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Abstract: Mixed metal sulfides exhibit outstanding electrochemical performance compared to single
metal sulfides and mixed metal oxides because of their richer redox reactions and high electronic con-
ductivity. In the present study, Zn-Co-S nanostrip cluster arrays were formed from ZnCo2O4 grown
on Ni foam by an anion exchange reaction using a two-step hydrothermal process. Morphological
characterization confirmed that the Zn-Co-S nanostrip cluster arrays had grown homogeneously on
the skeleton of the 3D Ni foam. The length of the nanostrip was approximately 8 µm, and the width
ranged from 600 to 800 nm. The Ni foam-supported Zn-Co-S nanostrip cluster arrays were assessed
directly for electrochemical supercapacitor applications. Compared to ZnCo2O4, the Zn-Co-S elec-
trode exhibited a three-fold higher specific capacity of 830 C g−1 at a specific current of 2.0 A g−1.
The higher polarizability, lower electro-negativity, and larger size of the S2− ion played an important
role in substituting oxygen with sulfur, which enhanced the performance. The Zn-Co-S//AC hybrid
device delivered a maximum specific energy of 19.0 Wh kg−1 at a specific power of 514 W kg−1. The
remarkable performance of Zn-Co-S nanostrip cluster arrays highlights their potential as a positive
electrode for hybrid supercapacitor applications.

Keywords: zinc cobalt sulfide; zinc cobalt oxide; hybrid supercapacitor; nanostrip cluster array;
nickel foam

1. Introduction

An electrochemical supercapacitor is one of the most promising energy storage de-
vices, owing to its high power density, longer cycling stability, and excellent operational
safety [1,2]. Supercapacitors are used widely in portable electronic devices and hybrid elec-
tric vehicles [3], but they deliver a lower energy density than secondary batteries. Hence,
more studies are needed to improve the energy density of electrochemical supercapacitor
devices without any loss of power density. Hybrid supercapacitors are a new avenue for
achieving high energy densities without sacrificing power density. These devices consist
of a capacitor-like electrode (electrical double-layer capacitor, EDLC) as a power source
and a battery-like electrode as an energy source [4–6]. This hybrid device can widen the
operation voltage and increase the energy density.

Nickel and cobalt-based oxide/hydroxide/sulfides exhibit battery-like behavior in
alkaline electrolytes [7,8]. Recently, transition metal sulfides have been studied widely
as a battery-type electrode material for hybrid supercapacitor devices, because sulfides
provide higher electrical conductivity and better electrochemical reactivity than oxides [8,9].
The substitution of oxygen with sulfur increases the conductivity of the electrode and ion
diffusivity because of higher polarizability, lower electro-negativity, and larger size of the
S2− ion [10]. Mixed metal sulfides exhibit excellent electrochemical reactivity compared to

Nanomaterials 2021, 11, 3209. https://doi.org/10.3390/nano11123209 https://www.mdpi.com/journal/nanomaterials

https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-8027-9886
https://doi.org/10.3390/nano11123209
https://doi.org/10.3390/nano11123209
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nano11123209
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano11123209?type=check_update&version=2


Nanomaterials 2021, 11, 3209 2 of 13

single-component metal sulfide and their mixed oxide counterparts because of their richer
redox reactions and high electronic conductivity [11,12].

Cobalt sulfides provide the highest capacitances in aqueous electrolytes among all the
transition metal oxides and sulfides. On the other hand, Co is an expensive material. Many
studies have been performed to replace Co with less expensive metals, such as Ni, Zn, and
Cu. Among them, zinc is the most abundant and least expensive, and is relatively nontoxic.
Therefore, Zn was chosen to reduce the use of Co, expecting a synergistic effect of Zn with
a larger atomic size than Co.

Zinc cobalt sulfide is a less studied material for hybrid supercapacitor applications.
Several methods, such as sequential chemical etching and sulfidation strategy [13], facile
oil phase approach [14], and direct growth on conducting substrates [15,16], have been
adopted for the synthesis of zinc cobalt sulfide nanostructures. Zhang et al. [13] prepared
double-shelled zinc cobalt sulfide dodecahedral cages from bimetallic zeolitic imidazolate
frameworks for hybrid supercapacitor applications. The double-shelled zinc cobalt sulfide
delivered a maximum specific capacitance of 1270 F g−1 at 1 A g−1 with good cycling
stability. Tong et al. [14] prepared ZnxCo1-xS nanoartichokes in the oil phase and reported
a maximum specific capacitance of 486 F g−1 at a current density of 2.0 A g−1. Recently,
Syed et al. [15] reported the preparation of Ni(OH)2 nanoflake-wrapped zinc cobalt sulfide
nanotube arrays on Ni foam and achieved a high specific capacitance of 2160 F g−1.

Among these methods, electrode materials grown directly on conducting current
collectors, including Ni foam, carbon cloth, and Ti foil, show enhanced electrochemical
properties by avoiding the use of binder and carbon black, which hinder ion access during
electrochemical reactions [17–19]. In this approach, ion transportation is improved by
enhancing the interfacial contact between the current collector and active material [20].
This paper reports the synthesis of ZnCo2O4 nanostrips on the Ni foam and their successful
conversion to Zn-Co-S by anion exchange without destroying the structure. Ni foam was
used to grow electrode materials because of its three-dimensional network, high porosity,
and ease of electrolyte accessibility to the electrodes [19]. The electrochemical supercapaci-
tor performance of ZnCo2O4 and Zn0.76Co0.24S/Co3S4 nanostrip arrays was characterized
by cyclic voltammetry, charge–discharge measurements, and impedance analysis.

2. Materials and Methods
2.1. Materials

Zinc nitrate hexahydrate (98.0%), polytetrafluoroethylene (PTFE) (99.9%), and acti-
vated carbon (density 1.8–2.1 g cm−3, particle size 100 mesh) were supplied by Sigma
Aldrich. Cobalt nitrate hexahydrate (98.0%), sodium sulfide (98.0%), potassium hydroxide
(85.0%, pellets), carbon black (99.9%), and Whatman filter paper (180 µm thick, pore size
11 µm) were obtained from Alfa Aesar. Ammonium fluoride (99.9%) and urea (99.0%) were
procured from Junsei. Ethanol (99.9%), hydrochloric acid (35.0–37.0%), and acetone (99.9%)
were acquired from Duksan Pure Chemical. Ni foam was purchased from MTI cooperation
(New York, NY, USA).

2.2. Synthesis of Zn-Co-S Nanostrip

Zn0.76Co0.24S/Co3S4 nanostrip arrays were prepared using a two-step hydrothermal
process. First, ZnCo2O4 nanostrip arrays were prepared using a hydrothermal method. The
ZnCo2O4 nanostrip arrays were then converted to Zn0.76Co0.24S/Co3S4 nanostrip cluster
arrays by an anion-exchange reaction using a second hydrothermal reaction. In a typical
preparation, 35 mL of a clear aqueous solution containing 5 mM zinc nitrate hexahydrate,
10 mM cobalt nitrate hexahydrate, 10 mM NH4F, and 25 mM urea was prepared. Before
deposition, Ni foam (3 × 2 cm) was cleaned with 3.0 M HCl in an ultrasound bath and
rinsed with deionized water and ethanol. The reaction mixture and Ni foam were then
transferred to a 50 mL Teflon-lined autoclave and kept at 120 ◦C for 12 h. The autoclave was
then allowed to cool to room temperature. The coated Ni foam sample was washed and
dried at 60 ◦C. Finally, the Ni foam-supported ZnCo2O4 nanostrip arrays were obtained
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by calcination at 350 ◦C for 2 h in air. The Ni foam-supported ZnCo2O4 were subjected
to a sulfurization process. In this process, 0.0910 g of Na2S.xH2O was dissolved in 35 mL
of water and stirred to obtain a clear solution. The ZnCo2O4-coated Ni foam and sodium
sulfide solution was transferred to a 50 mL Teflon-lined autoclave and kept at 160 ◦C for
6 h. After the reaction was complete, the sample was collected, washed, and dried in a
vacuum at 60 ◦C for 6 h.

2.3. Materials Characterization

The crystal structure was analyzed by X-ray diffraction (XRD, PANalytical X’Pert-
PRO MPD). The morphology of the samples was analyzed by field emission scanning
electron microscopy (FESEM, Hitachi S-4800, Tokyo, Japan). The microstructure of the
sample was characterized by high-resolution transmission electron microscopy (HRTEM,
FEI Tecnai G2 F20, Eindhoven, The Netherlands) at an acceleration voltage of 200 kV. X-ray
photoelectron spectroscopy (XPS, Thermo Scientific, Boston, MA, USA) was performed
using Al Kα radiation.

2.4. Electrochemical Measurements

All electrochemical characterizations were performed using a electrochemical work-
station (Metrohm Autolab PGSTAT 302N, Utrecht, The Netherlands) electrochemical work-
station. Three-electrode measurements were carried out using the working, counter, and
reference electrodes made of Ni-foam-supported Zn0.76Co0.24S/Co3S4 or ZnCo2O4, plat-
inum, and Ag/AgCl, respectively. All measurements were carried out using 2.0 M KOH as
the electrolyte. The hybrid supercapacitor device was assembled in a split test cell (MTI
Corporation) using Zn0.76Co0.24S/Co3S4 nanostrip arrays as the positive electrode, acti-
vated carbon (AC) as the negative electrode, and filter paper as the separator with a 2.0 M
KOH electrolyte. The activated carbon electrode was prepared by mixing 80% activated
carbon with 15% carbon black using a mortar and pestle. To this mixture, 5% PTFE was
combined with a few drops of ethanol to form a paste. Ni foam was then coated with the
paste and dried overnight at 60 ◦C.

3. Results and Discussion
3.1. Structural and Morphological Analysis

The Zn-Co-S nanostrip cluster arrays on Ni foam were prepared using a two-step
hydrothermal process. Figure 1 presents a schematic illustration of the preparation process
of preparation of Zn-Co-S nanostrip cluster arrays. Here, Ni foam was used as a current
collector to prepare Zn-Co-S because of its zigzag skeleton and high porosity, which
helps increase the active surface area. First, ZnCo2O4 nanostrip arrays (Figure S1 in the
supporting information shows the XRD pattern of ZnCo2O4) were prepared on Ni foam
using a facile hydrothermal process followed by calcination. The ZnCo2O4 nanostrip arrays
were converted to Zn-Co-S nanostrip cluster arrays by an anion-exchange reaction using
sodium sulfide as the sulfur source. The mass loading of the active material on a Ni foam
was approximately 2.5 mg cm−2, which was calculated from the mass difference before
and after the synthesis reaction. Because the Ni foam was cleaned with HCl, the possibility
of a reaction of the cleaned Ni foam with metal-oxide precursors was low, resulting in a
relatively constant quality of the Ni foam.

Figure 2 shows an XRD pattern of Zn-Co-S grown on Ni foam. The XRD peaks at
28.9, 47.9, and 56.7◦ 2θ were assigned to the (111), (220), and (311) planes of Zn0.76Co0.24S,
respectively (JCPDS No: 47-1656). Similarly, the XRD peaks at 31.5, 38.2, 50.3, and 55.5◦ 2θ
correspond to (311), (400), (511), and (440) planes of Co3S4, (JCPDS No: 73-1703). The three
additional intense peaks correspond to Ni from the Ni foam. XRD shows the formation of
zinc cobalt mixed sulfide on Ni foam. The morphology and microstructure of the Zn-Co-S
were examined by FE-SEM and HR-TEM. Figure 3a shows an FE-SEM image of ZnCo2O4.
The image clearly shows the nanostrip arrays grown on Ni foam. Figure 3b,c shows
FE-SEM images of Ni foam supported Zn-Co-S. The low magnification FE-SEM image
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(Figure 3b) showed that the Zn-Co-S nanostrip cluster arrays grew homogeneously on the
skeleton of the 3D Ni foam.
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The high magnification FE-SEM images (Figure 3c,d) clearly show the morphology
and dimensions of Zn-Co-S. The Zn-Co-S nanostrip assembled and formed a nanostrip
cluster array. The length of the nanostrip was approximately 8 µm, and the width ranged
from 600 to 800 nm. The morphology and structure of the Zn-Co-S grown on Ni foam
were characterized further by HR-TEM. Figure 4a,b shows HR-TEM images of Ni-foam-
supported Zn-Co-S nanostrip cluster arrays; the thin nanostrips assembled and form a
single nanostrip. This thin nanostrip can provide better pathways for efficient ion/electron
transport, enhancing the electrochemical activity. Figure 4c shows highly resolved lat-
tice fringes with an interplanar spacing of 0.16 nm, corresponding to the (311) plane of
Zn0.76Co0.24S. The inset in Figure 4c reveals the SAED pattern of Zn-Co-S. The well-defined
diffraction rings highlight the polycrystalline nature of the Zn-Co-S nanostrip cluster ar-
rays. The elemental composition and elemental distribution were analyzed by EDAX and
elemental mapping analysis. Figure 4d presents the EDAX data of the Zn-Co-S nanostrip
cluster arrays. This shows the presence of Zn, Co, and S in Ni foam-supported Zn-Co-S.
Figure 4e–h presents the distribution of Zn, Co, and S on the Zn0.76Co0.24S/Co3S4 nanostrip.
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The homogeneous distribution of Zn, Co, and S further confirmed the successful formation
of Zn-Co-S nanostrip cluster arrays.

Nanomaterials 2021, 11, x FOR PEER REVIEW 5 of 13 
 

 

 
Figure 3. FE-SEM images of (a) ZnCo2O4 and (b–d) Zn-Co-S samples. 

The high magnification FE-SEM images (Figure 3c,d) clearly show the morphology 
and dimensions of Zn-Co-S. The Zn-Co-S nanostrip assembled and formed a nanostrip 
cluster array. The length of the nanostrip was approximately 8 µm, and the width ranged 
from 600 to 800 nm. The morphology and structure of the Zn-Co-S grown on Ni foam 
were characterized further by HR-TEM. Figure 4a,b shows HR-TEM images of Ni-foam- 
supported Zn-Co-S nanostrip cluster arrays; the thin nanostrips assembled and form a 
single nanostrip. This thin nanostrip can provide better pathways for efficient ion/electron 
transport, enhancing the electrochemical activity. Figure 4c shows highly resolved lattice 
fringes with an interplanar spacing of 0.16 nm, corresponding to the (311) plane of 
Zn0.76Co0.24S. The inset in Figure 4c reveals the SAED pattern of Zn-Co-S. The well-defined 
diffraction rings highlight the polycrystalline nature of the Zn-Co-S nanostrip cluster ar-
rays. The elemental composition and elemental distribution were analyzed by EDAX and 
elemental mapping analysis. Figure 4d presents the EDAX data of the Zn-Co-S nanostrip 
cluster arrays. This shows the presence of Zn, Co, and S in Ni foam-supported Zn-Co-S. 
Figure 4e–h presents the distribution of Zn, Co, and S on the Zn0.76Co0.24S/Co3S4 nanostrip. 
The homogeneous distribution of Zn, Co, and S further confirmed the successful for-
mation of Zn-Co-S nanostrip cluster arrays. 

The elemental composition and oxidation state of ZnCo2O4 and Zn-Co-S were exam-
ined by XPS. Figure S2 presents the XPS survey spectrum and deconvoluted spectra of 
ZnCo2O4. The survey spectrum (Figure S2a) confirmed the presence of Zn, Co, and O. The 
Zn 2p spectrum (Figure S2b) showed two peaks at 1021 eV and 1044.08 eV, corresponding 
to Zn 2p3/2 and Zn 2p1/2, respectively [21]. Figure S2c presents the spectrum of Co 2p, which 
has two main peaks centered at 779.66 eV and 794.6 eV corresponding to Co 2p3/2 and Co 
2p1/2, respectively [22]. The oxygen spectrum (Figure S2d) was resolved into two compo-
nents: two peaks centered at 529.35 eV and 531.17 eV, which were assigned to metal-oxy-
gen bonding and many defect sites, respectively [23]. Figure 5 presents the XPS survey 
spectrum and deconvoluted spectra of Zn-Co-S. The survey spectrum (Figure 5a) revealed 
the presence of Zn, Co, and S. The Zn 2p spectrum in Figure 5b has two peaks at 1021.8 
eV and 1044.8 eV, which correspond to Zn 2p3/2 and Zn 2p1/2, respectively [21]. The high-
resolution Co 2p spectrum (Figure 5c) has two peaks at 781.2 eV (Co 2p3/2) and 796.9 eV 

Figure 3. FE-SEM images of (a) ZnCo2O4 and (b–d) Zn-Co-S samples.

The elemental composition and oxidation state of ZnCo2O4 and Zn-Co-S were exam-
ined by XPS. Figure S2 presents the XPS survey spectrum and deconvoluted spectra of
ZnCo2O4. The survey spectrum (Figure S2a) confirmed the presence of Zn, Co, and O. The
Zn 2p spectrum (Figure S2b) showed two peaks at 1021 eV and 1044.08 eV, corresponding
to Zn 2p3/2 and Zn 2p1/2, respectively [21]. Figure S2c presents the spectrum of Co 2p,
which has two main peaks centered at 779.66 eV and 794.6 eV corresponding to Co 2p3/2
and Co 2p1/2, respectively [22]. The oxygen spectrum (Figure S2d) was resolved into
two components: two peaks centered at 529.35 eV and 531.17 eV, which were assigned to
metal-oxygen bonding and many defect sites, respectively [23]. Figure 5 presents the XPS
survey spectrum and deconvoluted spectra of Zn-Co-S. The survey spectrum (Figure 5a)
revealed the presence of Zn, Co, and S. The Zn 2p spectrum in Figure 5b has two peaks
at 1021.8 eV and 1044.8 eV, which correspond to Zn 2p3/2 and Zn 2p1/2, respectively [21].
The high-resolution Co 2p spectrum (Figure 5c) has two peaks at 781.2 eV (Co 2p3/2) and
796.9 eV (Co 2p1/2), along with two shakeup satellite peaks. The spin-orbit splitting of
Co 2p3/2 and Co 2p1/2 was over 15 eV, confirming the coexistence of Co2+ and Co3+ [24].
Figure 5d presents the S 2p spectrum. The fitted peak centered at the binding energies
161.4 eV and 162.7 eV corresponds to S 2p3/2 and S 2p1/2, respectively [12]. The additional
peak at 168.7 eV was assigned to surface sulfur with a high oxide state, i.e., SO4

2- [25].
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3.2. Electrochemical Performance of Zn-Co-S

The electrochemical performance of Zn0.76Co0.24S/Co3S4 (Zn-Co-S) nanostrip cluster
arrays and ZnCo2O4 nanostrip arrays grown on 3D Ni foam was evaluated in a three-
electrode cell configuration using 2.0 M KOH as an electrolyte by cyclic voltammetry (CV),
galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS).
Figure 6a compares the CV curve of Zn-Co-S and ZnCo2O4 electrodes. Both CV curves
showed well-defined redox peaks with a large peak potential difference, confirming the
battery-type behavior of the material [26,27]. The asymmetry of the anodic and cathodic
redox peaks was assigned to the kinetic irreversibility of the Faradaic redox process [28].
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The possible electrochemical reactions of Zn-Co-S and ZnCo2O4 in an alkaline solution are
as follows [15,29]:

CoS + OH− 
 CoSOH + e− (1)

CoSOH + OH− 
 CoSO + H2O + e− (2)

ZnS + OH− 
 ZnSOH + e− (3)

Co2O2−
4 + 2H2O + e− 
 2CoOOH + 2OH− (4)

CoOOH + H2O + e− 
 Co(OH)2 + OH− (5)
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electrode material.

The area under the CV curve of Zn-Co-S was larger than that of ZnCo2O4, suggesting
that the Zn-Co-S electrode exhibits better electrochemical charge storage than ZnCo2O4.
The CV measurement was carried out at a scan rate of 5, 10, 25, and 50 mV s−1 between
the potential window of 0 and 0.55 V. Figure 6b and Figure S3a present the CV curves of
Zn-Co-S and ZnCo2O4 electrodes at different scan rates. The anodic and cathodic peaks
shifted towards a more positive and negative potential with increasing scan rates due
to Ohmic resistance and electrical polarization of the electrode material [30]. Figure 6c
depicts the cathodic peak current vs. square root of the scan rate curve of Zn-Co-S and
ZnCo2O4 electrodes. The linearity of the curve confirms that the electrochemical reaction
is diffusion-controlled. This suggests that the Zn-Co-S and ZnCo2O4 electrodes exhibit
battery-type behavior in the KOH electrolyte.
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Galvanostatic charge–discharge measurements of the Zn-Co-S and ZnCo2O4 elec-
trodes were conducted between the potential window of 0 and 0.45 V at different specific
currents. Figure 6d shows the charge–discharge curve of the Zn-Co-S and ZnCo2O4 elec-
trodes at a specific current of 2.0 A g−1. The voltage plateaus of the charge–discharge curve
confirm that charge storage is due mainly to the Faradaic behavior of the battery-type
electrodes [26]. Figure 6e and Figure S3b show the charge–discharge curve of Zn-Co-S
and ZnCo2O4 electrodes at different specific currents. Because both electrodes exhibit
battery-type behavior, the specific capacity, CS (C g−1), was calculated from the integrated
area of the discharge curve using the following equation [31]:

Cs =
2I

∫
V(t)dt

mV
(6)

where I is the applied current; m is the mass of the electroactive material in mg; V is the
potential window.

The specific capacities of the Zn-Co-S and ZnCo2O4 electrodes were 830 C g−1

(1840 F g−1) and 300 C g−1 (667 F g−1) at a specific current of 2.0 A g−1. Figure 6f shows the
specific capacity vs. specific current plot. The specific capacity decreased with increasing
specific current, probably due to the increasing voltage drop and sluggish kinetics of the
redox reaction [32]. The Zn-Co-S electrode showed a higher specific capacity than the
ZnCo2O4 electrode. This was attributed to the higher conductivity, higher redox potential,
and the synergic effects of the different metal ions of the Zn-Co-S electrode.
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The long-term cycling stability of the Zn-Co-S was tested for 2000 cycles at a high
specific current of 20 A g−1. Figure S4 presents the cycling stability of the Zn-Co-S electrode.
The Zn-Co-S nanostrip cluster arrays exhibited approximately 76% specific capacity reten-
tion after 2000 continuous cycles. Electrochemical impedance analysis was carried out over
the frequency range of 0.1 to 100 kHz. Figure S5 shows the impedance plot of Zn-Co-S than
ZnCo2O4 electrodes. In the impedance plot, the intercept on the real axis at high frequency
is the solution resistance (Rs). The solution resistances of Zn-Co-S and ZnCo2O4 electrodes
were 0.92 and 1.16 Ω, respectively. The semi-circle at the high-frequency region is related
to the charge transfer resistance (Rct). The Rct value of the Zn-Co-S electrode was 0.15 Ω.
The straight line at the low-frequency region corresponds to the Warburg resistance.

The high performance of the Zn-Co-S nanostrip cluster arrays was due to the following
reasons. First, the direct growth of Zn-Co-S nanostrip cluster arrays enhances ion transport
due to the high interfacial contact between the electroactive material and substrate. Second,
the Zn-Co-S nanostrip cluster array grown directly on Ni foam avoids the use of binders
and carbon black, which enhances the effective use of active material. Third, the lower
electro-negativity of sulfur can increase the electron mobility, enhancing the electrical
conductivity [33]. Finally, the nanostrip cluster arrays can provide better pathways for
efficient ion/electron transport that enhance the electrochemical activity.

3.3. Electrochemical Performance of Zn-Co-S//AC Device

The supercapacitor performance of the Zn-Co-S nanostrip cluster arrays was evaluated
by assembling a hybrid device using Zn-Co-S nanostrip cluster arrays as a positive electrode
and activated carbon (AC) as a negative electrode. For good electrochemical performance,
the charge balance between the two electrodes should follow the equation, q+ = q−, where
q+ and q− are the charges stored by the positive and negative electrodes. To achieve charge
balance, the mass ratio of both positive and negative electrodes was calculated based on
the following equation [34,35]:

m+

m−
=

C−∆V−
Q+

(7)

where Q+ and C− are the charge of the positive and specific capacitance of the negative
electrodes; ∆V− is the potential window of the negative electrode; m+ and m− are the
mass of the electrode materials. Figure 7a shows the CV curves of activated carbon and
Zn-Co-S electrodes measured at 5 mV s−1 in a half-cell system. The rectangular-shaped
CV curve of the AC electrode exhibited electric double-layer capacitor behavior with a
potential window from −1.0 to 0 V. The Zn-Co-S electrode showed battery-type Faradaic
redox peaks with a potential window from 0 to 0.55 V. The CV measurements were carried
out at different voltages (1.0 to 1.5 V) to obtain the optimal voltage window (Figure 7b). The
curve at 1.55 V showed a small spike near the highest voltage, which was not included in
this figure. As the curve at 1.5 V showed the largest area with distinct redox behavior, 1.5 V
was chosen as the voltage window for the device. The CV curves of the asymmetric hybrid
supercapacitor device (Zn-Co-S//AC) measured at different scan rates (Figure 7c) clearly
show the characteristics of both the double layer capacitor and battery type electrode
behavior (Figure 7b). No significant change or shift of the redox peaks was observed when
the scan rate increased from 5 to 50 mV s−1, which indicates a good charge delivery rate of
the fabricated device.

Figure 7d presents the charge–discharge curve of the asymmetric hybrid supercapaci-
tor device at different voltages, ranging from 1.0 to 1.5 V, which is consistent with the CV
curves in Figure 7b. Figure 7e shows the charge–discharge curve of the hybrid supercapaci-
tor device at different specific currents (0.5 to 5 A g−1). The pseudo-symmetrical nature
of the charge–discharge curve at all specific currents results in the good electrochemical
performance of the hybrid device. The small IR drop at the start point of the discharge
profile indicates the good conductivity of the fabricated device.
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Figure 7. (a) CV curve of the AC and Zn-Co-S electrodes at 5 mV s−1, (b) CV curves of the Zn-Co-S//AC hybrid
supercapacitor device at different voltages, (c) CV curves of the Zn-Co-S//AC hybrid supercapacitor device at different
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of the hybrid supercapacitor device at different specific currents, and (f) Ragone plots (specific energy vs. specific power)
from the literature and this study.

Figure S6 shows the cycling stability obtained from the charge–discharge measurement
for the Zn-Co-S//AC asymmetric hybrid supercapacitor device at a current density of
5 A g−1. Initially, the specific capacity decreased up to 30 cycles. Subsequently, the specific
capacity increased and retained approximately 100% of its initial capacity after 2000 cycles.
If further repeated redox reactions had been carried out, the capacity of the battery-type
asymmetric hybrid device, Zn-Co-S//AC, could have been reduced. However, a symmetric
EDLC-type device can show a very long cycling stability with the sacrifice of the energy
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density [36]. The specific energy and specific power of the Zn-Co-S//AC hybrid device
were calculated using the following formulae [37,38]:

E =
I
∫

Vdt
m

(8)

P =
E
∆t

(9)

Figure 7f presents the specific energy vs. specific power curve for the fabricated Zn-
Co-S//AC asymmetric hybrid supercapacitor device obtained from the charge–discharge
curves in Figure 7e. The Zn-Co-S//AC asymmetric hybrid device delivered a maximum
specific energy of 19.0 Wh kg−1 at a specific power of 514.0 W kg−1 and a maximum
specific power of 3.7 kW kg−1 at a specific energy of 4.96 Wh kg−1. This result reveals
improved specific energy compared to other Zn-, Co-, and Zn-Co-based supercapacitor
devices, such as ZnxCo1-xS//AC (14 Wh kg−1) [14], CoSx/C//PCNFs (15 Wh kg−1) [39],
CoS2//AC (14 Wh kg−1) [40], and ZnMn2O4//AC (18 Wh kg−1) [41]. The vertically
aligned nanostrips on the nickel foam provide a better diffusion pathway for electrolyte
ions, a larger electrode surface area, and a faster electron transfer to the current collector.
During device fabrication, only the strips grown on the top surface of the Ni foam can
contact the separator and collapse. On the other hand, most of the strips (more than 95%)
grown on the other sides and inside the porous structure remained intact.

4. Conclusions

Ni-foam-supported Zn-Co-S nanostrip arrays were synthesized using a facile two-
step hydrothermal process. FE-SEM clearly showed that the Zn-Co-S nanostrip cluster
arrays grew homogeneously on the skeleton of the 3D Ni foam. The Zn-Co-S nanostrip
assembled together and formed nanostrip cluster arrays. These nanostrip cluster arrays
provide better pathways for efficient ion/electron transport, enhancing the electrochemical
activity. Zn-Co-S nanostrip cluster arrays exhibited a specific capacity of 830 C g−1, which
is three times higher than the ZnCo2O4 electrode (300 C g−1) at a specific current of
2.0 A g−1. The high specific capacity of Zn-Co-S nanostrip arrays was attributed to the
higher polarizability, lower electro-negativity, the larger size of the sulfur ion, and the
shortest pathway of the nanostrip array. The hybrid device assembled using Zn-Co-S
nanostrip cluster arrays as a positive electrode and AC as a negative electrode delivered
a maximum specific energy of 19.0 Wh Kg−1 (at a specific power of 514 W kg−1) and a
maximum specific power of 3.71 kW kg−1 (at a specific energy of 4.96 Wh kg−1). The
binder-free Zn-Co-S nanostrip could be applied to various energy-storage applications and
other electrochemistry-based devices.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11123209/s1, Figure S1:XRD pattern of ZnCo2O4, Figure S2: (a) XPS survey spectrum,
(b) Zn 2p, (c) Co 2p, and (d) O 1S spectrum of ZnCo2O4, Figure S3: (a) CV curve of ZnCo2O4
electrode at different scan rates, and (b) Charge–discharge curves of ZnCo2O4 electrode, Figure S4:
Cyclic stability curve of Zn-Co-S electrode, Figure S5: Impedance plot of ZnCo2O4 and Zn-Co-S
electrodes, Figure S6: Cyclic stability curve of Zn-Co-S//AC hybrid supercapacitor device, Table S1.
Comparison of electrochemical performance of Zn-Co-S based supercapacitor.
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