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Abstract: A single-walled carbon nanotube/anatase (SWCNT/anatase) composite thin film with a
transmittance of over 70% in the visible-light region was fabricated on a quartz glass substrate by
heat treating a precursor film at 500 ◦C in air. The precursor film was formed by spin coating a mixed
solution of the titania molecular precursor and well-dispersed SWCNTs (0.075 mass%) in ethanol.
The anatase crystals and Ti3+ ions in the composite thin films were determined by X-ray diffraction
and X-ray photoelectron spectroscopy, respectively. The effect of the heating process on the SWCNTs
was analyzed using Raman spectroscopy. The composite film showed an even surface with a scratch
resistance of 4H pencil hardness, as observed using field-emission scanning electron microscopy and
atomic force microscopy. The electrical resistivity and optical bandgap energy of the composite thin
film with a thickness of 100 nm were 6.6 × 10−2 Ω cm and 3.4 eV, respectively, when the SWCNT
content in the composite thin film was 2.9 mass%. An anodic photocurrent density of 4.2 µA cm−2

was observed under ultraviolet light irradiation (16 mW cm−2 at 365 nm) onto the composite thin
film, thus showing excellent properties as a photoelectrode without conductive substrates.

Keywords: photoelectrode; single-walled carbon nanotube/titania composite; conductive thin film;
molecular precursor

1. Introduction

Photoelectrodes with a large area and high activity have attracted attention as essential
for photovoltaic cells, sensors, and water-splitting devices [1–5]. Anatase, a crystal structure
of titanium dioxide (titania), is an n-type semiconductor that can be excited by ultraviolet
(UV) light irradiation with a wavelength shorter than approximately 388 nm, corresponding
to the bandgap energy. However, the high resistivity of titania (1012 Ω cm at 25 ◦C), which
is related to enhanced electron–hole recombination, is a serious disadvantage, and facile
photoelectrode fabrication without conductive substrates is still challenging [6,7].

Since their discovery by Iijima in 1991 [8], carbon nanotubes (CNTs) have emerged
as promising nano-electronic materials because of their excellent electrical properties and
thermal stability in oxidizing environments. Many researchers have reported that the
presence of CNTs in a titania matrix can delay or hinder the recombination of electrons
and holes. However, Chen et al. reported that it is still a great challenge to disperse CNTs
uniformly inside a TiO2 nanoparticle matrix because of the rapid hydrolysis of the titania
precursors using a conventional sol–gel method [9,10]. Despite these difficulties, Morales
et al., fabricated CNT/TiO2 thin films using a sol–gel dip-coating method in which the
CNT concentration was 4% in the sol [11]. The electrical resistivity on the order of 102 and
105 Ω cm during UV irradiation and in the dark condition, respectively, were recorded for
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the obtained composite films. However, to the best of our knowledge, there have been no
reports on the lower resistivity of translucent titania composite thin films with CNTs.

The molecular precursor method (MPM) is a wet chemical process that we have
developed to fabricate nanocrystalline thin films of metals and various metal oxides and
phosphates [12–14]. The MPM uses coating solutions dissolving designed metal complex
salts. These coating solutions have many practical advantages, such as excellent stability,
miscibility, and coatability. Recently, we reported the fabrication of multi-walled carbon
nanotube (MWCNT)/SiO2 conductive thin films fabricated by this method [14]. The SiO2
precursor solution involving Si4+ complex with an oxalato ligand can easily provide a
precursor solution for a composite thin film in which commercially available MWCNTs are
uniformly dispersed. It is generally difficult to obtain a uniform dispersion of MWCNTs
with a high content in a coating solution because of their easy aggregation by strong van der
Waals interactions. Thus, the MPM is a unique way to overcome these interactions between
CNT molecules and to obtain a uniformly dispersed precursor for CNT composite thin
films. In addition, single-walled carbon nanotubes (SWCNTs) tend to be easily damaged
during the formation process, whereas SWCNT composites are suitable for making more
conductive composites [15,16].

Based on our achievements in the transparent thin-film fabrication of highly sensitive
titania by the MPM [17], a composite thin-film electrode comprising SWCNTs and titania
was investigated. Herein, we report the facile fabrication of a translucent and highly
conductive SWCNT/anatase thin film well adhered onto a quartz glass substrate by heat
treating the spin-coated molecular precursor film. In contrast to the aforementioned sol–gel
case, the electrical resistivity of the composite thin-film electrode was unprecedentedly
low, 6.6 × 10−2 Ω cm, even when the SWCNT content in the mixed precursor solution was
extremely low, 0.075 mass%. Owing to the autonomous conductivity of the composite thin-
film electrode, the anodic photocurrent density could be directly measured under UV-light
irradiation. In terms of the SWCNT changes during the formation process of the composite,
various properties of the composite thin film as a novel conductive photoelectrode and heat-
treated SWCNT films were examined and compared with those of a titania thin-film alone.

2. Materials and Methods
2.1. Materials

An ethanolic titania precursor solution (TFLEAD-Ti, Ti4+ = 0.5 mmol g−1) and 4A
molecular sieves were procured from FUJIFILM Wako Pure Chemical Corporation, Osaka,
Japan. 2-Propanol and an ethanol solution (eDIPS INK) in which 0.2 mass% of SWCNTs
were dispersed were purchased from Taisei Chemical Co., Ltd., Tokyo, Japan and Meijo
Nano Carbon Co., Ltd., Aichi, Japan, respectively. Deionized water was purchased from
Kyoei Pharmaceutical Co., Ltd. (Chiba, Japan). Ethanol was acquired from Ueno Chemical
Industries, Ltd., Tokyo, Japan, and dried on 4A molecular sieves before use. The other
materials were used as received without further purification. Polished quartz glass plates
were acquired from Akishima Glass Co., Ltd., Tokyo, Japan, and quartz glass substrates
with dimensions of 20 × 33 × 1.5 mm3 were prepared. They were cleaned in 2-propanol
using an ultrasonic bath to remove contaminants from the surfaces, followed by rinsing
several times with deionized water. The substrates were then dried in a drying oven at 70 ◦C.

2.2. Preparation of Titania Precursor Solution, SWCNT-Dispersed Solution, and SWCNT/Titania
Precursor Solution

A titania precursor solution (STitania) was prepared by diluting 9.0 g of the molecular
precursor solution (TFLEAD-Ti) with 1.0 g of ethanol. The solution was stirred using a mag-
netic stirrer for 1 h at room temperature. The concentration of Ti4+ ions was 0.45 mmol g−1.
The SWCNT-dispersed solution (SCNT) was prepared by diluting 1.0 g of eDIPS INK with
3.0 g of ethanol, followed by stirring with a magnetic stirrer for 1 h at room tempera-
ture. The SWCNT/titania precursor solution (SCOMP) was prepared by mixing 10.0 g of
TFLEAD-Ti and 6.0 g of eDIPS INK. The mixed solution was stirred using a magnetic stirrer
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for 1 h at room temperature. The concentration of Ti4+ ion in SCOMP was 0.31 mmol g−1

and that of SWCNT was 0.075 mass%.

2.3. Fabrication of Thin-Film Electrodes and Heat-Treated SWCNT Films

Two types of thin-film electrodes were fabricated using the prepared precursor so-
lutions. In all cases, a spin-coating method at room temperature was applied to spread
each dropped solution (0.2 mL) in two steps, first at 500 rpm for 5 s, then at 2000 rpm for
30 s. The obtained precursor films were subsequently preheated in a drying oven at 70 ◦C
for 10 min before subsequent treatment. First, STitania was dropped using a micropipette
and spin coated onto a 20 × 33 mm2 area of a quartz glass substrate as the first layer. The
precursor film was then heat treated at 500 ◦C for 30 min in air. On top of the obtained thin
film, the SWCNT precursor film was applied as the second layer using SCNT, followed by
the aforementioned spin-coating and preheating processes. The SWCNT precursor film
was then heat treated at 300 ◦C for 10 min in air. The resultant layered thin-film electrode is
denoted FTitania. Second, the SWCNT composite thin-film electrode (FCOMP) was fabricated
by utilizing SCOMP and an identical procedure as the first layer of FTitania. The schematic
structure of the two electrodes is illustrated in Scheme 1.
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Scheme 1. The schematic illustration of (a) FTitania and (b) FCOMP.

2.4. Structural Characterization of Thin-Film Electrodes and SWCNT Films

The crystal structures of FTitania and FCOMP were determined using X-ray diffraction
(XRD; SmartLab, Rigaku, Tokyo, Japan) with a Cu-Kα radiation source at a power of 45 kV
and 200 mA. Parallel beam optics at an incidence angle of 0.3◦ were used in the 2θ range of
10–80◦, scanning at a 0.05◦ step width and a speed of 5◦ min−1.

The Raman spectra of five samples, FTitania, FCOMP, FCNT, F′
CNT, and F”CNT, were

measured using a Raman microspectrometer (LaBRAM HR800, Horiba Ltd., Kyoto, Japan)
with a charge-coupled device detector. A Nd:YAG laser (532 nm) was used as the excitation
source with an intensity of 13 mW, and spectra in the range of 1200–1720 cm−1 were
obtained by exposing the samples to the laser beam for 60 s. The spectra were measured
in back-scattering geometry, and the spot diameter of the laser light was 1 µm. Before the
sample measurement, a silicon reference with a Raman peak at 520.6 cm−1 was used for
wavelength calibration. Raman spectra of the samples were quantitatively analyzed using
Origin 2018 (OriginLab Corporation, Northampton, MA, USA). The linear baseline of the
Raman spectra was first subtracted, and three peaks were deconvoluted by a nonlinear
least-squares method using the Voigt function. Peak fitting converged with a χ2 tolerance
value of 1 × 10−9.

2.5. Chemical Characterization of Thin-Film Electrodes

X-ray photoelectron spectroscopy (XPS) spectra of FTitania and FCOMP were measured
using a JPS-9030 spectrometer (JEOL Ltd., Tokyo, Japan) using non-monochromatic Al-Kα
X-ray radiation (1486.6 eV) and a step width of 0.1 eV. The thin-film surfaces were sputtered
with Ar ions at an acceleration voltage of 150 V and a current density of 2.5 mA cm−2 for
15 s before XPS measurement.
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The XPS peaks derived from the O and Ti atoms in the thin-film electrodes were
quantitatively analyzed using Origin 2018 software (OriginLab Corporation, Northampton,
MA, USA). The binding energies were corrected regarding the C 1s peak at 284.6 eV after
the Shirley-type baseline was calculated. The Ti 2p, O 1s, and C 1s peaks were deconvoluted
by a nonlinear least-squares method using the Voigt function. Peak fitting converged with
a χ2 tolerance value of 1 × 10−9.

The O/Ti ratio of the thin-film electrodes was evaluated from the peak areas of O
1s and the deconvoluted Ti 2p3/2 peaks using relative sensitivity factors obtained from
SpecSurf software (JEOL Ltd., Tokyo, Japan). The ratio can be represented by the following:

O/Ti ratio =
peak area of O 1s/relative sensitivity factor of O 1s

peak area of Ti 2p3/2/relative sensitivity factor of Ti 2p3/2

(1)

The C/Ti ratio of the thin-film electrodes was also calculated by replacing O 1s with C
1s in an identical manner. To determine the C/Ti ratios in the deeper portions of the thin-film
electrodes, XPS depth profiling was performed using Ar+ ion sputtering at an acceleration
voltage of 400 V and a current density of 8.9 mA cm−2 at 30 s intervals. The atomic ratios of
C, N, O, Si, and Ti in the thin-film electrodes were calculated from the relative sensitivity
factors and the peak areas of C 1s, N 1s, O 1s, Si 2p, and Ti 2p3/2, respectively.

2.6. Surface Roughness, Morphology, and Pencil Hardness of Thin-Film Electrodes

The roughness and surface three-dimensional (3D) views of FTitania and FCOMP were
obtained by atomic force microscopy (AFM) (OLS–4500, Olympus, Tokyo, Japan) by scan-
ning each 2 × 2 µm2 area. The surface morphologies of FTitania, FCOMP, FCNT, F′

CNT, and
F”CNT were observed by field-emission scanning electron microscopy (FE-SEM) using a
JSM-6701F microscope (JEOL Ltd., Tokyo, Japan) at an accelerating voltage of 5 kV. The av-
erage thickness of the SWCNT bundles of each thin film was calculated from ten randomly
selected bundles.

The pencil hardness of FTitania and FCOMP was evaluated according to the Japanese
Industrial Standard (JIS) K5400 by a pencil scratch test using an MJ-PHT pencil hardness
meter (Sato Shouji Inc., Kanagawa, Japan) with a 0.75 kg load. The surfaces of the thin-film
electrodes were scratched using a pencil (UNI, Mitsubishi Pencil Co., Ltd., Tokyo, Japan)
with various hardness values standardized in the hardening order from 6B to 9H.

2.7. Optical Property and Thickness of Thin-Film Electrodes

The transmittance spectra of FTitania and FCOMP were measured in the range of
200–1100 nm with a double-beam mode; air was used as the reference for each measure-
ment. The measurements were performed using a UV-1900i spectrophotometer (Shimadzu,
Kyoto, Japan). The optical bandgap energy was determined using the Tauc plot equation,
which is expressed as follows:

E =
hc
λ

(2)

α =
1
d

ln
(

1
T

)
(3)

where E is the photon energy, h is the Planck constant, c is the speed of light (3.0× 108 m s−1), λ
is the wavelength, T is the transmittance, d is the film thickness, and α is the absorption coefficient.

The thicknesses of FTitania and FCOMP were measured using a stylus profilometer
(DEKTAK-3, Sloan, CA, USA). For sample preparation, a portion of each precursor film
was removed using ethanol to expose the substrate. Both the SWCNT and titania precursor
films of FTitania were individually wiped from the quartz glass substrate with ethanol. The
level differences at five positions between the surfaces of the substrate and the obtained
thin-film electrode were measured for each sample. The film thickness was calculated as
the average value of the three positions excluding the highest and lowest positions.
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2.8. Electrical Property of Thin-Film Electrodes

The sheet resistances of FTitania and FCOMP were measured using a four-probe method
involving two multimeters (VOAC7512, IWATSU ELECTRIC Co., Ltd., Tokyo, Japan) and
a regulated DC power supply (Model PAB 32-1.2, Kikusui Electronics Corp., Yokohama,
Japan) at 25 ◦C. Four gold-plated tungsten probes (FELL type, K&S) were placed at in-
tervals of 1 mm, and an added load of 0.2 kg was applied. The sheet resistances, RSh,
of FTitania, FCOMP, FCNT, F′

CNT, and F”CNT were calculated using Equation (4), and the
electrical resistivity, ρ, of FCOMP was estimated by the resistance and film thickness using
Equation (5).

RSh = cR (4)

ρ = cRt (5)

where c, R, and t represent the correction value (4.45), electrical resistance, and film thick-
ness, respectively.

2.9. Photocurrent Density of Thin-Film Electrodes

FTitania and FCOMP were used as working electrodes. For both cases, a platinum plate
(20 × 20 mm2) and double-junction Ag/AgCl were used as the counter and reference
electrodes, respectively. A light-emitting diode (LED, model: CL-1503, LED head: CL-H1-
365-9-1, Asahi Spectra Co., Ltd., Tokyo, Japan) was used as the UV light source with an
intensity of 16 mW cm−2 at a wavelength of 365 nm. All measurements were performed
in a 0.1 mol L−1 Na2SO4 solution after bubbling Ar gas at 50 mL min−1 for 10 min. The
photocurrent densities were measured at 10 s intervals, first in the dark condition for
30 min, followed by irradiation with UV light for 30 min, and then again in the dark.
The photocurrent density was recorded using a VersaSTAT 4 galvanostat/potentiostat
(Princeton Applied Research Corp., Oak Ridge, TN, USA) under natural potential. The
photocurrent densities of the three samples of each electrode were measured independently.
The steady-state photocurrent densities (SSPD) of FCOMP and FTitania, which reached a
steady state after 30 min of UV irradiation, were obtained.

3. Results

A schematic illustration of the two thin-film electrodes fabricated in this study is
shown in Scheme 1. The precursor solution for the SWCNT/titania composite thin film,
SCOMP, was facilely prepared by mixing the molecular precursor solution for the titania
and SWCNT dispersions, which are commercially available. Importantly, the prepared
precursor solution, SCOMP, is quite stable, and the translucent thin-film electrode FCOMP
could be reproduced even three months after preparation of the solution. The following
sections describe the results obtained for these two electrodes, focusing on the changes in
the SWCNTs above and inside the titania layer.

3.1. Surface Morphology, Film Thickness, Electrical Property, and Pencil Hardness of Thin-Film
Electrodes and SWCNT Films

FE-SEM images of the thin-film electrodes are shown in Figure 1. The average diame-
ters of the SWCNT bundles, which are clearly observed in the images of FTitania and FCOMP,
were 14 ± 3 and 12 ± 3 nm, respectively. The surface roughness values of FTitania and
FCOMP were 1.6 and 1.9 nm, respectively, as determined by the AFM 3D surface appearances
(Figure S1). The maximum height difference between the highest and deepest positions
deviated from the average surface of FTitania and FCOMP is 20 and 27 nm, respectively. The
film thickness and sheet resistance of FTitania were 110 ± 10 nm and 0.21 ± 0.01 MΩ/sq,
respectively, and those of FCOMP were 100 ± 10 nm and 0.44 ± 0.01 MΩ/sq, respectively.
The electrical resistivity of FCOMP could thus be estimated as (6.6 ± 0.7) × 10−2 Ω cm. The
pencil hardness of both electrodes was 4H.

The average diameters of the SWCNT bundles of FCNT, F′
CNT, and F”CNT were

determined to be 17 ± 6, 15 ± 3, and 12 ± 3 nm, respectively, as shown in the FE-SEM
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images (Figure S2). The sheet resistances of FCNT, F′
CNT, and F”CNT were 0.22 ± 0.01,

0.44 ± 0.01, and 0.61 ± 0.01 MΩ/sq, respectively.
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3.2. XRD Patterns of Thin-Film Electrodes

The XRD patterns of FTitania and FCOMP are shown in Figure 2. Nine peaks at 2θ =
25.5, 38.1, 48.3, 54.2, 55.4, 62.7, 69.3, 70.6, and 75.6◦ are assignable to the (101), (004), (200),
(105), (211), (204), (116), (220), and (215) phases of anatase [ICDD 01-070-6826], respectively,
in both patterns.
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3.3. Raman Spectra of Thin-Film Electrodes, and SWCNT Films before and after Heat Treatment

The Raman spectra of FTitania and FCOMP are shown in Figure 3. The Raman spectra
of both electrodes show three characteristic peaks at 1337, 1568, and 1591 cm−1 derived
from the D, G−, and G+ bands of the SWCNTs, respectively [18,19]. The (G− and G+)/D
ratios of FTitania and FCOMP were 46 and 47, respectively, which were calculated from the
peak areas of the three bands. The (G− and G+)/D ratios of FCNT, F′

CNT, and F”CNT were
also obtained as 61, 59, and 38, respectively, from the Raman peaks of the D band at 1336,
1344, and 1343 cm−1, the G− band at 1565, 1575, and 1572 cm−1, and the G+ band at 1587,
1596, and 1594 cm−1, respectively (Figure S3).
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3.4. XPS Depth Profile and XPS Spectra of Thin-Film Electrodes

Figure 4 shows the XPS depth profiles of FTitania and FCOMP. Both electrodes were
formed of Ti and O, with small and trace amounts of C and N atoms, respectively. In the
case of FTitania, extremely high concentrations of carbon atoms were observed in the range
of 0–200 s of Ar+ ion sputter time as compared to FCOMP. The calculated C/Ti ratios of
FTitania and FCOMP in the range of Ar+ ion sputter times where the ratios can be considered
constant (300–990 s for FTitania; 300–480 s for FCOMP) were 0.19 and 0.27, respectively.
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Figure 4. XPS depth profiles of (a) FTitania and (b) FCOMP.

Figure 5 shows the XPS spectra of FTitania and FCOMP in the range of 451–469 eV after
Ar+ ion sputtering at an acceleration voltage of 150 V for 15 s, along with the deconvoluted
peaks. The peaks at 459.1 and 464.7 eV for both electrodes correspond to Ti 2p3/2 and Ti
2p1/2, respectively, of Ti4+. In the case of FCOMP, the deconvoluted peaks at 456.9 and 462.5
correspond to Ti 2p3/2 and Ti 2p1/2, respectively, of Ti3+ [20,21].

The deconvoluted XPS peaks corresponding to the binding energies of C 1s and O
1s orbitals were obtained for FTitania and FCOMP (Figure S4). Peaks of the C 1s orbital at
286.3 and 284.6 eV, assignable to the C–O and C–C bonds, respectively, were observed for
both electrodes. The O 1s spectra for FTitania and FCOMP showed main peaks assignable
to the O–Ti bond at 530.5 and 530.7 eV, respectively, and a shoulder for both at 532.7 eV,
which is attributed to the O–C bond. FCOMP showed a peak at 532.1 eV, corresponding
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to the O–H bond. The calculated O/Ti ratios from the peak areas of O 1s and Ti 2p3/2 for
FTitania and FCOMP were 2.0 and 1.8, respectively.
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3.5. Transmittance Spectra and Photocurrent Density of Thin-Film Electrodes

Figure 6 shows the transmittance spectra and Tauc plots of the thin-film electrodes.
The transmittance of FCOMP is more than 70% in the visible-light region and 3–10% lower
than that of FTitania. The optical bandgap energy of the thin-film electrodes was calculated
using the Tauc plots, assuming anatase as an indirect transition semiconductor. The optical
bandgap energy of both electrodes was 3.4 eV.

The FTitania and FCOMP thin-film electrodes produced anodic photocurrents at natural po-
tential under UV-light irradiation (Figure 7). The SSPD value for FCOMP of 4.2 ± 0.1 µA cm−2

was larger than that of FTitania, 2.5 ± 0.1 µA cm−2.
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4. Discussion
4.1. Preparation of SWCNT/Anatase Precursor Solution and Composite Thin-Film Electrode

The SWCNT/titania precursor solution, SCOMP, remained a stable SWCNT-dispersed
solution for more than several months under ambient conditions. It is generally difficult
to disperse CNTs uniformly in composite precursor solutions using the sol–gel method
because they tend to aggregate owing to the intermolecular attractive forces, that is, van
der Waals forces, between CNT molecules; reducing the surface energy and van der Waals
forces can improve the dispersibility of CNT molecules [22,23]. In addition, the van der
Waals interaction energy between two single molecules is very small, but that between
two particles consisting of many molecules is large [24]. Molecular precursor solutions
containing stable metal complex ions do not form colloidal particles through the normal
hydrolysis that occurs in the presence of water [25]. Therefore, the interaction energy
between CNT molecules dispersed in the molecular precursor solution is rather small
compared to that in a colloidal solution, resulting in a practically stable and uniformly
dispersed solution with high miscibility with CNTs.

Morales et al., reported the fabrication of a CNT/TiO2 thin film with a thickness
and electrical resistivity of 180 nm and 2.5 × 105 Ω cm, respectively, by a typical sol–
gel method [11]. The dip-coated film on a quartz glass using 4 mass% CNTs in sol was
heat treated at 600 ◦C for 1 h in air. However, the electrical resistivity of the current
FCOMP with a thickness of 100 nm was 107 times lower than that of the sol–gel thin-
film composite, even though the concentration of SWCNTs in the present composite
thin films was lower at 2.9 mass%. This significant difference in the electrical resistivity
suggests that the dispersion level of the embedded SWCNTs in the composite is quite
different between the two methods. The volumetric fraction of SWCNTs in FCOMP was
calculated as 8.3% on the assumption that the densities of SWCNTs and anatase are 1.3
and 3.9 g cm−3, respectively [26,27]. Compared with a conventional sol–gel solution, the
molecular precursor solution for titania thin-film fabrication has practical advantages
toward preparing a composite precursor solution with well-dispersed CNTs, in addition to
its stability and applicability to the spin-coating process.

4.2. Raman and XPS Spectra of Thin-Film Electrodes

The Raman peaks of FTitania and FCOMP in the range of 1200–1720 cm−1 were success-
fully deconvoluted into three characteristic peaks attributable to the phononic mode of
the SWCNTs (Figure 3). In both electrodes, the heat-treatment temperature to which the
SWCNTs were exposed and the contact opportunity between the SWCNTs and anatase
crystals significantly depended on whether the SWCNTs were above or inside the anatase
layer (Scheme 1). However, the Raman spectra of both electrodes showed no significant
difference in the peak positions, indicating same-level interaction between the SWCNTs
and anatase.
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The (G− and G+)/D ratios of FTitania and FCOMP were almost identical and approxi-
mately 20% smaller than those of FCNT and F′

CNT. This indicates that the identical-level
oxidation of the graphite sites in the SWCNTs occurred during heat treatment at 300 ◦C
above the anatase layer and at 500 ◦C inside the anatase matrix. However, the (G− and
G+)/D ratio of FCOMP was approximately 20% larger than that of F”CNT, which existed
alone on a quartz glass substrate and was heat treated under the same conditions as FCOMP.
These results suggest that the anatase matrix effectively prevented the graphite sites of
SWCNTs from experiencing thermal damage at 500 ◦C.

The XPS depth profiles of both FTitania and FCOMP showed the presence of carbon
atoms throughout the coatings, regardless of the depth (Figure 4). The C/Ti ratio of FCOMP
was 1.4 times that of FTitania in the portions where the concentration of carbon atoms was
almost constant. This result suggests that the excess carbon atoms not contained inside
FTitania are owing to the embedded SWCNTs, which were distributed evenly in the depth
direction of FCOMP.

The Ti 2p XPS spectra showed the coexistence of Ti3+ and Ti4+ ions in FCOMP in contrast
to FTitania, indicating the incorporation of O deficiency only in FCOMP (Figure 5). In our
previous study, an O-deficient anatase thin film containing Ti3+ ions was obtained by the
MPM through post-annealing in air of a precursor film that included the Ti complex of
ethylenediamine-N,N,N′,N′-tetraacetic acid (EDTA) and heat treatment in Ar gas flow at
500 ◦C [17]. In the case of the sol–gel method, a higher heat treatment at 600 ◦C in air was
essential to crystallize titania in the composite with CNTs [11]. In this study, Ar gas was
not used, and a SWCNT/O-deficient anatase thin film with Ti3+ ions could be formed at
500 ◦C, even in air. Thus, the solution process developed in this study has the advantage of
crystallization of semiconducting anatase in air with coexisting Ti3+ and conductive SWCNTs.

4.3. Optical Bandgap and Photocurrent Density of SWCNT/Anatase Thin-Film Electrodes

The optical bandgap energies of FTitania and FCOMP were higher than that of single-
crystal anatase (3.2 eV) [28]. Generally, large bandgap energies are attributed to the stress
between the thin films and the substrates [29]. The bandgap energy of FCOMP was identical
to that of FTitania, as shown in Figure 6b. Effective photocurrent densities were observed
for both electrodes under UV-light irradiation. It is well known that when anatase particles
absorb light with an energy higher than the bandgap energy, the photoexcited electrons
transfer from the valence band (VB) to the conduction band; positively charged holes are
simultaneously produced in the VB. Most of these carriers yielded inside ordinary particles
recombine immediately before the photocurrent flows to an external circuit. However,
when anatase chemically bonds to SWCNTs, photoexcited electrons are more likely to be
trapped in SWCNT molecules, reducing the recombination opportunities and extending
their lifetime compared to those in ordinary particles. Therefore, CNTs used in previously
fabricated photoelectrodes only assist in electrically connecting the semiconductor film to a
transparent conductive glass substrate (TCO) such as FTO [30]. In this study, FTitania used
an SWCNT film instead of TCO, but the photocurrent density of FCOMP was clearly larger
than that of FTitania. A translucent and TCO-free SWCNT/anatase composite thin-film
electrode with sufficient conductivity to enable photocurrent measurements without a
current collector was thus obtained.

The ordinary photocurrent of titania demonstrated a rapid and sharp increase upon
UV-light irradiation, and it decreased to a constant value after a certain elapsed time [31].
The results of photocurrent density measurements of FTitania and FCOMP under natural
potential showed the characteristic time dependence of the n-type semiconductor under
UV-light irradiation (Figure 7). Importantly, the SSPD of FCOMP was 70% higher than that
of FTitania. Thus, the SWCNT/anatase composite thin-film electrode FCOMP was clearly
superior as a photoelectrode, although the SWCNT film on the anatase layer of FTitania can
play an effective role in extracting photocurrent from an anatase thin film such as TCO.
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5. Conclusions

An SWCNT/titania precursor solution in an ethanol solvent was facilely prepared by
mixing an SWCNT-dispersed solution and a molecular precursor solution to produce a
titania thin film. The stable solution was applied to a typical spin-coating process to obtain
a composite precursor film on a quartz glass substrate. Subsequent heat treatment of the
precursor film, which included 2.9 mass% SWCNTs, at 500 ◦C in air for 30 min was effective
for obtaining a translucent SWCNT/titania composite thin film with an unprecedentedly
low resistivity of 6.6 × 10−2 Ω cm. The XRD pattern of the composite thin film showed
that the titania precursor crystallized into anatase, similar to a CNT-free precursor film
subjected to the same heat treatment. Importantly, an anodic photocurrent density of
4.2 µA cm−2 was observed under UV-light irradiation (16 mW cm−2 at 365 nm) onto the
composite thin film, a value that was 70% higher than that of an anatase film with the
same film thickness. This suggests that the interaction between anatase and well-dispersed
SWCNTs effectively decreased the recombination of photoinduced electron–hole pairs
and/or enhanced the charge separation by UV-light irradiation. The XPS analyses clarified
that the anatase in the composite thin film included a certain amount of Ti3+ ions and O
deficiency as TiO1.8, although only O-sufficient anatase TiO2 was formed from the identical
titania precursor alone. It was also revealed by analysis of the Raman spectra that the
anatase crystals in the composite thin film prevented oxidation of the graphite sites in the
embedded SWCNTs.

The SWCNT/anatase composite thin film with 1.9 nm roughness, as determined by
AFM observation, had a pencil scratch hardness of 4H. The FE-SEM image of the composite
thin film showed an even surface with no cracks or pinholes; it also showed SWCNT
bundles 12 nm in diameter, which is smaller than those produced using lower-temperature
heating or no heat treatment. The transmittance in the visible-light region and the optical
bandgap energy of the SWCNT/anatase composite thin film with a thickness of 100 nm
was higher than 70% and 3.4 eV, respectively.

As a result, the molecular precursor method was useful for obtaining an autonomously
conductive photoelectrode, even though the SWCNT concentration in the mixed precursor
solution was only 0.075 mass%. In contrast to colloids, which cannot prevent CNT aggre-
gation, molecular precursors dissolve in solvents at the molecular level and facilitate the
dispersion of CNTs. The present SWCNT/anatase composite thin film is promising as an
autonomous photoelectrode that is translucent and does not require direct contact with
any conductive glass substrate. We are interested in applying this photoelectrode to the
assembly of a novel photovoltaic device.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11123352/s1, Figure S1: Atomic force microscopy (AFM) 3D surface appearances of
(a) FTitania and (b) FCOMP; Figure S2: Surface morphologies of (a) FCNT, (b) F′CNT, and (c) F”CNT
observed by FE-SEM; Figure S3: The Raman spectra of (a) FCNT, (b) F′CNT, and (c) F”CNT. The dotted
line indicates the original Raman spectra; Figure S4: XPS spectra of (a,c) C 1s and (b,d) O 1s of FTitania
and FCOMP, respectively, after Ar+ ion beam bombardment at a voltage of 150 V for 15 s. The dotted
line represents the original XPS data. The solid brown line indicates the Shirley baseline. The colored
curves indicate the theoretically fitted curves by assuming a Voigt distribution.
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