
nanomaterials

Article

Metal-Assisted Chemical Etching for Anisotropic Deep
Trenching of GaN Array

Qi Wang 1 , Kehong Zhou 1, Shuai Zhao 2,3 , Wen Yang 1, Hongsheng Zhang 1, Wensheng Yan 1, Yi Huang 1,*
and Guodong Yuan 2,3,*

����������
�������

Citation: Wang, Q.; Zhou, K.; Zhao,

S.; Yang, W.; Zhang, H.; Yan, W.;

Huang, Y.; Yuan, G. Metal-Assisted

Chemical Etching for Anisotropic

Deep Trenching of GaN Array.

Nanomaterials 2021, 11, 3179. https://

doi.org/10.3390/nano11123179

Academic Editor: Werner Blau

Received: 30 October 2021

Accepted: 21 November 2021

Published: 24 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications,
Chongqing 400065, China; wangqi@cqupt.edu.cn (Q.W.); S190431014@stu.cqupy.edu.cn (K.Z.);
S200402033@stu.cqupt.edu.cn (W.Y.); zhanghs@cqupt.edu.cn (H.Z.); yws118@163.com (W.Y.)

2 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy
of Sciences, Beijing 100083, China; szhao@semi.ac.cn

3 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences,
Beijing 100049, China

* Correspondence: huangy@cqupt.edu.cn (Y.H.); gdyuan@semi.ac.cn (G.Y.)

Abstract: Realizing the anisotropic deep trenching of GaN without surface damage is essential
for the fabrication of GaN-based devices. However, traditional dry etching technologies introduce
irreversible damage to GaN and degrade the performance of the device. In this paper, we demonstrate
a damage-free, rapid metal-assisted chemical etching (MacEtch) method and perform an anisotropic,
deep trenching of a GaN array. Regular GaN microarrays are fabricated based on the proposed
method, in which CuSO4 and HF are adopted as etchants while ultraviolet light and Ni/Ag mask
are applied to catalyze the etching process of GaN, reaching an etching rate of 100 nm/min. We
comprehensively explore the etching mechanism by adopting three different patterns, comparing
a Ni/Ag mask with a SiN mask, and adjusting the etchant proportion. Under the catalytic role of
Ni/Ag, the GaN etching rate nearby the metal mask is much faster than that of other parts, which
contributes to the formation of deep trenches. Furthermore, an optimized etchant is studied to
restrain the disorder accumulation of excessive Cu particles and guarantee a continuous etching
result. Notably, our work presents a novel low-cost MacEtch method to achieve GaN deep etching at
room temperature, which may promote the evolution of GaN-based device fabrication.

Keywords: wet etching; MacEtch; GaN; deep trenches; microstructures

1. Introduction

Metal-assisted chemical etching (MacEtch) is crucial for preparing complex micro-
/nano-structures such as pores, rings and pillars on Si and other compound semiconduc-
tors [1,2]. At present, Si/Ge etching is the focus, and the progress of Si is much more ma-
ture [3]. The etching of III-V compounds (GaAs/InP/GaN) has also been carried out [4–6],
but the etching mechanism of wide-bandgap semiconductors is imperfect and needs to be
explored further. Unlike the traditional Si/Ge etching, the III-V semiconductor compounds
have different characteristics. Additionally, the corresponding etching morphology and
mechanism are not the same for different compounds. Etching conditions (assisted by tem-
perature, electricity, and ultraviolet light) and the selection of oxidants/reductants all need
to be explored [7–9]. The MacEtch technique has shown advantages in the etching of III-V
semiconductor compounds with narrow bandgaps (such as GaAs) [10,11]. However, the
research on wide-bandgap semiconductors (e.g., GaN) has not been completely established,
especially for their deep etching [12,13]. Significant advantages in photoelectric devices
have been shown in GaN due to its higher mobility and higher breakdown voltage [14–16].
Currently, GaN micro-/nano-structures are mainly prepared through bottom-up growth
and top-down dry etching [17,18]. The epitaxial growth system is complex, and dry etching
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damages the material. Thus, a promising method, MacEtch, was studied to etch GaN
micro-/nano-structures in [19,20]. This relatively simple approach does not damage GaN,
which contributes to the better performance of devices. However, it is difficult to etch
wide-bandgap GaN using conventional MacEtch because electron–hole pairs cannot be
directly decomposed. An external force, such as a light or power source, is required to
drive the anode decomposition of the semiconductor [21,22]. Though there are reports
about GaN nanowires, few researchers have paid attention to the deep etching of GaN.
In our previous work, GaN nanowires were obtained by applying ultraviolet light as the
driving light source. Moreover, we found that the etching reaction stopped once the metal
accumulated on the surface of the reaction sheet [23].

In this paper, we successfully realized uniform GaN microarrays with different depths
via MacEtch using Ni/Ag as the mask. The process and reaction principle of MacEtch
are presented in Section 2, while the scanning electron microscopy (SEM), atomic force
microscopy (AFM) experimental results, and mechanism of MacEtch are shown in Section 3.
We prove that the anisotropic, deep trenching of GaN microarrays can be rapidly prepared
by the proposed MacEtch method.

2. Materials and Methods

The 6 µm-thick n-type GaN (nGaN) layer with a carrier concentration of 3.0 × 1018 cm−3

is grown on a 2′′ sapphire substrate by metal organic chemical vapor deposition (MOCVD).
First, 200 nm undoped GaN (uGaN) buffer layers are grown on the sapphire substrate,
followed by the 6 µm-thick n-type GaN layer. Figure 1a–f shows the basic process flow of
MacEtch for the preparation of the samples. Figure 1a shows the GaN sample, in which the
scale of the sapphire substrate is adjusted for reading convenience. As shown in Figure 1b,
the photoresist layer is spin coated on the GaN. Then, the photoresist is exposed and
developed to generate patterns. Three different shapes are patterned on the GaN surface:
micropillars with a 5 µm diameter and 5 µm gap; squares with a 50 µm side and 5 µm
gap; and stripes with a 10 µm width and 3 µm gap, as shown in Figure 1c. A Ni/Ag
(100/300 nm) layer is then deposited on the GaN surface by electron beam evaporation.
The metal Ni/Ag is usually applied as the mask in the MacEtch method due to its corrosion
resistance. The sample after Ni/Ag lift-off is shown in Figure 1e. Additionally, the GaN
chip is divided into squares with a 1 cm side after the Ni/Ag is stripped and cleaned.
These chips are put in the MacEtch etchant, as shown in Figure 1f. The etchant consists
of a 0.01 M CuSO4 solution with 5 M HF and DI water. The etching time is 20 to 60 min
under 300 mW ultraviolet (UV) light. Then, the chips are covered by a Cu film after the
reaction, as shown in Figure 1g. The etched chips are placed in the diluted HNO3 solution
for 10 min to remove the Cu particles and Ni/Ag mask. Finally, the etched chip shown in
Figure 1h is obtained.

Nanomaterials 2021, 11, x FOR PEER REVIEW 2 of 10 
 

 

through bottom-up growth and top-down dry etching [17,18]. The epitaxial growth sys-
tem is complex, and dry etching damages the material. Thus, a promising method, 
MacEtch, was studied to etch GaN micro-/nano-structures in [19,20]. This relatively sim-
ple approach does not damage GaN, which contributes to the better performance of de-
vices. However, it is difficult to etch wide-bandgap GaN using conventional MacEtch be-
cause electron–hole pairs cannot be directly decomposed. An external force, such as a light 
or power source, is required to drive the anode decomposition of the semiconductor 
[21,22]. Though there are reports about GaN nanowires, few researchers have paid atten-
tion to the deep etching of GaN. In our previous work, GaN nanowires were obtained by 
applying ultraviolet light as the driving light source. Moreover, we found that the etching 
reaction stopped once the metal accumulated on the surface of the reaction sheet [23]. 

In this paper, we successfully realized uniform GaN microarrays with different 
depths via MacEtch using Ni/Ag as the mask. The process and reaction principle of 
MacEtch are presented in Section 2, while the scanning electron microscopy (SEM), atomic 
force microscopy (AFM) experimental results, and mechanism of MacEtch are shown in 
Section 3. We prove that the anisotropic, deep trenching of GaN microarrays can be rap-
idly prepared by the proposed MacEtch method. 

2. Materials and Methods 
The 6 µm-thick n-type GaN (nGaN) layer with a carrier concentration of 3.0 × 1018 

cm−3 is grown on a 2” sapphire substrate by metal organic chemical vapor deposition 
(MOCVD). First, 200 nm undoped GaN (uGaN) buffer layers are grown on the sapphire 
substrate, followed by the 6 µm-thick n-type GaN layer. Figure 1a–f shows the basic pro-
cess flow of MacEtch for the preparation of the samples. Figure 1a shows the GaN sample, 
in which the scale of the sapphire substrate is adjusted for reading convenience. As shown 
in Figure 1b, the photoresist layer is spin coated on the GaN. Then, the photoresist is ex-
posed and developed to generate patterns. Three different shapes are patterned on the 
GaN surface: micropillars with a 5 µm diameter and 5 µm gap; squares with a 50 µm side 
and 5 µm gap; and stripes with a 10 µm width and 3 µm gap, as shown in Figure 1c. A 
Ni/Ag (100/300 nm) layer is then deposited on the GaN surface by electron beam evapo-
ration. The metal Ni/Ag is usually applied as the mask in the MacEtch method due to its 
corrosion resistance. The sample after Ni/Ag lift-off is shown in Figure 1e. Additionally, 
the GaN chip is divided into squares with a 1 cm side after the Ni/Ag is stripped and 
cleaned. These chips are put in the MacEtch etchant, as shown in Figure 1f. The etchant 
consists of a 0.01 M CuSO4 solution with 5 M HF and DI water. The etching time is 20 to 
60 min under 300 mW ultraviolet (UV) light. Then, the chips are covered by a Cu film after 
the reaction, as shown in Figure 1g. The etched chips are placed in the diluted HNO3 so-
lution for 10 min to remove the Cu particles and Ni/Ag mask. Finally, the etched chip 
shown in Figure 1h is obtained.  

 
Figure 1. Schematic diagram showing the main steps of process flow in the fabrication of GaN: (a) GaN sample, (b) GaN
coated by photoresist, (c) laser interference lithography, (d) Ni/Ag deposition, (e) Ni/Ag lift-off, (f) metal-assisted pho-
tochemical etching, (g) MacEtch of GaN and accumulation of Cu on Ni/Ag, and (h) etched GaN surface after Cu and
Ni/Ag removal.
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The schematic diagram of the GaN MacEtch reaction is presented in Figure 2. The
wide bandgap prevents GaN from being directly etched, and thus external forces such as
electricity or UV light are needed to separate electron–hole pairs [24]. In this paper, UV
illumination is applied to separate electron–hole pairs of GaN. The generation, transfer,
and consumption of electron–hole pairs promote the continuous decomposition of GaN. As
Figure 2 shows, the electrons and holes are separated under UV illumination. The valence
electrons are excited from the valence band (VB) to the conduction band (CB) of GaN. Then,
the excited electrons combine with Cu2+ to generate Cu. Under the attraction of the metal
mask, the generated Cu gradually forms on its edge. At the same time, the generated holes
are consumed to preferentially oxidize GaN due to the higher oxidation potentials φox
of GaN than the O2/H2O oxidation potential φO2/H2O [25,26]. Then, Ga3+ and HF react
with each other, generating a kind of gallium fluoride [12,27]. The main reactions can be
expressed as follows:
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Figure 2. Schematic diagram of the MacEtch mechanism of GaN films.

Cathode:
Cu2++2e− → Cu (1)

Anode:
2GaN + 6h+ → 2Ga3+ + N2 ↑ (2a)

Ga3+ + xHF→ GaFx
3−x + xH+ (2b)

3. Results and Discussion

Three different GaN trench arrays are fabricated to reveal the characteristics of our
proposed MacEtch method. The SEM images of micropillar, square, and stripe arrays
are shown in Figure 3, demonstrating a good deep-etching capacity. Figure 3a shows the
uniform array, which consists of micropillars with a 5 µm diameter and 5 µm spacing.
Nevertheless, there is a certain inclination angle between the height and the plane of
the micropillar, requiring some adjustment to improve the verticality of the sidewall.
Compared with the micropillars array, the squares and stripes arrays present a better
performance and verticality of the sidewall, as shown in Figure 3b,c. The grooves present
noticeable edges and angles, as well as a relatively high verticality of the sidewall.
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The stripe grooves etched for different durations (20, 40, and 60 min) can be observed
in Figure 4. Due to the high hardness of sapphire substrates, it is difficult to ensure a
straight cleaved section. Thus, the groove orientations are different in SEM images to
observe the regions where the cross sections are approximately vertical. The red tag in
Figure 4a marks a V-type angle between the horizontal and vertical directions at the bottom
of the groove. Because the catalysis of the accumulated Cu on the stripe edge speeds up the
reaction, the area nearby the Ni/Ag mask is etched first; then, the V-type angle forms. The
etching rate in the vertical direction is larger than that in the horizontal one, which causes
the horizontal width to narrow after a period of etching. Then, the inverted trapezoidal
groove, together with an obvious V-type angle, occurs after a 20 min etching, as shown in
Figure 4a.
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However, the angle starts to become smaller as the reaction progresses, as shown in
Figure 4b. There is a thin film layer at the groove bottom in Figure 4c, which comes from
the inserted uGaN buffer layer during the GaN epitaxial growth. In detail, the film is the
product of the transition from the uGaN to an nGaN layer. When the etching goes through
the nGaN to the uGaN layer, the etching slows due to the decreased doping concentration.
The strong binding force produced by the fusion of uGaN and nGaN at the interface causes
difficulty in etching the interface layer. The vertical etching starts to slow down while the
speed of horizontal etching stays the same because of the film’s barrier. On this occasion,
the V-type angle becomes flat and the sidewall verticality becomes higher after 40 min of
etching. Finally, the uGaN buffer layer is fully etched, while the interface between uGaN
and nGaN is partly etched after 60 min. In Figure 4c, the remaining partly etched interface
layer between uGaN and nGaN is suspended. Furthermore, the MacEtch method can also
be applied to etch uGaN. In this paper, excellent GaN etching is achieved based on the
proposed method.

Notably, the cylindrical structure in Figure 3a is with a large horizontal etching range,
resulting in a limited reduction in the V-type angle, which causes the micropillars to present
a slightly lower sidewall verticality than other patterns. In addition, the etched sidewall
appears to have a porous structure, which is a sign of lateral etching. When the reaction
starts, nanopores form on the sample surface, and ultraviolet light penetrates along them,
making the reaction extend deeply. However, the interaction between the sidewall and
ultraviolet light is weak, giving rise to a slow reaction. This is another main reason why
the etching rate in the vertical direction is larger than that in the horizontal direction. It
can also be seen from Figure 4 that the vertical height reaches about 3, 4.5, and 6 µm after
etching for 20, 40, and 60 min, respectively, meaning that the etching rate reaches up to
~100 nm/min; meanwhile, the obtained trench arrays are uniform. Note that this high
etching rate is realized with MacEtch at room temperature, and it is believed to be further
improved by raising the reaction temperature. Furthermore, this result is comparable
with the photoelectrochemical (PEC) etching rate (~0.2–100 nm/min) reported in previous
work [28,29].
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The AFM images of the etched sample with 60 and 90 min etching are used in the qual-
itative analyses of sample surface roughness, as shown in Figure 5a,b. The corresponding
arithmetic mean roughness Ra values in the 1 µm2 square area measurement are 7.565 nm
when the etching time is 60 min, and this value is 0.480 nm when the etching time is 90 min.
At the beginning of etching, holes are formed on the GaN surface, causing the roughness
to increase. However, as the reaction progresses, the etched surface gradually flattens and
the roughness decreases.
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The principle of the proposed MacEtch method is illustrated in Figure 6, which is an
electrochemical reaction when the GaN is etched. It is well established that as-generated
electron–hole pairs in GaN separate and diffuse in the semiconductor under ultraviolet
light irradiation. Then, the holes directly oxidize GaN to generate Ga2O3 and the Ga2O3 is
dissolved under the action of HF, realizing the GaN etching. At the same time, the Cu ions
obtain electrons to produce Cu particles which accumulate on the metal-mask surfaces
because of the attraction. The Cu particles begin to deposit around the mask edge, which
catalyze the reaction nearby the mask, giving rise to the difference between vertical and
lateral etching rates. This is the reason why V-type angles form at the beginning. Though
anisotropic etching of GaN is realized in this paper, more optimizations are needed to
further improve the verticality of the sidewall based on this theory.
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3.1. Selection of Mask Materials

The catalysis of metal is a key element in the MacEtch process. To explore the function
of the Ni/Ag mask, we introduce another nonmetallic material (SiN) as the etching mask
for comparison. Figure 7a,b shows the GaN microstructures etched for 40 min with a
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100 nm/300 nm Ni/Ag mask, and Figure 7c,d presents the GaN microstructures etched
for 60 min with a 400 nm SiN mask. It can be observed in Figure 7a,b that a large amount
of reaction-generated particles appear and pile up on the Ni/Ag mask surface (especially
at the mask edge), while particles in other areas are scarce. These particles are proved
to be Cu, and this phenomenon may be related to the metal mask’s attraction to copper
ions. The Cu particles preferentially nucleate at these sites. As for the etched sample
using a SiN mask (see Figure 7c,d), there are no massive Cu particles on the SiN mask
surface. Furthermore, many smaller GaN micropillars occur in the maskless area. It can be
inferred that the nonmetallic SiN mask possesses a poor ability to attract Cu2+, and thus the
reaction-generated Cu particles preferentially nucleate and grow at other regions (defective
sites). These Cu particles, serving as small irregularly shaped metal masks, effectively block
the UV illumination at certain regions during the MacEtch process, inducing the formation
of small GaN micropillars. However, such Cu particles may be spontaneously lifted off
after the whole process due to the weak metal–semiconductor bonding force, and there
are few Cu particles that can be observed after etching. Under this circumstance, we find
that the randomly distributed GaN micropillars can be effectively avoided by adopting the
Ni/Ag mask during MacEtch, and this metal mask is more conducive to the fabrication of
regular GaN trench arrays.
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3.2. Effect of HF Concentration on GaN MacEtch

The HF concentration plays another key role in GaN MacEtch. The as-prepared GaN
micropillar arrays with two different HF concentrations are studied in this section. The
etching time is 30 min and the etching mask is Ni/Ag. Figure 8a,c shows the SEM images
(45◦-tilt view) of the etched GaN micropillar arrays with 5 M and 10 M HF concentrations,
respectively. Figure 8b,d presents the magnified SEM images of Figure 8a,c. Counterintu-
itively, the GaN pillar height obtained from the etchant containing 5 M HF is higher than
that obtained with 10 M HF. The Cu particle distributions can also be observed in Figure 8.
As mentioned, Cu particles accumulate only on the mask surface after the sample is etched
in a 5 M HF-containing etchant. As for the 10 M HF-processed sample, Cu particles heap
up at the mask surface and at the micropillar sidewall.
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A schematic diagram is depicted and shown in Figure 9 to further reveal the role of
the HF concentration on GaN etching. The orange dots represent Cu particles while the
yellow bars represent the Ni/Ag masks. It can be observed from Figure 9a (corresponding
to Figure 8b) that the generated Cu particles mainly accumulate on the edge and the
surface of the mask. Additionally, the generated Cu particles spread over the whole sample
surface including the pillar sidewalls after etching, as shown in Figure 9b (corresponding
to Figure 8d). The increasing HF concentration accelerates the decomposition of GaN and
the consumption of the holes (anode reaction). Accordingly, the cathodic Cu generation
reaction rate is also elevated, and thus many more Cu particles come into being and spread
over the whole wafer. These excessive Cu particles wrap the whole pillar sidewalls and
cover the bottom maskless regions, blocking the UV light penetration and thus reducing the
etching rate. In this situation, the obtained micropillars have a short structure. Therefore, it
is vital to adopt a specific etchant in order to ensure the etching rate and etched morphology,
and in our work the optimized CuSO4/HF molar ratio is 0.02:5.
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4. Conclusions

We demonstrate a novel MacEtch method and realize the rapid and anisotropic deep
etching of GaN. Regular GaN microarrays, including micropillar, square, and stripe arrays,
are fabricated by this method, and the etching rate can reach 100 nm/min. Moreover, the
characteristics and mechanism of the MacEtch are explored through analyzing the effects
of the mask material, UV illumination, and etchant proportion. The catalytic action of the
Ni/Ag mask affects the etching rate and benefits the formation of deep trenches. The UV
light drives the separation of electron–hole pairs in GaN, and the specific etchant with an
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optimized CuSO4/HF ratio may ensure the orderly accumulation of Cu particles, resulting
in a continuous GaN trenching. Additionally, the blocking effect of the uGaN/nGaN
combination layer contributes to a high sidewall verticality. This work offers a low-cost,
rapid, anisotropic deep-etching technique for the preparation of GaN microarrays at room
temperature, bringing a new promise for potential GaN device fabrication. Meanwhile,
we provide a new physical insight into GaN deep etching, paving a new way for future
wide-bandgap semiconductor etching.
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