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Abstract: The objective of this study was to prepare a functional biodegradable soy protein isolate
(SPI) food packaging film by introducing a natural antimicrobial agent, mangosteen peel extract (MPE,
10 wt% based on SPI), and different concentrations of functional modifiers, ZnO NPs, into the natural
polymer SPI by solution casting method. The physical, antioxidant, antibacterial properties and
chemical structures were also investigated. The composite film with 5% ZnO NPs had the maximum
tensile strength of 8.84 MPa and the lowest water vapor transmission rate of 9.23 g mm/m2 h Pa.
The composite film also exhibited excellent UV-blocking, antioxidant, and antibacterial properties
against Escherichia coli and Staphylococcus aureus. The TGA results showed that the introduction of
MPE and ZnO NPs improved the thermal stability of SPI films. The microstructure of the films
was analyzed by SEM to determine the smooth surface of the composite films. ATR-FTIR and XPS
analyses demonstrated the strong hydrogen bonding of SPI, MPE, and ZnO NPs in the films. The
presence of ZnO NPs in the composite films was also proved by EDX and XRD. These results suggest
that SPI/MPE/ZnO composite film is promising for food-active packaging to extend the shelf life of
food products.

Keywords: food packaging film; soy protein isolate; mangosteen peel extract; ZnO nanoparticles

1. Introduction

Owning to the low cost and easy processing plastic materials are widely used for food
packaging fields [1,2]. However, the discarded non-degradable plastics have caused serious
environmental pollution and endangered human and ecological safety [3]. To alleviate the
threat of “plastic pollution”, a biodegradable natural polymer film is prepared to reduce
or eliminate some traditional polymer packaging materials [4]. Microbial contamination
is widely recognized as a key risk that not only deteriorates food but also affects public
health [5]. Therefore, antimicrobial packaging materials have been hailed as one of the
most promising active packaging technologies for increasing the shelf life of food goods by
preventing spoiling and pathogenic microbe growth [6].

Soy protein isolate (SPI) is a plant protein that is frequently used in the food in-
dustry due to its functional properties and nutritional worth [7]. Because of the low
cost, abundance, sustainability, and utility of SPI, the development of environmentally
friendly protein materials with strong biocompatibility and biodegradability has piqued
researchers’ interest [8]. However, SPI has low water resistance and strength, and has
a lower production cost compared with synthetic plastics, causing limited application
in food packaging material [9]. To enhance the strength and functionality of SPI films,
blending with nanoparticles or functional additives has been proven to be an effective
method [10]. ZnO NPs are generally considered safe and have good thermal stability, UV
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barrier, and antibacterial properties. It is noteworthy that it has excellent antibacterial
activity against a wide range of bacteria, such as E. coli and S. aureus, but the effect on
human cells is negligible. These advantages compared to some other nanoparticles make
ZnO NPs a widely used additive in the preparation of antibacterial nanocomposite films for
improving their antimicrobial properties or mechanical properties [11]. Liu et al. found that
GM-based food packaging films prepared by adding the functional modifier ZnO NPs to
galactomannan (GM) had good antibacterial and UV resistance properties, and their tensile
strength was superior to plastic HDPE film and their barrier properties were better than
those of PVC plastic film [12]. However, ZnO NPs tend to accumulate [13], thus reducing
or even eliminating bacteriostatic effects. To maintain the excellent antibacterial effect of
ZnO NPs, it was mixed with mangosteen peel extract to disperse evenly in the nanocom-
posite film. Mangosteen fruit (Garcinia mangostana L.), a native tropical plant, is believed to
have medicinal properties. [14,15]. Mangosteen peel is high in xanthones [16], a type of
polyphenolic substance with a wide range of biological activity in vitro, as well as other
bioactive components such as flavonoids [17], tannins [18], and anthocyanins [19,20]. Xan-
thone has been demonstrated to have antioxidant [21], anti-inflammatory [22], antiallergy,
antibacterial [23], anticancer [24], and antifungal properties in multiple investigations [25].
Many reports have investigated the encapsulation of various plant extracts in antimicrobial
biocomposite films and their potential applications. Liang et al. prepared active film by
incorporating cortex Phellodendron extract (CPE) with soybean protein isolate (SPI). The
results showed that the film did not inhibit E. coli but showed a significant inhibition circle
against S. aureus, and the inhibition circle increased with the increase of CPE content [26].
Currently, no studies have reported the combined role of MPE and ZnO NPs in SPI film
active packaging applications. The SPI/MPE/ZnO composite film prepared in this work is
biodegradable because the main components in the natural antimicrobial agent MPE are
degradable, the SPI matrix is also degradable, and the trace amounts of ZnO nanoparticles
are safe.

In this paper, biodegradable SPI-based food packaging films with excellent antibacte-
rial, antioxidant and UV-blocking properties were prepared by the solution casting method.
The effects of MPE and ZnO NPs on the mechanical properties, water susceptibility, surface
color, UV-visible light barrier, antioxidant, and antibacterial activities of SPI films were
investigated. Morphology, chemical structural, and thermal studies of the films were also
characterized by SEM, ATR-FTIR, XPS, XRD, and TGA. It has guiding significance for the
preparation of antibacterial nano-composite food packaging film.

2. Materials and Methods
2.1. Materials

Soy protein isolate (protein content > 90%) was obtained from Henan Yuzhou Biotech-
nology Co., Ltd. (Zhengzhou, China). Sodium carboxymethyl cellulose (Na-CMC) was
provided by Chengdu Kelong Chemical Co., Ltd. (Qionglai, China). Mangosteen was
purchased in the supermarket, and the peel was dried and crushed and stored at low
temperature. MPE was obtained by our previous study [27].

The ZnO NPs with an average diameter of 30 ± 10 nm and the purity of 99% were
generously provided by Shanghai Shengtai Biochemical Co., Ltd. (Shanghai, China) Glyc-
erol (purity ≥ 99%) was provided by Zhiyuan Chemical Reagent Co., Ltd. (Tianjin, China).
Escherichia coli ATCC 25922 (E. coli) and Staphylococcus aureus ATCC 25923 (S. aureus) were
collected from Guangdong Huankai Microbial Technology Co., Ltd. (Guangzhou, China).

2.2. Preparation of Nanocomposite Films

The SPI was dissolved in deionized water and stirred continuously at 80 ◦C until
complete dissolution. The SPI solution (5 wt%) was cooled at room temperature and set
aside. Glycerol with a 30% dry weight of SPI was added as a plasticizer and used to reduce
the brittleness of the films. Na-CMC solution (0.5 wt%) and MPE (10 wt%) were added to
the mixed solution with continuous stirring. The ZnO NPs suspension was added to the
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above solution at 0, 1, 3, and 5 wt% concentrations. The mixed membrane solution was
treated with ultrasound (40 W, 10 min) to obtain the uniformly dispersed solution. The film
solution was poured into 9 cm diameter Petri dishes and dried at 45 ◦C and 45% RH for 24 h.
All SPI-based films were stored at 25 ◦C and 57% RH for 72 h before testing. A schematic
diagram of the preparation and experimental formulation of the nanocomposite film were
shown in Table S1 and Figure 1.

Figure 1. Schematic of the preparation of nanocomposite films.

2.3. Characterization of Films
2.3.1. Mechanical Properties

The thickness of the samples was measured using a digital micrometer (EVERTE, awt-
chy01, Hangzhou, China) with an accuracy of 1 µm. Thickness was measured randomly at
5 different positions, and the average value was used.

Mechanical properties of SPI-based films (60 mm × 10 mm) were determined by a
tensile testing machine (Zhiqu, ZQ-990, Dongguan, China) A tensile testing machine (Zhiqu,
ZQ-990, Dongguan, China) was used to measure tensile strength (TS) and elongation at
break (EAB) of films according to ASTM D882. The strain rate was 0.8 mm/s and the gauge
length was 50 mm. Each kind of composite film was measured in at least five replicates.

2.3.2. Water Solubility (WS)

The determination of film solubility was based on the methods of previous studies [28].
Briefly, the films (40 mm × 10 mm) were dried at 103 ◦C for 24 h to determine the initial
weight (Wi), and then the films were immersed in 50 mL distilled water with stirring for
24 h at 30 ◦C. After that, the remaining pieces of the films were filtered (0.22 µm) and dried
at 103 ◦C for 24 h. Finally, the final weight of the film was measured, which was calculated
according to the following Equation (1):

WS(%) =
Wi − W f

Wi
× 100% (1)

where: Wi = Initial weight of dry film (g), W f = Final weight of dry film (g).
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2.3.3. Water Vapour Permeability (WVP)

The WVP of the film was examined according to the method of Zhang et al. [15]. The
weighing bottle and anhydrous calcium chloride (CaCl2) were placed at 105 ◦C for 24 h.
10 g CaCl2 was poured into the weighing bottle, then sealed with the film and stored at
25 ◦C, and 90% RH. The bottles were weighed each 1 h for 12 h. The WVP (g mm/m2 h Pa)
of the film was calculated as follows (2):

WVP =
∆W × d

t × A × ∆P
(2)

where: ∆W (g) is the weight increment of the bottle, d (mm) is the film thickness, t (h) is
the time interval, A (m2) is the effective area of film, ∆P (Pa) is the part of water vapor
pressure difference across the film. Three replicates were set for each sample.

2.3.4. Water Contact Angle (WCA)

The hydrophobicity of the surface of the film was measured with a water contact angle
tester (Fangrui, JCY-1, Shanghai, China) at 25 room temperature and 57 ± 2% RH. Sample
films (4.5 cm × 1 cm) were placed on a horizontal black Teflon-coated steel stage on the
analyzer. The distilled water (5 µL) was dropped on the surface of the film with a digital
microsyringe, and the WCA was measured immediately.

2.3.5. Films Transmittance and Opacity

The transmittance spectra and opacity of the SPI films were measured by Shimadzu
UV-2450 UV-vis spectrophotometer at scanning wavelength in the range of 200–800 nm.
The films (4.5 cm × 1 cm) were first dried in a desiccator for 48 h and then measured three
times with a UV-vis spectrophotometer. The optical property of edible films was calculated
by the following Equation (3).

Opacity(%) =
Abs600

L
(3)

Here: Abs600 = Spectrophotometric absorbance value at 600 nm wavelength.
L = Thickness of the film (mm).

2.3.6. Colour Measurement

The color of the film was measured with a colorimeter (ADCI-60-C, Beijing, China)
and the white plate was used as a control, and the L*, a*, b*, and ∆E values were recorded.
Each film was measured at least 3 times.

2.3.7. Antioxidant Activity

The antioxidant activity of the films was evaluated by measuring the free radical
scavenging activity of compounds using the DPPH method. The determination of DPPH
was based on our previous studies [27].

0.5 g of the film was dissolved in 10% (v/v) ethanol solution (10 mL) and shaken in
a constant temperature shaker at 30 ◦C for 16 h. Then, the film solution was centrifuged
at 6000 rpm for 10 min and the supernatant was fixed to 100 mL as the solution to be
measured. 1 mL of the solution to be measured was mixed with 4 mL of 25 mg/L DPPH
ethanol solution for 30 min at room temperature, and then the absorbance of the sample
was measured at 517 nm.

2.3.8. Antimicrobial Activity

The biocide property of the SPI films was evaluated by employing the Macrodilution
method [29] recommended by previous studies. All film samples were stored in a biosafety
cabinet and sterilized by UV irradiation overnight. 0.5 g of specimens were added to
centrifuge tubes containing 10 mL of E. coli and S. aureus dilutions (1.0 × 106 CFU/mL)
respectively. The bacterial suspensions were incubated at 37 ◦C for 1 h. Then 100 µL of the
suspensions were applied to MH agar plates and incubated at 37 ◦C for 24 h. The number
of colonies was counted by colony counter. The Schematic illustration of the method is
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shown in Figure S1. The inhibition of bacteria growth was calculated as the following
Equation (4).

Reduction(%) =
a − b

a
× 100% (4)

where: a and b are the number of colonies of the control and test group, respectively.

2.3.9. Film Characterization

The surface and cross-section morphology of the films were analyzed by a field
emission scanning electron microscope (SEM, ZEISS, Oberkochen, Germany) operated
at an acceleration voltage of 3 kV [27]. The energy-dispersive X-ray (EDX) spectroscopy
and elemental mapping analysis (MAP) were recorded for all samples to investigate the
distribution quality of ZnO NPs. The surface roughness (Rq and Ra) of the films was
analyzed by atomic force microscopy (AFM, Shimadzu, SPM-9700, Kyoto, Japan).

The thermal stability of the film samples was determined by thermogravimetric
analysis (TGA) (NETZSCH, STA 449 F3, Selb, Germany). A sample of 5 mg was used and
heated from 30 to 600 ◦C at the heating rate of 10 ◦C/min under a nitrogen gas flow rate of
20 mL/min [27].

The chemical structure of the films was characterized by an Attenuated total re-
flectance Fourier transform infrared (Shimadzu, IRTracer-100, Kyoto, Japan). The scanning
frequencies were ranged from 4000 to 650 cm−1 with a spectra resolution of 4 cm−1.

X-Ray Photoelectron Spectroscopy (XPS) was performed with Al Ka (1486.6 eV)
monochromatic radiation from a Thermo Scientific K-alpha x-ray photoelectron spec-
trometer. Survey spectra were recorded with 1.0 eV step and 100 eV analyzer pass energy.
The binding energy charge of C1s was corrected to 284.6 eV.

The crystal structure of different types of films at 40 kV and 40 mA was studied by
X-ray diffractometry (Rigaku, D/MAX 2500V, Tokyo, Japan). The scattered radiation was
detected in the angle range of 2θ = 5–40◦ with a scanning speed of 2◦/min [27].

2.4. Statistical Analysis

The experimental data were subjected to ANOVA and Duncan’s triple range test using
SPSS software to test for significance at the p ≤ 0.05 level (SPSS Inc. Chicago, IL, USA).

3. Results
3.1. Mechanical Properties

The film thickness ranged from 0.10 and 0.19 mm mainly due to the different content
of the filler added, as shown in Table 1.

Table 1. Physical properties and the WCA of composite films incorporated with various ZnO NPs content.

Films Thickness
(mm) TS (MPa) EAB (%) WS (%) WVP × 10−3

(g mm/m2 h Pa) WCA (◦)

SPI 0.10 ± 0.00 c 5.02 ± 0.11 c 82.87 ± 1.96 d 41.86 ± 5.19 a 19.53 ± 3.28 a 57.80 ± 3.97 c

SPI/MPE 0.14 ± 0.0 b 6.57 ± 0.10 b 59.95 ± 4.96 c 33.92 ± 0.08 b 19.23 ± 3.76 a 71.30 ± 3.78 a

SPI/MPE/ZnO1% 0.19 ± 0.04 a 8.11 ± 0.26 a 75.23 ± 27.98 b 31.76 ± 0.30 bc 19.67 ± 2.97 a 75.08 ± 0.30 a

SPI/MPE/ZnO3% 0.16 ± 0.0 b 8.23 ± 0.31 a 53.95 ± 6.68 b 30.30 ± 1.69 bc 13.67 ± 8.74 ab 62.78 ± 0.28 b

SPI/MPE/ZnO5% 0.12 ± 0.06 c 8.84 ± 0.48 a 47.88 ± 17.34 a 28.71 ± 1.07 c 9.23 ± 4.70 b 58.75 ± 0.81 bc

The values are averaged ± Standard deviation. Different letters in the same column show a significant difference (p ≤ 0.05).

Compared with the pure SPI film, after introducing MPE and ZnO NPs into the SPI
matrix, the TS of composite films was improved significantly. When containing MPE and
5 wt% ZnO NPs, the TS of the composite film is the highest, which is 8.84 MPa. This may
be because ZnO NPs acted as a reinforcing filler in the SPI matrix, and CMC-Na contributes
to the uniform dispersion of ZnO NPs in the matrix, thus improving the strength of the
films [30]. P. Kanmani et al. also obtained similar results, the addition of ZnO NPs had
a great influence on the mechanical properties of biopolymer films [9]. The mechanical
properties of films depend greatly on the composition of the polymer, the intramolecular
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forces, the presence of microcrystals, and the microstructure of the film network [31,32].
Based on the SEM structural analysis of the films it was observed that as the concentration
of ZnO NPs increased, it increased the crystalline structure of the SPI films by observing
more continuous structures in the cross-section. In summary, the introduction of MPE
and ZnO NPs in SPI films facilitates the crystalline order of the polymer and promotes
the interaction between polymer chains, leading to enhanced mechanical properties of
SPI/MPE/ZnO films [31].

3.2. WS, WVP, and WCA

The WS of SPI/MPE film was slightly reduced (p ≤ 0.05) compared to the control SPI
film (Table 1). This may be due to the interaction between MPE and SPI chains that reduces
the affinity for water molecules [33]. With the increase of ZnO NPs from 1 wt% to 5 wt%,
the WS value decreased from 31.76% to 28.71% (p ≤ 0.05). The reduced solubility of the
composite films may be related to the formation of strong structures and bonds between
fillers and the protein matrix. In addition, the dimension ratio and crystalline areas of
fillers also affect the water-resistance of other bio nanocomposite films [34].

The WVP of the film decreased slightly with the addition of MPE (p > 0.05), as shown in
Table 1. This conclusion was in line with the findings of Y.A. Arfat et al. [35]. However, when
ZnO NPs content was 3 wt% and 5 wt%, WVP decreased to 13.67 ± 8.74 × 10−3 g mm/m2 h Pa
and 9.23 ± 4.70 × 10−3 g mm/m2 h Pa (p ≤ 0.05), respectively. This may be due to MPE
and ZnO NPs together filling the gaps present in the structural protein chain, blocking the
waterway transport pathways in the films [33]. The WVP of the composite film with ZnO
NPs content of 1 wt% increased slightly, probably because ZnO NPs could separate the
polymer chain and increase the free space for the water vapor to pass through [36].

The pure SPI film’s WCA was 57.80◦, which is increased to 71.30◦ (p ≤ 0.05) with
the addition of MPE (Table 1). The adding of a hydrophobic agent such as MPE would
decrease the surface hydrophilicity and increase the WCA of the films [37]. The results
showed that the polyphenol-protein interaction may change the surface energy of SPI film
and enhance the surface hydrophobicity [38]. Analogous results were obtained for mango
leaf extract incorporated chitosan antioxidant film [39]. When 1 wt% ZnO NPs was added
into composite films, the WCA increased significantly to 75.08◦, which may be related to
the hydrophilicity of ZnO NPs (p ≤ 0.05) [9]. Moreover, the surface wettability increased
with the addition of ZnO NPs [38].

3.3. UV-Vis Light Barrier Property, Colour, and Opacity

The UV-visible barrier performance of the film is of great significance to light-sensitive
food packaging [40]. The SPI film has the lowest UV-visible light barrier property due to
the lack of UV-vis absorbent groups in the SPI structure (Figure 2a) [40]. The presence
of UV-absorption phenolic compounds in MPE allowed SPI/MPE film to show stronger
UV-visible light barrier property [41]. Metal oxides are widely used as UV blockers,
and ZnO NPs exhibits excellent performance in blocking UV-B (290–320 nm) and UV-A
(320–400 nm) [42]. SPI/MPE/ZnO films had the highest UV-vis light barrier property
(p ≤ 0.05), which was due to the mutual aggregation of MPE and ZnO NPs impeding
light transmission through the film [40]. As the concentration of ZnO NPs increases, the
UV-visible light barrier performances of the films were also improved, up to 99.75%.
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Figure 2. UV-vis light transmittance of SPI films. The red arrows indicate that the UV resistance of the films is significantly
improved with the addition of MPE and ZnO NPs, and the increase of ZnO NPs content (a). UV-vis light transmittance of
SPI films at 320–400 nm (b). The physical appearance of SPI films (c).

Five different kinds of film physical appearances were displayed in Figure 2c. Because
of the yellow color of MPE, the introduction of MPE significantly reduced the lightness
(L-value) and increased the yellowness (b-value) (Table S2). Compared to SPI/MPE film,
SPI/MPE/ZnO films showed lower brightness with a slight increase in a-values and
a significant increase in b-values. In addition, the L-value and ∆E of the composite films
had a slight decrease with the increase of ZnO NPs content, indicating a decrease in the
brightness of the films. Such color change is the result of the combined action of MPE and
ZnO NPs [40].

Opacity represents the amount of light that is not allowed to pass through the pack-
aging material, and high transparency represents a low opacity value [43]. The opacity
for the SPI control film was 1.07 as shown in Table S2. The slight increase in opacity of
the SPI/MPE film may be due to the interaction of SPI with MPE polyphenols to form a
denser film, which reduces the amount of light passing through the film [44]. The light
penetration was hindered by the combined effect of MPE and ZnO NPs, which increased
the opacity of the SPI/MPE/ZnO composite films [43].

3.4. Antioxidant Activity and Antimicrobial Activity

Evaluation of the antioxidant property of films by DPPH radical scavenging ability
and study of its change with time (Figure 3). The SPI control film showed about 43.31%
antioxidant activity, which was similar to the results of the study by Z. Yu et al. [45]. The
antioxidant activity of SPI film was attributed to the presence of flavonoid compounds [26].
The antioxidant property of the SPI/MPE film was significantly increased to 61.54 %, owing
to the strong antioxidant effect of polyphenolic chemicals in MPE [36]. The FTIR spectra of
MPE showed that there was a distinct absorption band at 3400 cm−1, corresponding to the
phenolic group (Figure S2a), indicating that MPE contained polyphenols and was a good
antioxidant. HPLC analysis also showed that the main polyphenol components of MPE
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were γ-mangosteen, dexquinic acid, catechin hydrate, astilbin, and glucose-1-phosphate
(Figure S2b). However, when ZnO NPs was added, the antioxidant property of the films
decreased with the increase of ZnO NPs content, which may be related to the adsorption of
MPE on the surface of ZnO NPs, where MPE is immobilized on the surface of ZnO NPs
and prevents free interactions with oxidized radicals [36]. In addition, the ability of the
films to scavenge free radicals was found to decrease with time.

Figure 3. DPPH radical scavenging ability of the SPI films. All data are shown as mean ± standard
deviation (SD). The superscripts different letters in a column indicate significant differences (p ≤ 0.05).

The antimicrobial activity of SPI films against E. coli and S. aureus are shown in Table 2
and Figure S3. As expected, the SPI film did not reveal antibacterial activity. However, the
SPI film incorporated with MPE showed strong antibacterial efficacy against both E. coli
and S. aureus (p ≤ 0.05). The antimicrobial activity of SPI/MPE film was attributed to the
effect of phenolic compounds in MPE, which inhibited bacterial growth by disrupting
the stability of the cell plasma membrane and the permeability of the cell membrane [40].
With the addition of ZnO NPs, the SPI/MPE/ZnO film showed the strongest antibacterial
activity, which may be related to the combined effect of MPE and ZnO NPs [40]. The
composite films containing 3% and 5% ZnO NPs showed the highest antibacterial activity
against E. coli (100%) and S. aureus (97%) after 1 h, respectively. A possible mechanism for
the bacterial inhibitory activity of ZnO NPs is the generation of highly reactive oxygen
species (ROS) on zinc oxide surface [9]. The negatively charged superoxide and hydroxyl
radicals can stay inside the bacteria’s outer cell wall, damaging proteins, lipids, and DNA,
while hydrogen peroxide can penetrate the cell wall and cause cell death [9]. Compared
with SPI films incorporated with ZnO NPs, the antibacterial activities arrived at the same
level in the case of the different solid content of ZnO NPs (Table S3).
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Table 2. Antimicrobial effect of SPI films.

Films Bacteria Viable Colony
Numbers (CFU/mL)

Antibacterial
Potency (%)

SPI
E. coli 926 ± 4.24 a 0

S. aureus 813 ± 32.53 a 0

SPI/MPE
E. coli 730 ± 8.49 b 21.17

S. aureus 329 ± 6.36 b 59.53

SPI/MPE/ZnO1% E. coli 512 ± 33.23 c 44.71
S. aureus 57 ± 0.71 c 92.99

SPI/MPE/ZnO3% E. coli 0 100
S. aureus 22 ± 1.41 c 97.29

SPI/MPE/ZnO5% E. coli 0 100
S. aureus 21 ± 0.71 c 97.42

The values are averaged ± Standard deviation. Different letters in the same column show a significant difference
(p ≤ 0.05).

3.5. SEM and AFM

SEM clearly shows the surface and cross-section of the films (Figure 4a). The SPI
control film exhibited a smooth and dense network structure in both surface and cross-
section. However, the addition of MPE led to the coarser cross-section structure of the film.
The conversion of phenol to quinone induced substantial aggregation in the film matrix
through non-disulfide bonds, thus controlling the roughness of the film [28]. SEM images of
SPI/MPE/ZnO films showed that the higher the concentration of ZnO NPs, the smoother
the cross-section structure of the film, and the more uniform the distribution of ZnO NPs in
the film matrix [46]. The EDX analysis confirmed the presence of ZnO NPs in the composite
films (Figure S4). As expected, the element of Zn appeared in SPI/MPE/ZnO film [47].
To show the uniform distribution of inorganic phases on the surface of SPI substrate,
compositional maps (Figure S5) were recorded for atoms of interest [48]. It is clearly shown
in Zn element MAP that there is no obvious gradient of Zn concentration between different
regions, confirming a uniform distribution of the inorganic particles until it is up to 5% in
films and when MPE is up to 10% [49].

Figure 4. The SEM micrographs of surface and cross-section for SPI films (a). 2D and 3D images of
surface topography for SPI films (b).
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The roughness of the film was analyzed using AFM and the results are given in
Figure 4b and Table S4. The surface of the SPI control film was somewhat rough and
the addition of MPE slightly decreased the values (p ≤ 0.05) of Ra and Rq respectively
from 11.7–6.8 nm and 15.8–9.7 nm, probably attributed to the biopolymer-extract inter-
action [50]. Whereas the addition of ZnO NPs increased these values from 11.7–19.7 nm
and 15.8–27.1 nm, respectively (p ≤ 0.05). This was due to the insoluble nature of the
nanoparticles and the formation of agglomeration during the film drying process [51].

3.6. TGA

TGA and DTG curves are presented in Figure 5a,b, respectively. Table S5 lists the max-
imum decomposition temperatures (Td max) and weight loss (∆w) of the corresponding
films. The initial weight loss was detected between 67.44 and 100.42 ◦C with a weight
loss of 9.63–14.15% due to the evaporation of water molecules. The subsequent steps
of degradation were observed at 269.14–306.86 ◦C, which were due to the decrease of
crystallinity and molecular weight in the blending process [52]. The effective crosslinking
of phenolic compounds in MPE to SPI could improve the thermal stability of SPI films.
The inclusion of ZnO NPs lowered the thermal stability of the SPI films marginally, accord-
ing to TGA analysis. Thermal stability may be reduced as a result of changes in protein
structure and the breaking of low-energy intermolecular interactions that maintain protein
conformation [35]. This is consistent with ATR-FTIR analysis, confirming the change in
the secondary structure of the protein as measured in the films. Additionally, the residual
mass (i.e., char content) of all films varied between 22.39–29.63% at 650 ◦C. Compared to
the SPI control film, the films with MPE and ZnO NPs showed higher residues, due to
biopolymers containing non-ignitable minerals [53].

Figure 5. TGA (a) and DTG (b) profiles of SPI films. ATR-FTIR spectra of SPI films (c). XRD patterns of the SPI films (d).
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3.7. ATR-FTIR, XRD, and XPS

Figure 5c shows the ATR-FTIR spectra of SPI films. The broadband was observed
at 3275 cm−1, corresponding mainly to the stretching of the free O-H groups and amine
N-H of the SPI [45]. The addition of MPE enhanced the peak intensities at 3275 cm−1,
1636 cm−1 (amide I), and 1526 cm−1 (amide II), indicating that the hydrogen bonding
interactions between polyphenols and proteins were weakened [54]. However, as shown in
Figure S6a, the ZnO NPs added to the films showed a slight shift towards the lower amide-
A wavenumber (3275–3273 cm−1), possibly due to increased hydrogen bond formation [55].
The transition of amid-A region to low wavenumber indicated that the N-H group in the
protein chain interacted with ZnO NPs mainly through hydrogen bonds [35].

The amide I (1600–1700 cm−1) was commonly used for protein secondary structure
analysis [56] (Figure S6b). To analyze the composition of the amide I band, curve fitting of its
second derivative spectrum was needed [57]. The areas of the second derivative spectrum
correspond to different types of secondary structural components [57]. In general, the bands
of about 1640–1600 cm−1 and 1670–1690 cm−1 are ß-sheet characteristics, 1650–1640 cm−1

is unordered structures, 1660–1650 cm−1 is α-helical, and 1700–1660 cm−1 is ß-turn [54].
Table 3 shows the peak regions for each particular conformation associated with the
secondary structure in the films. The content of the ß-sheet structure increased as MPE was
added, while the content of α-helix and random structure of blend films was decreased.
Thus, they improved tensile strength and was coincided with the finding that the content
of ß-sheet contributes to the strength of the composite films, and the content of α-helix
and ß-turn is related to the flexibility of the films, while the random coil structure weakens
the mechanical properties of the composite films [56]. The addition of ZnO NPs into the
films reduced the secondary structures (α-helix and ß-sheets) and the random structure
was increased. While the random structure decreased as ZnO NPs increased resulting from
order structure associated with the crystalline as is shown by XRD analysis. It suggested
that the protein secondary structure in the film was gradually disrupted in the mixing with
ZnO NPs.

Table 3. Secondary structure contents of the films.

Films % α-Helix % β-Sheet % β-Turn Random Coil (%)

SPI 13.02 51.81 18.34 13.64
SPI/MPE 12.90 52.52 21.22 13.36

SPI/MPE/ZnO1% 15.89 50.99 14.85 18.27
SPI/MPE/ZnO3% 15.13 50.59 16.99 17.29
SPI/MPE/ZnO5% 14.86 50.30 17.60 17.24

XRD patterns of the SPI control film exhibited obvious diffraction peaks at approxi-
mately 2θ ≈ 9.0◦ and 20◦, which corresponded to the typical α-helix and ß-sheet structures
of the SPI secondary conformation, respectively, as shown in Figure 5d [58]. With the
addition of MPE, new peaks did not appear, indicating good compatibility between SPI
and MPE [58]. The XRD pattern of SPI/MPE/ZnO film showed obvious diffraction at
2θ ≈ 32◦, 34.4◦ and 36.6◦, corresponding to the standard (100), (002) and (101) crystal faces
of ZnO metal, respectively [9], indicating that the ultrasonic blending had no impact on the
hexagonal structure of ZnO NPs in the SPI hybrid matrix [59]. However, the peak intensity
at 2θ ≈ 9.0◦ and 20◦ was dramatically lower than the SPI control film, indicating that the
conformation of SPI molecules has changed (this could be shown from FTIR results) [58].

XPS was used to analyze the film surface, as shown in Figure 6a. For SPI/MPE/ZnO
films, a pair of new ZnO 2p peaks were observed, indicating that ZnO NPs exist in the
outermost layer [60]. However, the existence of Zn 2p was found too hard to be seen in
SPI/MPE/ZnO film adding 1 wt% ZnO NPs. Table 4 showed the peak area measured by
XPS. The peak areas of C 1s, O 1s, N 1s, and Zn 2p reflected the concentration of these atoms
on the surface. When MPE and ZnO NPs were added, the proportion of C decreased, while
the proportion of O increased. When ZnO NPs increased, the proportion of C increased,
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while the percentage of O decreased and Zn begins to appear in the spectrum, indicating
that the surface composition is different [61].

Figure 6. XPS survey spectra of SPI films (a) and XPS of C 1s features of SPI films for SPI control (b), SPI/MPE (c),
SPI/MPE/ZnO1% (d), SPI/MPE/ZnO3%(e) and SPI/MPE/ZnO5% (f) film, respectively.

Table 4. The peak area is measured by XPS.

Films C (at. %) O (at. %) N (at. %) Zn (at. %)

SPI 69.12 18.94 8.04 0
SPI/MPE 65.62 22.41 8.15 0

SPI/MPE/ZnO1% 65.19 22.74 8.57 0.1
SPI/MPE/ZnO3% 65.51 22.25 7.84 0.35
SPI/MPE/ZnO5% 68.14 20.67 7.43 0.52

The C1s spectra were deconvoluted identifying the chemical state of C detected on
the surface of the film. The C1s peak was divided into three peaks (Figure 6), which
are C1 (C-C/C-H), C2 (C-O/C-N), and C3 (C=O) functions [59]. Notably, the shape
and position of the bands in the spectrum were similar. The binding energy values and
the contents of each function are shown in Table S6. The main peak C1 appeared at
284.8 eV, which was mainly the combination of hydrocarbon and C-C bond. C2 band
represented C-O bond and C-N bond in the binding energy range of 286.2–286.3 eV, and
corresponding ester group C3 was found at 288.0–288.1 eV, which was consistent with the
literature [61]. The change of absorption peak reflects the change of C content in the films.
C1 indicates the hydrophobicity of the surface; C2 reflects the degree of cross-linking, and
C3 indicates the hydrophilicity [62]. The C1 contents of SPI/MPE/ZnO films suggested
lower hydrophobicity and cross-linking degree than that of SPI control film. This can be
attributed to hydrogen bonding and chemical cross-linking reactions between the SPI, MPE,
and ZnO NPs [62]. The O 1s features in Figure S7 represented the distribution of the oxygen
present on the film’s surface. The peak value of SPI film at 531.7 eV was O-C=O/O=C-N
oxygen characteristic [61]. With the introduction of MPE, the peak of O-C=O/O=C-N
shifted to the higher binding energy. In addition, a new peak of O atom of ZnO NPs was
found in SPI/MPE/ZnO films (532.1, 532.1, and 532.2 eV, respectively). In general, binding
energy transfer in XPS spectra can be attributed to two different mechanisms: different
electronegativity of metal ions and strong interactions between nanocrystals (electron
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transfer) [60]. Therefore, the shift of C 1s and O 1s binding energy proved the strong
interaction between protein, MPE, and ZnO NPs in the composite films.

4. Conclusions

In this study, composite films based on SPI and MPE and ZnO NPs were successfully
fabricated by a simple, green, and efficient solution casting method. The ternary blended
composite films exhibited significant improvements in mechanical properties, water vapor
permeability, water-solubility, UV-barrier, antioxidant property, and thermal stability. Due
to the antibacterial properties of MPE and ZnO NPs, the composite films exhibited excellent
antibacterial properties against E. coli and S. aureus. SEM showed that the surface of the
SPI/MPE/ZnO composite film was relatively smooth, which proved that the MPE and
ZnO NPs had good compatibility with the SPI substrate. According to this study, the
amount of MPE (10 wt%) used provided excellent antibacterial activity, while 5 wt%
of ZnO NPs provided optimum improvements in mechanical and water vapor barrier
properties. Therefore, we conclude that the biodegradable SPI/MPE/ZnO composite film
may serve as an ideal packaging material for food packaging applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11123337/s1, Figure S1: Schematic illustration of the method of antibacterial experiment,
Figure S2: Absorption spectrum of MPE (a) and analysis of the structure of MPE by HPLC (b), Figure
S3: Antibacterial effect of SPI/MPE/ZnO films against E. coli. SPI control (a); SPI/MPE/ZnO1% (b);
SPI/MPE/ZnO3% (c) and SPI/MPE/ZnO5% (d), Figure S4: EDX spectra of SPI films for SPI control (a),
SPI/MPE (b), SPI/MPE/ZnO1% (c), SPI/MPE/ZnO3% (d) and SPI/MPE/ZnO5% (e) film, respectively,
Figure S5: The elemental mapping analysis (MAP) for SPI control (a), SPI/MPE (b), SPI/MPE/ZnO1%

(c), SPI/MPE/ZnO3%(d) and SPI/MPE/ZnO5% (e) film, respectively, Figure S6: ATR-FTIR spectra
of SPI films for amide-A (A) and amide I (B), Figure S7: XPS of O 1s features of SPI films for SPI
control (a), SPI/MPE (b), SPI/MPE/ZnO1% (c), SPI/MPE/ZnO3% (d) and SPI/MPE/ZnO5% (e) film,
respectively, Table S1: Experimental formulations of the SPI films, Table S2: Colour and opacity of
SPI films as affected by MPE and ZnO NPs incorporation, Table S3: Antibacterial properties of SPI
films incorporated with ZnO NPs, Table S4: Roughness of SPI films, Table S5: Mass loss calculated
from thermal parameters of the TGA curve, Table S6: Relative amounts (%) of carbon (C 1s) on the
surfaces of SPI films.
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