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Camilla Colombo 3, Juraj Páterek 1,4 , Romana Kučerková 1, Vladimir Babin 1, Michele Mauri 3 , Martin Nikl 1

and Angelo Monguzzi 3,*

����������
�������

Citation: Villa, I.; Santiago Gonzalez,

B.; Orfano, M.; Cova, F.; Secchi, V.;

Colombo, C.; Páterek, J.; Kučerková,
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Abstract: The sensitization of scintillation was investigated in crosslinked polymeric composite
materials loaded with luminescent gold clusters aggregates acting as sensitizers, and with organic
dye rhodamine 6G as the emitting species. The evolution in time of the excited states population
in the systems is described by a set of coupled rate equations, in which steady state solution al-
lowed obtainment of an expression of the sensitization efficacy as a function of the characteristic
parameters of the employed luminescent systems. The results obtained indicate that the realization
of sensitizer/emitter scintillating complexes is the strategy that must be pursued to maximize the
sensitization effect in composite materials.

Keywords: scintillation; nanocomposites; energy transfer; metal clusters; hybrid materials; nanoscin-
tillators

1. Introduction

The development of organic materials such as scintillators has become an attractive
topic for the scientific community in diverse fields, including biomedical applications,
high-energy and nuclear physics, and in homeland security. The sensitization of scintil-
lation in composite plastic materials is therefore pursued to enhance the performance of
pure organic scintillators, which present good time response and acceptable scintillation
yield, but they typically suffer of re-absorption issues, aggregation problems at high dye
concentrations, and intrinsic energy losses due to the presence of optically dark triplet
states [1]. In general, the scintillation of organic dyes is activated by direct energy transfer
from the polymeric matrix where they are embedded, which is responsible of the primary
interaction with the high-energy excitation beam. The inclusion of heavy materials into
the composite is exploited to enhance the interaction cross section of the ionizing radiation
with the scintillator [2], thus increasing the fraction of deposited energy in the matrix. The
sensitization of dye scintillation is then given by the sum of two contributions. The first one
is the direct transfer of a fraction of the increased deposited energy from the host matrix
to the emitters [3], a process that we can consider as a passive sensitization mechanism.
The second contribution relies on an active sensitization process that can be observed if the
heavy systems employed to increase the material density are luminescent. Indeed, under
specific energetic resonance conditions, the organic emitters can be further activated by a
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second energy transfer from the heavy components (Figure 1a) [4–6]. While the passive
sensitization can be seen, in first approximation, as a trivial consequence of the increment
of the average scintillator density, the active sensitization requires a deeper analysis to
be modelled.
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Figure 1. (a) Outline of the photophysics involved in the active sensitization of the scintillation
process in composite materials based on organic emitters. The dye singlet ground state is indicated
by S0. Excited dye singlet states are marked with *. Free charges are generated by interaction of the
ionizing radiation with the polymer, sensitizer, and emitter moieties. They can recombine directly on
emitters or on luminescent sensitizers. The resonance between the X-ray-activated luminescence of
sensitizers and emitter absorption enables the sensitization of the emitter luminescence by radiative
and non-radiative energy transfer from excited sensitizers. The fluorescent emitters generate the
light pulse that will be detected by a photon counter. (b) Relative sensitization yield ρ calculated as
a function of the energy transfer efficiency (φET) between the sensitizer and emitters in the case of
dominant charge recombination on emitters (I), competitive recombination on sensitizers and emitters
(II) and dominant recombination on sensitizers (III). The parameter η is the relative increment of the
energy deposition in the composite by charges ionization with respect to the unsensitized system.

In this work we investigate a model system where the scintillating dye rhodamine 6G
(Rh6G) [7,8] is coupled to heavier luminescent gold cluster aggregates, acting as scintilla-
tion sensitizers, in a model transparent crosslinked polymer rigid matrix, in order to point
out the guidelines for the fabrication of optimized scintillating composites exploiting the
sensitized scintillation mechanism. We introduce a system of coupled rate equations that
describes the evolution of excited states in time during the scintillation mechanism, thus
obtaining an expression of the sensitization efficacy as function of several parameters char-
acteristic of the luminescent materials employed. The reliability of the proposed modelling
was verified in a series of composites specimens. The obtained results demonstrate that
only a specific composite configuration maximize the sensitization effect.

2. Materials and Methods

Scintillating nanocomplexes preparation. The organic dye Rhodamine 6G (Rh6G) was
purchased from Merck (Darmstadt, Germany, CAS number 989-38-8) and used as is. Au8
superstructures were synthesized according to the procedure previously published [9].
Briefly, after thiol-induced etching of gold nanoparticles to obtain individual Au8 clus-
ters, the superstructures were formed by networking of the clusters capped with 11-
mercaptoundecanoic acid (MUA) ligands. The Au8 superstructures/Rh6G complexes
were spontaneously formed by mixing the two moieties in solution (see Supplementary
Materials, Figures S2–S5).
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Nanocomposites preparation. The 2-Hydroxyethyl methacrylate (HEMA, Merck (Darm-
stadt, Germany, CAS no. 868-77-9, MW 130.14 g mol−1) was a colorless viscous monomer
in liquid phase that readily polymerizes. After the monomer purification from inhibitors,
we chose 4,4′-azobis(4-cyanovaleric acid) (Merck (Darmstadt, Germany) CAS number
2638-94-0) as a free radical initiator of the polymerization reaction, that was performed
in bulk at room temperature under N2 atmosphere in sealed vials. The final composition
was obtained by adding 5000 ppm of 4,4′-azobis(4-cyanovaleric acid) (CAS no. 2638-94-0)
to a given quantity of HEMA (for 1.5 g of HEMA we added 7.5 mg of activator). All the
samples were irradiated with a 365 nm Wood lamp for 1 h. The reaction scheme led to a
transesterification process which resulted in the crosslinking of the polymer pHEMA [10].
Given the high solubility of Rh6G in HEMA, a stock solution 10−2 M was prepared to be
employed in the samples’ series preparation. The Au8 superstructures were dispersed in
50 µL of ultrapure water in 4 mL vials, then added to the Rh6G:HEMA solution before
polymerization. This step was crucial to obtain a homogeneous dispersion of the Au8
superstructures and it allowed the formation of the scintillating Au8:Rh6G complexes.
Prior to polymerization, the prepared solutions in the sealed vials were purified from
oxygen under N2 flux for 30 min. The solution was then irradiated with 365 nm UV light
for one hour to induce the polymerization. The vials were broken to recover the samples.
All composites were prepared with disc geometry with diameter 1 cm and thickness 0.2 cm.
The employed crosslinking reaction led to rigid and durable samples with no appreciable
residuals of unreacted monomer that can affect the material emission and scintillation
properties (Supplementary Materials) [11].

Photoluminescence (PL) studies. Absorption spectra were recorded using a Cary Lambda
900 spectrophotometer at normal incidence with Suprasil quartz cuvettes. Steady-state
PL spectra were acquired using a Varian Eclipse fluorimeter (bandwidth 1 nm) using
quartz cuvettes of 1 cm optical path length. Time-resolved PL spectra were recorded under
excitation by a pulsed light-emitting diode at 340 nm (3.65 eV, pulse width 80 ps; EP-LED
340, Edinburgh Instruments). The composites were excited with a pulsed laser at 405 nm
(3.06 eV, pulse width 90 ps; EPL-405, Edinburgh Instruments) to avoid direct excitation
of the host polymer matrix. Measurements on composites were performed on cylindrical
bulk specimens of 1 cm diameter and 0.2 cm thickness.

Radioluminescence (RL) studies. Steady-state RL measurements were carried out at
room temperature using a homemade apparatus featuring, as a detection system, a liquid
nitrogen-cooled, back-illuminated, and UV-enhanced charge-coupled device (Jobin-Yvon
Symphony II) combined with a monochromator (Jobin-Yvon Triax 180) equipped with a
100 lines/mm grating. All spectra were corrected for the spectral response of the detection
system. RL excitation was obtained by unfiltered X-ray irradiation through a beryllium
window, using a Philips 2274 X-ray tube with a tungsten target operated at 20 kV. At this op-
erating voltage, a continuous X-ray spectrum is produced by a Bremsstrahlung mechanism
due to the impact of electrons generated through the thermionic effect and accelerated onto
a tungsten target. The dose rate was 0.2 Gy/s, evaluated by comparison with a calibrated
90Sr-90Y beta radioactive source and using optically stimulated luminescence emission
from quartz crystalline powder (100–200 µm grains) (Figures S1 and S2).

Scintillation experiments. Light yield (LY) was determined by means of amplitude
spectroscopy of scintillation pulses with accordance to Ref. [9] and compared to that of a
reference BGO crystal measured under the same conditions [12]. Scintillation pulses were
excited by 239Pu α-radiation (5.2 MeV). The setup for amplitude spectroscopy consisted
of a hybrid photomultiplier DEP PPO 475B, spectroscopy amplifier ORTEC 672 (shaping
time set to 1 µs) and multichannel analyzer ORTEC 927TM. Ultrafast decays under pulsing
X-ray excitation were measured at room temperature using picosecond (ps) X-ray tube
N5084 (Hamamatsu Photonics K.K. Shizuoka, Japan) at 40 kV). The X-ray tube was driven
by the ps light pulser equipped with a laser diode with a repetition rate up to 1 MHz. The
signal was detected by hybrid picosecond photon detector and Fluorohub unit (Horiba
Scientific, Kyoto, Japan). The setup instrumental response function FWHM was about
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76 ps. The Rh6G scintillation flashes decay curves were detected from the same surface
as that excited by X-rays using a 560 nm low pass optical filter (Figure S7). The emission
was monitored from the same sample’s surface where it was excited. The deconvolution
procedure was applied to the decay curves to calculate true decay times and estimate the
pulse rise time (SpectraSolve software package, Ames Photonics, FortWorth, TX, USA).

3. Results and Discussion

The setting-up of the equation system employed to model the evolution of the pho-
tophysical processes in the systems is based on the fundamental assumption that in a
composite scintillator both the heavy sensitizers and the emitter moieties can behave as
recombination centers for the high-energy free charges generated by the light–matter in-
teraction [13]. When ionizing radiation or high-energy particles interact with a material,
the energy is mainly deposited through ionization [14]. Considering that the created free
charges can diffuse up to micrometric volumes before recombination [15], and given that
intermolecular distances of the nanosized emitters and sensitizers embedded in the com-
posite are in the order of 10–100 nanometers for concentrations as low as 10−5 M, we can
assume the rapid diffusion limit for the charge recombination process [16]. This means
that the sensitizer and emitter charge capture rates, respectively, in first approximation
are proportional to the sensitizer (Csens) and emitter (Cem) concentrations. The evolution
in time of the excited species S∗ for sensitizers and E∗ for emitters, respectively, can be
therefore described by

∂

∂t
[S∗] = (αCS − βCE − σ)N − k0,S[S∗]− kET [S∗] (1)

∂

∂t
[E∗] = (βCE − αCS − σ)N − k0,E[E∗] + kET [S∗], (2)

where α and β are the free charges capture rate constants for the sensitizer and emitter,
respectively, and σ is a loss rate constant that is determined by the matrix characteristics.
The rates k0,S and k0,E are the spontaneous recombination rates of the sensitizer and emitter
excited states, respectively. N is the total number of electron/hole pairs generated in
the host polymer. In general, the N value varies according to the system composition,
because both CS and CE can determine the initial density of free charges created through
the light–matter interaction.

In steady state conditions, the integrated radioluminescence intensity of the system is
given therefore by

IRL(CS, CE) = χφE[E∗] = χφpl(φSφET + φE)N (3)

where χ is the instrumental detection efficiency, φpl is the quantum yield of the emitter
fluorescence and φET = kET(kET + k0,S)

−1 is the yield of the sensitizer-to-emitter energy
transfer. The parameters φS and φE are defined as the sensitizer and emitter charge capture
yields, respectively, by

φS =
αCS

αCS + βCE + σ
(4)

φE =
βCE

αCS + βCE + σ
(5)

The sensitization efficiency can be now explicitly expressed as

ρ = (φSφET + φE)η = ε(CS, CE)η, (6)

where η = N−N′
N′ is the relative increment of free charges density due to the presence

of the heavy component with respect the unsensitized system N′ loaded with the same
emitter concentration. The parameter ε ranges from 0, where the charges are lost by
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mechanisms competitive to emitter luminescence, to 1, where the total additional energy is
properly exploited to activate the emitter luminescence. Therefore, the ρ value indicates the
effectiveness of the radioluminescence sensitization as a function of the system composition
and the characteristic parameters of the employed materials. The calculated value of ρ as
function of the emitter concentration, which sets both φE and φET , is shown in Figure 1b for
the ideal case where σ = 0, i.e., without free charge loss due to the matrix. By considering a
composite scintillator with fixed composition, three main scenarios can be identified:

I. The limit case where φS � φE, where the sensitizers’ free charges capture ability is
negligible with respect to the emitter one independently from CS. Despite its luminescence
properties, we are in a situation where the sensitizer moiety acts as a passive sensitization
component. Any rise of CS will induce a simple growth of η value because of the increment
of the overall material density. Notably, this type of sensitization can be effective only
with a complete energy transfer from the matrix to the emitters (φE = 1, σ = 0), thus
obtaining ρ = η (Figure 1b, dotted line) [17,18]. However, this condition is generally
difficult to achieve.

II. If φS ∼= φE, the deposited energy is equally shared among the two populations.
In this case ρ = φE(φET + 1)η, thus the effectiveness of the sensitizer-to-emitters energy
transfer becomes crucial to recover the energy stored on sensitizers even in the best case
with φS = φE = 0.5 (Figure 1b, solid line). It is worth noting that this configuration for active
sensitization can be advantageous also with a non-complete energy transfer if the η value is
at least doubled with respect to the unsensitized case, to balance the charges recombination
on sensitizers.

III. In the limit case where φS � φE, the energy transfer step becomes more critical,
because it is the unique activation channel for the emitter’s luminescence. None of the ad-
ditional charges recombine on the emitters, thus ρ = φSφETη. Therefore, a poor interaction
between emitters and sensitizers can completely make useless the presence of these latter
even with φS= 1, because the activation of the final emission is completely determined by
the energy transfer step (Figure 1b, dashed line).

In both case II and case III, the use of highly luminescent sensitizers is strongly recom-
mended to exploit fast non-radiative energy transfer to activate the emitter luminescence
while not affecting the scintillator time response. On the contrary, radiative energy transfer
can induce a delay of the scintillation emission because of the emission/re-absorption step
involved. The composition and structure of the composite scintillator should be therefore
optimized to achieve high non radiative transfer rates and 100% transfer yield. Some
conditions are then required to reach the maximum sensitization efficacy.

The role of the sensitizer-to-emitter energy transfer was investigated in a series of
composite polymeric scintillators based on a matrix of poly(2-hydroxyethyl methacry-
late), poly-HEMA, in which 8-atoms gold clusters aggregated superstructures (Au8 super-
structures) [19] were employed as sensitizers and the scintillating organic dye Rh6G was
employed as final emitters. Figure 2 shows their absorption, luminescence and radiolu-
minescence spectra. The Au8 superstructures were selected because of the high atomic
number of gold (Z = 79) and their large Stokes shift (~0.85 eV), with a first absorption
peak in near UV spectral region at 380 nm and a long living emission, with an average
lifetime of τ0 = 165 ns (Figure 2c), peaked at 530 nm (Figure 2a). These features make them
good sensitizers candidates because they have a higher interaction cross section with the
ionizing radiation compared to organic materials and they do not have any issue related
to re-absorption of scintillation light. Their radioluminescence spectrum is identical to
the photoluminescence and it is insensitive to exposure to soft X-rays even for large doses
(Figure S1).
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The employed emitter system is the Rh6G, which possesses a fluorescence peaked at
590 nm with lifetime of 4.2 ns (inset of Figure 2c) and a photoluminescence quantum yield of
0.95 [19]. Crucial for this study, its absorption and emission properties are complementary
to those of the Au8 superstructures. As showed in Figure 2b, the dye first absorption band
peaked at 525 nm is in excellent resonance with the superstructure emission, thus allowing
a non-radiative energy transfer mechanism of the Förster type [20] that can be exploited for
the sensitization of the emitter luminescence. Moreover, it is worth noting that the highest
occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO)
energies of both the luminescent systems are similar (Figure 2f, inset) and deeper than
the ones of the host polymer [21–25]. This indicates that the electronic affinities of both
compounds are comparable and therefore we can reasonably consider valid the assumption
α ∼= β for the charge capture rate constants. We can therefore consider as similar the ability
of both sensitizers and emitters to capture scintillation free charges.

By exploiting the interaction between COO− and NH+ (Figure 2d), we realized a 1:1
stable sensitizer/emitter complex (Figure S4). We have chosen this scintillating complex
configuration because it is particularly favorable according to the cases discussed above.
The proximity of the luminescent moieties guarantees indeed a unitary energy transfer
yield. Therefore, by employing these sensitizer/emitter complexes the composition of the
scintillator can be tuned by keeping the transfer yield constant. Consequently, the system
proposed is a good model to investigate the sensitization of the scintillation discussed
above. The progressive complexation of the Au8 superstructures is monitored by following
the evolution of the sensitizer-to-emitter energy transfer dynamic in solution as function of
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the emitter concentration. Figure 2e shows the time resolved photoluminescence spectrum
recorded at 530 nm under pulsed excitation of a dispersion of Au8 superstructures (10−5 M)
and Rh6G solutions. According to the increment of the emitter amount, the lifetime
of the residual sensitizer luminescence decreases because of the more efficient energy
transfer, whose efficiency φET can be directly estimated from these data (Supplementary
Materials, Supplementary Table S1). This analysis gives a highly overestimated Förster
interaction radius of Rexp

ET = 13.5 nm, which is significantly larger than the theoretical
expected length Rth

ET = 4.6 nm (Figure 2e and Supplementary Materials). This reflects the
formation of the described complexes, that results in a high transfer efficiency even at
extremely low emitter concentrations. Notably, in these complexes the energy transfer is
orders of magnitude faster (3.2 GHz, Figure S5) than the spontaneous decay rate of excited
superstructures (τ0

−1 = 6 × 10−3 GHz) thanks to the close proximity of the interacting
moieties, thus overcoming the diffusion limited kinetics for the Forster mechanism in low
viscosity solutions and enhancing the transfer yield. The formation of stable complexes
is further demonstrated by time resolved photoluminescence experiments that show an
energy transfer rate and yield independent from the complex concentration (Figure S5).

Three series of scintillating composites were fabricated with different loading level
of luminescent compounds, as sketched in Figure 3a (Supplementary Materials). The
first series (S1) contains only the emitter Rh6G, and it works as a reference unsensitized
scintillator. The second series (S2) embeds the sensitizers/emitter complexes. The third
one (S3) was prepared by including a large and fixed number of individual sensitizers
(10−2 M) while varying the number of scintillating complexes. In all compositions, the
Rh6G keeps its emission properties (Figure S6). Figure 3b depicts the RL spectra of the
composite series recorded under the same experimental conditions. The S1 series shows the
UV luminescence from poly-HEMA peaked at 360 nm, which intensity decreases with the
increment of the emitter concentration. This indicates a better harvesting of the energy of
the interacting ionizing radiation by the included R6Gh molecules. When a concentration
of CE = 10−5 M is reached, the UV emission is switched off, and the Rh6G emission appears
with an intensity that gradually increases with the emitter concentration until a CE = 10−3

M is reached. A further increment of the dye concentration is not possible due to evident
phase segregation of the dyes with respect to the host.

The S2 scintillator series shows a significantly better performance. No UV emission
can be detected event at very low loading amounts. This suggests an enhanced ability of
Au8 superstructures to harvest the deposited energy with respect to the dye, most probably
due to the resonance between the polymer luminescence and superstructures absorption
that favors direct energy transfer from the matrix. The radioluminescence intensity reaches
the maximum value observed in the S1 series with a CE = 5 × 10−5 M, which is more
than one order of magnitude lower than the one employed for the unsensitized case,
suggesting an effective sensitization of the Rh6G luminescence. With the highest loading
level of CE = 10−3 M, the composite shows a LY of 80 ph MeV−1 when excited by 239Pu
α-radiation (Supplementary Table S2) and an enhanced radioluminescence integrated
intensity that indicates a sensitization efficiency of ρ ∼ 25 (Figure 3c). It is worth noting
that in addition to the improvement of the scintillation performance, the stable structural
coupling of the active moieties has several important consequences. First, it makes the
energy transfer rate and yield independent from CE, that is useful for the technological
perspective. Indeed, considering the typical Förster radii values of 2–3 nm [20], a huge
amount CE ≥ 10−2 M of the acceptor/emitter moieties should be included to maximize the
transfer in disordered solid systems such has polymeric hosts, where molecular excitons
cannot diffuse freely and the transfer is limited to the closest acceptor units [26]. In other
words, any configuration with separated sensitizers and emitters would result in a lower
sensitization efficiency. Second, this architecture avoids emitters aggregation by enabling
a better management of the scintillator composition at high loading levels pivotal for
fabrication of efficient detectors with good optical quality by handling a single moiety [27].
Third the coupling sensitizer and emitter at a fixed close distance (≤1 nm) enables a fast
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energy transfer. Specifically, the transfer rate of 3.2 GHz is significantly larger than the

spontaneous recombination rate of the emitter k f l =
(

τf l

)−1
= 0.24 GHz. This result is

pivotal to preserve the time response of the scintillator, as demonstrated by the scintillation
data reported in the inset of Figure 3c. Both the S1 and S2 composites show indeed almost
identical scintillation activation dynamics, with a rise time of the pulse at around 190 ps
unaffected by the fast energy transfer process involved in S2.
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Figure 3. (a) Sketch of the composition of the three series (S1, S2, S3) of composites analyzed in this work. Dashed
arrows indicate the occurrence of non-radiative energy transfer between in the Au8-Rh6G complexes. (b) RL spectra of the
composite series as function of the emitter Rh6G concentration CE under soft X-rays exposure. (c) Digital picture of the
most performing S2 series under daylight (top) and UV excitation and integrated RL intensity for the series of composites
investigated (bottom). The inset of the bottom panel shows the rise of scintillation pulse of the sample with the highest
loading level for each series recorded at 630 nm. The uncertainty of the rise times values is assessed at 50 ps.

The crucial role of the energy transfer optimization is further highlighted by the results
obtained on the S3 composite series. Here, the scintillating complexes and the isolated Au8
superstructures were added to the composites in order to increase the amount of the Rh6G
emitters by keeping the total CS value as large as 10−2 M, i.e., significantly higher than the
maximum value employed in the best sample of the S2 series. In such a way, the η value
should be significantly higher than for the S2 scintillators. However, the radioluminescence
intensity is lower also with respect to unsensitized S1 series for any composition thus
indicating that most of the deposited energy is lost by competitive channels as suggested
by the presence of a residual emission from isolated Au8 superstructures in the blue/green
spectral region (Figure 3b, bottom panel). This result can be explained considering that
the large number of sensitizers amplifies η, but also makes their charges capture yield
dominant with respect to the emitter one (φS � φE, case III). Therefore, considering that
even in the best composition only 1 tenth of sensitizers are coupled to emitters, the poor
energy transfer efficiency results in a significant lower scintillation performance despite
the higher amount of deposited energy.

4. Conclusions

In conclusion, the obtained findings demonstrate that active sensitization in multi-
component composite materials is possible by exploiting non-radiative energy transfer
from high-density scintillators to efficient and fast molecular scintillators and it can be used
to overcome the limits of passive sensitization strategy, such as the presence of inactive
sensitizers that can detrimentally compete with the energy sharing mechanism in the
system, thus reducing the final light output from the emitters (Figure 4).
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the emitter moiety.

In our study, we have emphasized that the choice of the sensitizers and emitters with
matching electronic properties to be embedded in the polymeric host, is crucial for the
optimization of the sensitizers–emitters energy transfer and the accomplishment of higher
sensitization efficiency with respect to the case of the common plastic single component
scintillators. Besides, we have highlighted that the use of sensitizer/emitter complexes
where the two components are linked together in a unique architecture is particularly
interesting from the manufacturing perspective, since the loading of the polymer host will
be easier with respect to the case where two separated active species should be handled.
The mechanism of active sensitization in scintillating sensitizer/emitter complexes enables
to overcome the difficulties to manage the energy transfer process in the solid-state and to
partially limit emitters aggregation issues. This architecture is quite versatile and allows
to control the system timing performances. By adapting the energetic resonance and the
oscillator strength of the electronic transition involved, by decorating the sensitizers with
more than one emitter, or by modifying the sensitizer to emitter distance with modulable
ligand systems [28,29], the tuning of the ET rate and therefore the control of the rise time
of the scintillation signal are achievable and targeted for specific application requests.
To complete the description of scintillator in composite polymer materials, future works
should be focused on the investigation of any potential correlation between the properties
of the crosslinked polymer matrix, such as the crosslink density [30], and the scintillation
performances. Finally, it is worth noting that composite scintillators, similar to the ones
discussed in this work, would benefit from dedicated studies investigating the punctual
interaction of the ionizing radiation with nanosized dense objects to point out potentially
beneficial effects on the scintillation yield with respect to a classical homogeneous material.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11123387/s1. Figure S1: Radioluminescence (RL) spectrum of a Au8 superstructures,
Figure S2: Spectral overlap between the Rh6G absorption (dashed line) and Au8 superstructure
photoluminescence, Figure S3: Time resolved PL spectrum at 530 nm of Au8 superstructures (10−3 M)
and Rh6G (10−7 M) solutions, Figure S4: Z-potential measurements, Figure S5: Time resolved
photoluminescence spectra of Au8 superstructures (10−2 M) and Rh6G (10−7 M) composite in p-
HEMA. Figure S6: Time resolved PL spectrum at 610 nm of S1, S2 and S3 composites under pulsed
laser excitation at 532 nm. Figure S7: Scintillation pulse of the sample with the highest loading level
for the nanocomposite series S2. Figure S8: pHEMA structural analysis. Table S1: Fit parameters
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employed to analyze the time resolved luminescence, Table S2: pHEMA swelling test data. Table S3:
LY data report.
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