy constants based upon
Equation (13) [32]; and Ms: saturation magnetisation [33,34].

dc dh Shell Ka Kb Ms
(nm) (nm) (kJ m−3 nm−1) (kJ m−3) (kA m−1)

SHP-15 12.20± 1.23 35.00± 10.04 dc + 22.80 0.150 5.0 205
Synomag-D50 24.30± 3.17 29.87± 8.23 dc + 5.57 0.150 9.5 420
Synomag-D70 29.00± 4.00 45.90± 13.64 dc + 16.90 0.150 9.5 420

Figure 1. TEM micrographs acquired at an accelerating voltage of 300 kV: SHP-15 (left) was analysed using FEI Titan Cubed,
Synomag-50 (middle) and Synomag-70 (right) were analysed using Philips CM300ST.

3.2. Data Acquisition for Experimental Observations

The particle response function (PRF) was acquired using the characterisation mode of
the superparamagnetic quantifier (SPaQ), which is an in-house developed magnetometer
utilising a homogeneous magnetic field [35]. PRFs were assessed by exposing the samples
to a continuous alternating magnetic field (Bac = 1.5 mT, frequency = 2.5 kHz), with an
increasing offset field B+ ranging from −24.2 to 24.2 mT:

B(t) = BAC sin(2π f t) + Ḃ+t (10)

The subsequent magnetisation signal is acquired by a set of gradiometric coils with a
sensitivity of Sdet = 37.8 mT/A, which leads to an induced voltage Udet(t)/Sdet = − d

dt M(t).
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3.3. Model

We approach the fact that we are dealing with two separate relaxation mech-
anisms by initially considering both processes to operate independently. Since a
magnetometer measures the rate of change of the magnetisation, one observes the sum
of two orthogonal rotations. Following the Legendre approximations (as described in
Equations (6) and (7)) [22,36], the contribution of Néel and Brownian relaxation processes
to the response of the MNPs to an externally applied magnetic field is assessed by

d
dt

M(t) =

√(
d
dt

MBrown

)2
+

(
d
dt

MNéel

)2
(11)

The initial theoretical assumption of monodispersity in MNPs does not match the
current reality of commercially available polydisperse MNPs. Therefore, to accurately
model particle response function (solution of Equation (11)), the particle size distribution
needs to be taken into account. Consequently, we approximated the polydispersity in
core diameters dc by a normal distribution, which is detailed in Table 1. For numerical
purposes, this distribution is discretised into an increasing number of bins until the resulting
individual MNPs response (again, solution of Equation (11)) stabilises, which means that a
further increase in bin density does not noticeably change the solution. Finally, the PRF is
defined as the weighted average of these responses according to the discretised normal
distribution.

Brownian relaxation influences the Néel relaxation by orienting the MNPs along the
direction of the applied magnetic field [24,37]. If Brownian relaxation is not possible (e.g.,
when particles are trapped in a medium or tissue), then Brownian relaxation is prohibited.
Depending on the orientation of the magnetic easy axes of the particles suspended in the
sample under investigation, this effect alters the Néel relaxation behaviour of the particles
if their anisotropy is not equal to unity (i.e., they deviate from perfect spherical symmetry).
Following initial research by Shliomis et al. [38], this effect is modelled by an effective
anisotropy constant as an energy term Keff, which is composed of both longitudinal and
transverse anisotropy energies. Assuming the potential landscape as U = K sin2 θ, then we
have U‖ = K in the longitudinal case and U⊥ = 0 for both transverse orientations. This
results in an effective anisotropy constant:

Keff =
1
3

K‖ +
2
3

K⊥ =
1
3

K (12)

Considering the fact that the anisotropy constant changes with the particle core
size [39], a polydisperse sample cannot be modelled using only one anisotropy constant.
Therefore, a relation is proposed, which results in a different anisotropy constant for each
core size:

K = Kadc + Kb (13)

where Ka and Kb are fit parameters for known anisotropy constants for certain diameters.
The resulting K can be filled into Equation (12) to obtain the effective constant. While
Equation (13) is not a perfect solution due to the assumption of linear relation (which
would determine the anisotropy constant for every particle size), it is an improvement
from the same constant for all particle sizes.

To evaluate the formulated magnetisation dynamics (Equation (11)) and to elaborate
on the regimes in which either relaxation mechanism might dominate, we computed the
resultant magnetisation curves for monodisperse nanoparticle samples of selected core
sizes (dc = 10 nm, 18 nm, 26 nm). This was visualised by means of their PRFs, which are
similar to the derivative of the magnetisation curve or the point spread function in MPI.
This denotes the sample’s signal amplitude as a function of the applied field magnitude.
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3.4. Model Validation

Our model was validated by comparing the results to a simplified solution of FPE
(namely the Langevin equation) and experimental observations. Three types of MNPs,
namely Synomag®-D70, Synomag®-D50 and SHP-15, were evaluated for their magnetic
performances using their PRF. This was repeated three times and then averaged to ensure
reproducibility. These results were compared with a numerical evaluation of the model that
we introduced earlier. It is common practice to set the damping constant to 0.1, and work
with a ferrofluid viscosity of η = 1.0049 mPa s; the other parameters are defined in Table 1.
The model was evaluated in MATLAB (2021a, MathWorks, Natick, MA, USA) using the
ode15s subroutine, a variable-step, variable-order solver for stiff differential equations
based on the numerical differentiation formulas. The Legendre expansion converges fairly
rapidly, and the set of ODEs was evaluated up to the 60th coefficient.

To quantify the goodness of fit, the full-width at half-maximum (FWHM) and the
mean of absolute residuals (MoR) were used. The FWHM is an important characteristic
in MPI because it denotes the spatial resolution. The MoR is the mean of the absolute
difference inside the FWHM window. Thus, the difference between the experimental data
and the model result was calculated inside the FWHM window. The absolute value of
these differences was averaged to obtain the MoR: (∑n |M(Bn)− E(Bn)|)/n, where M is
the model result and E is the experimental data. Due to current technical limitations, the
offset field was limited to 24.2 mT which was insufficient to reach the FWHM of the SHP-15.
Therefore, for SHP-15, our model was validated using a slightly extrapolated data by fitting
a normal distribution on the experimental data.

4. Results
4.1. Numerical Modelling of Brownian and Néel Dominated M–H Curves

To explore the boundaries of the developed model, we calculated the behaviour of
particles with characteristics that would, under normal circumstances, lead to either Brow-
nian or Néel-dominated magnetisation behaviour. Figure 2 illustrates the magnetisation
curves for iron oxide particles of different core diameters (10 nm, 18 nm and 26 nm) and a
constant coating thickness (6 nm). As expected, the largest particle shows a magnetisation
curve corresponding to Brownian-dominated relaxation, while the smallest particle shows
a magnetisation curve corresponding to Néel behaviour. However, the 18 nm particle
does not have a dominant relaxation mechanism and shows the competing behaviours
of both relaxation mechanisms. We observed the Néel behaviour for the low-offset field
(B+) values, whereas Brownian relaxation dominates for higher fields. This relates well to
observations by Deissler et al. [22], who also showed a transition from Néel to Brownian
behaviour for increasing field strengths.
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10 nm 18 nm 26 nm

Figure 2. Magnetisation curves, their numerical derivatives and corresponding relaxation times as a function of the magnetic
field for monodisperse particles, obtained from the numerical evaluation of the Brownian and Néel FPEs for 10 nm (left),
18 nm (middle) and 26 nm (right) particles. Simulation parameters: K = 20 kJ/m3, dh = dc + 12 nm, T = 300 K, α′ = 0.1,
η = 1.0049 mPas, Ms = 300 kJ/m3T.

4.2. Experimental Verification of Particle Response Functions

The experimental and numerical results for SHP-15, Synomag®-D50 and Synomag®-
D70 are shown in Figure 2. The data are normalised with respect to the largest value
to assess shape similarity. Quantification of the goodness of fit can be seen in Table 2.
Overall, we observed good agreement between the shape predicted by the simulations and
the experimental results, showing almost exclusively Brownian relaxation in the case of
Synomag®-D70 and Néel relaxation for SHP-15. Synomag®-D50 shows a combination of
Brownian and Néel relaxation. Furthermore, for SHP-15, the Langevin function fails to
adequately predict the shape of the PRF.

Table 2. Quantification of the goodness of fit of Figure 3, based on difference in full-width at half-maximum from the
experimental data and the mean of absolute residuals in the FWHM window (the closer it is to 0, the better it is).

SHP-15 (Extrapolated) Synomag®-D50 Synomag®-D70
FWHM (% diff) MoR FWHM (% diff) MoR FWHM (% diff) MoR

Model 11.3 0.02 −56.7 0.30 −55.1 0.30
Langevin 49.5 0.07 −55.2 0.29 −51.2 0.27
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SHP-15 SynoMag-50 SynoMag-70

Figure 3. Particle response functions (experimental and simulated) for three particle-types under the application of a
2.5 kHz, 1.3 mT/µ0 AC field, α′ = 0.1, η = 1.0049 mPas, the particles’ characteristics can be found in Table 1. (Left): SHP-15,
T: 298 K, bins: {10, 11,. . . , 14} nm. (Middle): Synomag®-D50, T: 267K, bins: {20, 21, . . . , 28} nm. (Right): Synomag®-D70, T:
267K, bins: {22, 23,. . . , 36} nm.

5. Conclusions and Discussion

In this work, we explored the magnetisation dynamics of a variety of MNPs. The
FPEs pertaining to Brownian and Néel relaxation were solved by means of their Legendre
approximations. A strong point of our model is the fact that it includes the effects of
polydispersity and the resulting anisotropy. Our model also simultaneously demonstrates
the impact of both relaxation mechanisms on the magnetisation dynamics of particles.
We observed a deviation from the commonly used Langevin solution for the magnetic
behaviour of MNPs, even in the case of larger particles that predominantly relax through
Brownian relaxation. For all cases, it was observed that the adiabatic approximation (the
Langevin equation) was not valid because of the finite Brownian relaxation time, even
at the relatively low frequency of 2.5 kHz and low excitation field strengths. Moreover,
we found that the PRF shape of MNPs in the critical size range was well predicted by a
combined model that takes both Brownian an Néel relaxation into account. The difference
between the model result and the experimental data might be explained by the assumption
of a spherical particle, as the Synomag particles are instead flower-shaped. Furthermore,
Brownian relaxation dominates in the high field range, while Néel relaxation describes the
low-field regime quite well. Keeping this effect in mind, a close look at the PRFs obtained
by Arami et al. [40] leads to a similar conclusion. Here, an increase in the steepness of PRFs
was observed for increasing viscosity, while particles suspended in chloroform (lowering
the viscosity) showed a much flatter PRF, all else being equal.

The results presented in this work are qualitatively well described by a system of
independent Brownian and Néel relaxation, despite the inevitable simplification of details
such as Brownian alignment, which influences the Néel process. For example, the Brownian
relaxation process influences the Néel relaxation through the alignment of the particle’s
magnetic easy axis, which is hindered when particles are immobilised. This effect can be
easily corrected for in this extreme case by defining an effective anisotropy constant for
immobilised particles with randomly oriented easy axes. It would be most interesting to
measure the PRFs for particles immobilised under application of a strong external magnetic
field and for particles immobilised in zero field, and then verify this hypothesis.

Following the analogy used by Weizenecker et al. [41], our model could likely be
improved by modelling with the coupled FPE instead of the currently used decoupled
FPEs. This coupled model was based on a coupled Fokker–Planck equation but has not yet
been validated through experimental data. Moreover, as noted in previous sections, the
linear relation between anisotropy and (only) the particle size is limited. This imperfect
solution is a good start, however, because particle size is one of the factors that affect the
anisotropy constant the most.

We must also comment that the experimental variation in particle parameters dc,
dh, K and Ms, as well as the inherent uncertainty in iron concentration complicates truly
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quantitative matching between the model and experiment. This deserves more attention,
especially in view of the considerable variety in the reported anisotropy constants K in
the literature [32,42–44]. The current values for Ka and Kb are based on K of Ludwig et al.
because this value lies in the middle of the range found in the literature and fits our results
the best. Nevertheless, by means of designing new or improving existing particles, it is
possible to fine-tune the desired PRF parameters (e.g., FWHM) because the connection
between particle composition and magnetisation dynamics can be better understood by
studying this model. This will in turn improve the quality of biomedical applications.
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