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Abstract: The strong metal–support interaction (SMSI) between the three components in Au/CeO2–
Mg(OH)2 can be controlled by the relative composition of CeO2 and Mg(OH)2 and by the calcination
temperature for the direct oxidative esterification of methacrolein (MACR) with methanol to methyl
methacrylate (MMA). The composition ratio of CeO2 and Mg(OH)2 in the catalyst affects the catalytic
performance dramatically. An Au/CeO2 catalyst without Mg(OH)2 esterified MACR to a hemiacetal
species without MMA production, which confirmed that Mg(OH)2 is a prerequisite for successful
oxidative esterification. When Au/Mg(OH)2 was used without CeO2, the direct oxidative esteri-
fication of MACR was successful and produced MMA, the desired product. However, the MMA
selectivity was much lower (72.5%) than that with Au/CeO2–Mg(OH)2 catalysts, which have an
MMA selectivity of 93.9–99.8%, depending on the relative composition of CeO2 and Mg(OH)2. In
addition, depending on the calcination temperature, the crystallinity of the CeO2–Mg(OH)2 and the
surface acidity/basicity can be remarkably changed. Consequently, the Au-nanoparticle-supported
catalysts exhibited different MACR conversions and MMA selectivities. The catalytic behavior can be
explained by the different metal–support interactions between the three components depending on
the composition ratio of CeO2 and Mg(OH)2 and the calcination temperature. These differences were
evidenced by X-ray diffraction, X-ray photoelectron spectroscopy, and CO2 temperature-programmed
desorption. The present study provides new insights into the design of SMSI-induced supported
metal catalysts for the development of multifunctional heterogeneous catalysts.

Keywords: oxidative esterification; methacrolein; methyl methacrylate; Au catalyst; strong metal–
support interaction; calcination

1. Introduction

The design of multifunctional catalysts has long been investigated with the aim of min-
imizing complicated multistep reaction processes and increasing reaction efficiency [1–4].
In heterogeneous catalysts, various catalytic functions can be simultaneously introduced
to a single catalyst architecture by various synthetic methods [1–6]. The simple addi-
tion of active components to a synthesis mixture can generate multifunctional catalytic
sites [5–7], and the resultant multifunctional catalysts can reduce the number of reaction
steps and, thereby, save on the overall energy consumption [2–4]. As well as allowing a
more ecofriendly chemical process, multifunctional catalysts often possess unexpected
catalytic functions derived from synergistic electronic interactions between catalytic com-
ponents in proximity [5–7]. Strong metal–support interactions (SMSIs), which are unique
electronic interactions at the interface between the catalytic metal nanoparticles and the
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supporting materials (typically, nanoporous metal oxides), are a representative example of
unexpected synergies [7–9].

The SMSI effect can not only enhance catalytic activity but can also control product
selectivity [10–12]. For example, with specific metal nanoparticles as the main catalytic site,
variation of the metal oxide support can change the catalytic behavior [13,14]. Conversely,
with a given metal oxide support, variation of the metal nanoparticles can also change
the catalytic behavior [15–17]. In general, SMSIs change the surface characteristics of the
main metal nanoparticles and the metal oxide supports, such that the electronic properties
of the catalyst surface can be changed [18–20]. This unique effect results in changes
to the interaction of the catalyst surface with the approaching reactant molecules and
their adsorption geometries, the formation of intermediate species and transition states,
and finally the thermodynamics and kinetics of product formation [14,15]. Therefore,
multifunctional catalysts are important, not only in terms of reaction efficiency but also in
terms of the generation of SMSI effects to induce unexpected catalytic behavior [16–18].

The direct oxidative esterification (DOE) of aldehydes reacting with alcohols to pro-
duce alkyl esters is a green chemical route for the production of valuable alkyl esters via
a one-pot single-step process [20–26]. This reaction can utilize oxygen or air as a green
oxidant, and a multifunctional catalyst is a prerequisite for guiding a desirable reaction
pathway. Recently, we reported Au nanoparticles supported on CeO2–Mg(OH)2 as a mul-
tifunctional heterogeneous catalyst with an SMSI at the interfaces of the three catalytic
components (i.e., Au, CeO2, and Mg(OH)2). The catalyst exhibited high catalytic activity
for aldehyde conversion and product selectivity for a desirable alkyl ester [7]. Following
the published work, we carried out in-depth studies of the SMSI’s effects on the catalytic
behavior during DOE reactions of methacrolein (MACR) with methanol to produce methyl
methacrylate (MMA), by controlling two important synthetic parameters during catalyst
preparation. First, the composition of CeO2 and Mg(OH)2 in the catalysts was system-
atically controlled in the Au/CeO2–Mg(OH)2 catalysts. Second, the crystallinities of the
Au/CeO2–Mg(OH)2 catalysts were controlled by variation of the calcination temperature.
Comprehensive characterizations and reaction studies revealed that the control of these two
synthetic parameters changed the structural properties of the resultant catalysts, and con-
sequently, the reaction behaviors were remarkably changed. In addition, structure–activity
relationships were derived for a fundamental understanding of the catalytic behavior
of Au/CeO2–Mg(OH)2 as a multifunctional catalyst. This understanding opens up the
possibility of developing high-performance catalysts.

2. Materials and Methods
2.1. Preparation of Materials

The materials investigated in this work were synthesized by referring to the work
published recently by the same authors [7]. Various CeO2–Mg(OH)2 supports with different
compositions were prepared by controlling the molar composition of the Ce and Mg
precursor with ratios of 100:0, 90:10, 80:20, 70:30, 60:40, 50:50, 37:63, 20:80, 10:90, and 0:100.
In a typical synthesis, Ce(NO3)3·6H2O (Daejung, Siheung, Korea) and Mg(NO3)2·6H2O
(Daejung) were dissolved together in distilled water to make a solution containing the metal
precursor with H2O/metal = 65; citric acid monohydrate was dissolved in the solution with
citric acid monohydrate/metal = 1, which was stirred at 80 ◦C for 5 h and subsequently
dried in an oven at 100 ◦C overnight. The resultant polymeric mixture was collected,
ground to a fine powder, and calcined at 750 ◦C for 9 h under air flow to produce CeO2–
MgO, which is denoted as CM. For the preparation of supported Au nanoparticle samples,
distilled water containing 3 wt.% of HAuCl4 (2.55 × 10−3 M) was added dropwise to the
solution containing CeO2–MgO under vigorous stirring. Then, it was stirred at 65 ◦C for
3 h, and the precipitated sample was subsequently filtered and washed with distilled water
to wash any excess chloride anions. The resultant supported Au nanoparticle samples were
dried at 60 ◦C for 5 h and are denoted as AuCM.
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For the preparation of CeO2–Mg(OH)2 supports with different crystallinities, CM sam-
ples with a Ce:Mg ratio of 37:63 were calcined at temperatures of 450, 600, 750, and 1000 ◦C.
These samples are denoted as CM(450), CM(600), CM(750), and CM(1000), respectively,
according to the calcination temperature.

2.2. Characterization of Materials

XRD patterns were obtained by using a Rigaku MiniFlex 600 apparatus using Cu
Kα radiation (λ = 0.1541 nm) at 40 kV and 15 mA (600 W). The measurements were
recorded with a step size of 0.02◦, scanning rate of 4◦ min−1, and 2θ range of 15◦–70◦.
The Au content in the catalysts was determined with inductively coupled plasma–optical
emission spectroscopy (ICP–OES; Avio 500, PerkinElmer, Waltham, MA, USA). N2 adsorp-
tion/desorption isotherms were measured by using a Micromeritics ASAP 2020 volumetric
analyzer at liquid N2 temperature. All samples were degassed at 300 ◦C for 3 h prior to
measurements. The surface areas were derived by using Brunauer–Emmett–Teller (BET)
theory [27], and the total pore volumes and pore size distributions were obtained from the
adsorption branches by using the Barrett–Joyner–Halenda (BJH) algorithm [28].

Transmission electron microscopy (TEM) images were obtained by using a JEM-2100F
(JEOL, Tokyo, Japan) instrument operating at 200 kV (lattice resolution; 0.14 nm). X-ray
photoelectron spectroscopy (XPS) was performed by using a K-ALPHA+ (Thermo Fisher
Scientific, Waltham, MA, USA) equipped with a monochromatic Al Kα source connected
to a 128-channel detector. For measurements, all samples were reduced under H2 and
Ar flows (both at a rate of 20 mL min−1) at 300 ◦C for 5 h (ramping rate = 2.5 ◦C min−1).
The spectra were fitted by using Gaussian–Lorentzian curves after baseline correction.
CO2 temperature-programmed desorption–mass spectrometry (TPD–MS) was performed
by using a BEL-CAT analyzer. The sample was first heated to 300 ◦C under a He flow,
maintained at that temperature for 1 h, cooled to 40 ◦C, and then 5% CO2/He mixture flow
was introduced for 1 h. After CO2 adsorption, the sample was flushed under a He flow to
eliminate weakly physisorbed CO2, and the CO2 TPD–MS profile was obtained under a
He flow with increasing the temperature from 50 to 600 ◦C.

2.3. Reaction Studies

The catalytic reaction was investigated by using a Teflon-lined stainless-steel autoclave.
The Au-nanoparticle-supported catalyst was first reduced under H2 and Ar flows (both at
a rate of 20 mL min−1) at 300 ◦C for 5 h (ramping rate = 2.5 ◦C min−1). For the reaction
studies, 5.68 mL (0.0653 mol) of MACR (Antai, >95%) were dissolved in 14.67 mL of methyl
alcohol (Daejung) (MACR:MeOH = 1:5) containing 1.5 g of the reduced catalyst. The
reactor was purged with O2 to make the reactor saturated with O2, pressurized with O2 to
9 bar, then the temperature of the reactor was increased to 80 ◦C under magnetic stirring
at 600 rpm. After the reaction was finished, the reactor was cooled in an ice bath, and
the solid catalyst was separated from the reaction solution by using a syringe filter. The
conversion and selectivity were analyzed with a gas chromatograph (Younglin YL6500,
Anyang, Korea) equipped with a flame ionization detector and a capillary column (DB-5;
length: 30 m; diameter: 0.32 mm; thickness: 1.5 µm) with ethanol as an internal standard.

3. Results and Discussion
3.1. Effect of Composition in CeO2–Mg(OH)2 Supporting Au Nanoparticles

Control of the gel composition for the synthesis of CeO2–Mg(OH)2 as the support
for Au metal nanoparticles changed the framework composition in the resultant CeO2–
Mg(OH)2, as evidenced by XRD patterns after calcination at 750 ◦C (Figure 1A). Pure
MgO without the addition of CeO2 (Ce:Mg = 0:100) exhibited distinct XRD reflections
corresponding to a cubic lattice with (111), (200), and (220) planes (hkl indices in black
in Figure 1A) [29]. As the amount of Ce precursor increased in the synthesis gel com-
position, with a corresponding decrease in Mg precursor, the XRD peak intensities for
MgO decreased gradually, and the XRD reflections corresponding to the cubic structure
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of CeO2, with different lattice parameters, became more prominent (hkl indices in red in
Figure 1A) [30]. The mixed phases of CeO2 and MgO with controlled gel composition
during synthesis were characterized by the Rietveld refinement, which quantitatively
analyzed the composition ratio of CeO2 and MgO as summarized in Table 1 [31–34].
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(B) Au-supporting CeO2–Mg(OH)2 before H2 treatment, and (C) Au-supporting CeO2–Mg(OH)2 after H2 treatment. The
CeO2–Mg(OH)2 supports with different Ce:Mg ratios were calcined at 750 ◦C before supporting Au nanoparticles. The
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Table 1. Reaction summaries showing the MACR conversion and product selectivity by using the
Au/CeO2–Mg(OH)2 catalysts with different Ce:Mg ratios calcined at 750 ◦C. [a] These results are also
graphically represented in Figure 2.

Ce:Mg Ratio
MACR

Conv. (%)
MMA

Sel. (%)
Hemiacetal
Sel. (%)

Acetal
Sel. (%)

YMMA
(%) [b]Gel Rietveld

Ce Mg CeO2 MgO

100 0 100 0 51.0 0.0 100.0 0.0 0.0
90 10 98 2 41.5 96.2 3.2 0.7 39.9
80 20 97 3 67.4 98.6 0.9 0.6 66.5
70 30 92 8 73.9 99.4 0.2 0.3 73.5
60 40 85 16 59.9 98.8 0.0 1.2 59.2
50 50 79 21 73.3 99.8 0.0 0.2 73.2
37 63 73 27 67.5 99.2 0.0 0.8 67.0
20 80 48 52 49.3 97.8 0.9 1.3 48.2
10 90 26 74 47.2 93.9 3.1 3.1 43.3
0 100 0 100 40.3 72.5 7.9 19.7 29.2

[a] General reaction conditions: methanol/MACR = 5/1, MACR 0.0653 mol, O2 pressure of 9 bar at 80 ◦C for 1 h;
[b] YMMA: yield of MMA calculated as (MACR conv. × MMA sel./100).

The resultant as-synthesized products were mostly mixed phases of CeO2 and MgO
with different compositions, which were used for supporting Au nanoparticles; this was
followed by H2 treatment for reduction of the supported Au nanoparticles (Figure 1B,C).
The initial structure of the CeO2 phase in CeO2–MgO was almost fully maintained after the
Au nanoparticles were supported and subsequently dried (Figure 1B). However, the MgO
phase was mostly transformed to a Mg(OH)2 phase (hkl indices in blue in Figure 1B) as a
result of the hydration of MgO in the aqueous solution during the process of supporting the
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Au nanoparticles. The Au-supporting samples were further treated under H2 environment
at 300 ◦C for 5 h to produce metallic Au nanoparticles. After H2 treatment, no significant
changes were observed in the XRD reflections (Figure 1C). Most of the Mg species was
preserved as the crystalline structure of Mg(OH)2 (hkl indices in blue in Figure 1C) [35],
but a small amount of MgO phase developed, as indicated with (200) reflection (hkl indices
in black in Figure 1C). Any XRD peaks corresponding to the metallic Au nanoparticles
were not observed, indicating that the Au nanoparticles were dispersed with a small size
distribution and that bulky nanoparticles were not produced.

The series of Au metal nanoparticles supported on CeO2–Mg(OH)2 was investigated
as the catalyst for the DOE reaction of MACR with methanol (Scheme 1). Figure 2 presents
the reaction results and shows the MACR conversion and product selectivity depending on
the composition ratio of Ce and Mg in the catalyst support; the results are also summarized
in Table 1. The graphs corresponding to the reaction results clearly show the differences in
catalytic activity and product selectivity. Au-supporting CeO2 (Ce:Mg = 100:0) converted
51.0% of MACR and produced the hemiacetal as the major product with approximately
100% selectivity. The hemiacetal is an intermediate product that can be produced from the
first esterification step between MACR and methanol without the subsequent oxidation
step (Scheme 1) [7]. Therefore, predominant formation of the hemiacetal indicates that
Au-supporting CeO2 (Ce:Mg = 100:0) cannot act as a multifunctional catalyst for activating
the DOE process.
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When Mg(OH)2 was introduced to the catalyst support, the Au-supporting CeO2–
Mg(OH)2 catalysts produced MMA as the desired product. As the amount of Mg(OH)2 in
the CeO2–Mg(OH)2 support increases, a pseudo-volcano distribution is observed for the
MACR conversion (black dots in Figure 2). When the ratio of Ce:Mg was between 80:20 and
37:63 in the synthesis gel, high MACR conversion values 67.4–73.9% were obtained, and the
MMA selectivity was close to 100%. When the amount of Mg precursor in the synthesis gel
increased beyond 80% (Ce:Mg = 20:80), the MACR conversion dropped below 50%, and the
MMA selectivity also gradually decreased. When pure Mg(OH)2 was used as the support
for Au nanoparticles in the absence of CeO2 (Ce:Mg = 0:100), the MACR conversion was
40.3%, and the MMA selectivity was correspondingly reduced to 72.5%. The volcano
distribution of MACR conversion and MMA selectivity confirmed that there is an optimum
composition for achieving high MACR conversion with MMA selectivity. When the ratio
of Ce:Mg was between 80:20 and 37:63 in the synthesis gel, MACR conversion above 65%
was achieved with a high MMA selectivity of close to 100% (Figure 2).

3.2. Effect of Support Crystallinities in CeO2–Mg(OH)2 Supporting Au Nanoparticles

The crystallinities of CeO2–Mg(OH)2 for supporting Au nanoparticles can be con-
trolled by changing the calcination temperature. From the controlled Ce:Mg ratios, we
selected the sample with Ce:Mg = 37:63 as the one showing the optimized catalytic per-
formance (Figure 2). Depending on the calcination temperature, the crystallinities of the
CeO2–Mg(OH)2 supports changed, as evidenced by the XRD patterns shown in Figure 3A.
The XRD reflections gradually sharpened as the calcination temperature was increased
from 450 to 1000 ◦C. When the calcination temperature was 450 ◦C, the crystallinity was
significantly lower, as evidenced by very broad XRD reflections.
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The N2 adsorption isotherms showed that the CM(600) sample exhibited the highest
porosity with a BET surface area (SBET) of 128 m2 g−1 and a total pore volume (Vtot) of
0.28 cm3 g−1 (Figure 3B and Table 2). This sample showed a type IV isotherm, which
indicates the presence of a mesoporous structure. As the calcination temperature was
increased to 750 or 1000 ◦C, the BET surface area and total pore volume decreased very
significantly (Table 2). Among the four samples with different calcination temperatures,
CeO2–Mg(OH)2 calcined at 600 ◦C (i.e., CM(600)) showed the highest porosity (Table 2).
The crystallinities of the CeO2–Mg(OH)2 samples also affected the surface basicity, as
characterized by CO2 TPD–MS (Figure 3C). The amounts of total basic sites (BT) were
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proportional to the surface areas determined from the N2 adsorption isotherms (Table 2). In
terms of basic strengths, the temperatures showing maximum CO2 desorption (Figure 3C
and Tmax in Table 2) increased in the following order: CM(750), 345 ◦C < CM(600),
362 ◦C < CM(1000), 370 ◦C < CM(450), 375 ◦C.

Table 2. Physicochemical properties of AuCM catalysts with different calcination temperatures of 450, 600, 750, and 1000 ◦C
and their catalytic reaction summaries showing the MACR conversion and product selectivity [a].

Catalyst

Au
Content
(wt.%)

[b]

Au
Size
(nm)

[c]

Au
Dispersion

(%) [d]

SBET
(m2 g−1)

[e]

Dp
(nm)

[f]

Vtot
(cm3 g−1)

[g]

BT
(mmol
g−1)

[h]

Tmax
(◦C)
[i]

MACR
Conv.
(%)

MMA
Sel.
(%)

Hemiacetal
Sel. (%)

Acetal
Sel.
(%)

YMMA
(%)
[j]

TON
[k]

STY
[l]

AuCM
(450) 2.7 2.6 45.0 97 3.3 0.23 0.32 375 36.4 92.2 2.1 5.7 33.6 413 381

AuCM
(600) 2.7 2.0 58.4 128 5.4 0.28 0.45 362 59.7 96.6 0.2 3.2 57.7 264 255

AuCM
(750) 2.5 2.6 44.4 81 7.4 0.25 0.24 345 67.5 99.2 0.0 0.8 67.0 521 517

AuCM
(1000) 1.6 2.9 40.3 17 40.3 0.07 0.07 370 53.7 89.6 1.1 9.2 48.1 714 640

[a] General reaction conditions: methanol/MACR = 5/1, MACR 0.0653 mol, O2 pressure of 9 bar at 80 ◦C for 1 h; [b] determined by
ICP–OES; [c] determined from TEM images; [d] determined by mean size of Au particles; [e] SBET: BET surface area determined by the BET
method; [f] Dp: average pore diameter determined by the BJH method; [g] Vtot: total pore volume determined by the BJH method; [h] BT:
total amount of basic sites determined by CO2 TPD–MS; [i] Tmax: desorption temperature showing the maximum intensity in the CO2
TPD–MS profiles; [j] YMMA: yield of MMA calculated as (MACR conv. × MMA sel./100); [k] TON (molMACR molAu

−1): turnover number
calculated as (moles of MACR reacted/moles of active Au); [l] STY (molMMA molAu

−1 h−1): site–time yield calculated as (moles of MMA
produced/moles of active Au/time).

Scanning electron microscopy also confirmed that the crystals of the CeO2–Mg(OH)2
supports were adhered to each other, and the plate-like morphology with a curved shape
of CM(450) gradually disappeared as the calcination temperature was increased to 1000 ◦C
(Figure 4A–D). No significant changes in the overall morphologies were observed after H2
treatment for the reduction of Au nanoparticles on the CM supports (Figure 4E–H). Control
of the calcination temperature changed not only the crystallinity, porosity, and basicity but
also the dispersion of the Au nanoparticles and the degree of SMSI at the ternary interface.
ICP–OES confirmed that the Au loading is around 2.5–2.7 wt.%, except for AuCM(1000),
which supports 1.6 wt.% of Au nanoparticles. Because CM(1000) has the lowest porosity,
the Au nanoparticles were supported with a much lower loading. However, regardless of
the Au loading, TEM analysis for the Au-supporting CM samples with different calcination
temperatures confirmed that the average sizes of the Au nanoparticles were in a similar
range (2.0–2.9 nm) (Figure 5 and Table 2). The CM(600) sample supported Au nanoparticles
with the smallest average size and the highest dispersion (Table 2).
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The AuCM samples were tested as catalysts for the DOE reaction for comparison with
the CM supports without Au nanoparticles. Figure 6A,B show the reaction results obtained
by using the series of CM supports and AuCM catalysts, respectively, at 80 ◦C for 1 h with
9 bar of O2, which are summarized in Table 2. Regardless of the calcination temperature,
the CM supports not supporting Au nanoparticles failed to activate the DOE process,
consisting of esterification and the consecutive oxidation pathway; hence MMA was never
produced (Figure 6A). However, the formation of the hemiacetal or acetal proved that the
basic surface sites on the CM supports are sufficiently effective to activate the esterification
pathway [36–40]. Among the four CM supports, CM(600), with the highest surface area,
exhibited the largest MACR conversion of 36.0% (Figure 6A). When Au nanoparticles were
supported on the CM supports, MMA was produced as the major product (Figure 6B).
This confirmed that the Au nanoparticles are a prerequisite for O2 activation to produce
MMA via the oxidative esterification pathway (Scheme 1), which is also consistent with Au
nanoparticles being efficient oxidation catalysts, as reported elsewhere [7,41–46]. Among
the four samples, AuCM(750) showed the best performance, achieving the highest MACR
conversion (67.5%) and the highest MMA selectivity (99.2%). Centered on AuCM(750),
a clear volcano plot was observed. The MACR conversion and MMA selectivity were
reduced simultaneously when other catalysts were used (Figure 6B). Notably, the MACR
conversion is systematically correlated with the Tmax value for CO2 desorption (Table 2
and blue diamonds in Figure 6B). The number of total basic sites (BT) was the highest for
AuCM(600), which has the highest BET surface area (SBET), but the AuCM(750) catalyst
showed the best catalytic performance in terms of MACR conversion and MMA selectivity.
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The results suggest that basicity with an optimized amount and strength is necessary for
the best reaction performance.
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in (A) indicate the BET surface areas (SBET) of CeO2–Mg(OH)2 supports. The blue guidelines with diamonds in (B) indicate
the maximum desorption temperature (Tmax) of the CeO2–Mg(OH)2 supports, as determined from the CO2 TPD–MS
profiles shown in Figure 3C.

The catalytic activity and reaction condition of the AuCM(750) catalyst were com-
pared with that of the other catalysts reported elsewhere (Table 3). Compared to the
published works, significant differences were observed in the reaction conditions. For
example, we tested our catalyst in the reaction solution with more concentrated MACR
(methanol/MACR = 5/1), whereas other studies were tested in a less concentrated MACR
condition. Most reactions were carried out at similar temperature of 70–80 ◦C. Although
our catalyst exhibited smaller TON than the others, it should be noted that the AuCM(750)
catalyst exhibited the highest MMA selectivity close to 100%.

Table 3. Catalytic activity and reaction condition of AuCM(750) catalyst in comparison with the others reported in
many literatures.

Catalyst Quantity
(g) Methanol/MACR Temp.

(◦C)
Pressure

(MPa)
Time

(h)
MACR

Conv. (%)
MMA

Sel. (%) TON Ref.

AuCM(750) 1.5 5/1 80 0.9 1 67.5 99.2 521 This work
Au–CeO2/7–

Al2O3
0.5 20/1 70 0.2 2 97 90 - [24]

Au/CexZryOz 0.5 20/1 80 0.3 2 99 74 577 [25]
Pd3Pb 2.5 8/1 80 0.3 2 89 79 - [26]

Au/ZnO 0.5 30/1 70 0.2 2 99.9 85.9 - [36]
Au/La2O3 0.1 8/1 70 0.2 2 89 98 1136 [39]

The electronic properties on the surfaces of the ternary components in the AuCM
catalysts were further characterized with XPS (Figure 7), and the results were interpreted
in relation to the reaction behaviors (Figure 8). The XPS spectra in Figure 7A–C show
distinct differences in binding energies for Au 4f7/2, Ce 3d5/2, and Mg 2p, respectively,
depending on the different calcination temperatures of the CM supports. As the calcination
temperature increased from 450 to 600 and 750 ◦C, the binding energies of Au 4f7/2 and
Ce 3d5/2 were shifted to higher values whereas the binding energy of MgO deconvoluted
from the Mg 2p peak was shifted to a lower value (table in Figure 7). For the AuCM(1000)
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sample, the binding energies were shifted with a different trend. Specifically, the XPS
signal in the Mg 2p region corresponds to the pure MgO phase without an appreciable
deconvoluted peak corresponding to Mg(OH)2. As a result of the thermal treatment at the
very high temperature of 1000 ◦C, most of the Mg phase exists as MgO (Figure 7C), which
might be the reason for the deviation in the binding energy shift relative to that with the
other CM supports calcined at lower temperatures. In addition, the smaller content of Au
on the CM(1000) support (1.6 wt.%, Table 2) may be another reason for the different trend
in the binding energy shift. The notably weaker intensity of the XPS peaks of AuCM(750)
than that of the other samples might be attributed to the fact that the catalyst particles in
the AuCM(750) sample were more agglomerated than in the others and hence the electrons
that could escape from the surface due to exposure to the XPS incident beam were less
concentrated than in the other samples. The TEM image of AuCM(750) sample in Figure 5G
is also in line with this explanation, in which the catalytic particles in AuCM(750) look
more agglomerated.
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Figure 7. X-ray photoelectron profiles corresponding to the representative binding energy (B.E.) regions of (A) Mg 2s, Au0,
and Au1+, (B) Ce4+ and Ce3+, and (C) Mg(OH)2 and MgO for the series of AuCM catalysts in which the CeO2–Mg(OH)2

supports were calcined at different temperatures. The table at the bottom summarizes the B.E. values for the representative
peaks, and the numbers in parentheses indicate the percentages of elements with different electronic states. The experimental
and fitted XPS profiles are drawn in black and red, respectively.

The shifts for the binding energies of Au 4f7/2, Ce 3d5/2, and Mg 2p depending on
the CM supports may be evidence of a variation in the SMSI effects among the three
components of Au, CeO2, and Mg(OH)2. As the calcination temperature was changed, the
surface characteristics and crystallinities of the CM supports changed. As a consequence,
the electronic interactions at the interfaces of Au, CeO2, and Mg(OH)2 may be different.
These different electronic interactions among the catalytic components should affect the



Nanomaterials 2021, 11, 3146 11 of 14

catalytic behavior. Indeed, with the exception of the AuCM(1000) sample, the binding
energies of Au 4f7/2, Ce 3d5/2, and MgO in the AuCM(450, 600, 750) samples were related
to the MACR conversion and MMA yield (Figure 8). The graphs clearly show very linear
relationships between the reaction behaviors and the binding energies. As the binding
energies of Au 4f7/2, and Ce 3d5/2 increased, the MACR conversion and MMA yield
decreased in a very linear manner. By contrast, as the binding energy of MgO increased,
the MACR conversion and MMA yield also increased in a linear manner. The correlations
appear very linear, as confirmed by the R2 values close to 1 (Figure 8), and such linear
correlations suggest that the different SMSI effects between the metal nanoparticles and
the supporting materials may contribute to the catalytic performances.

Nanomaterials 2021, 11, 3146 11 of 13 
 

 

 
Figure 8. Correlations of (A–C) MACR conversion or (D–F) MMA yield with the binding energies of (A,D) Au 4f7/2, (B,E) 
Ce 3d5/2, (C,F) MgO, as summarized in the table in Figure 7. 

4. Conclusions 
The effect of the supporting material for Au nanoparticles on the catalytic behavior 

during the DOE reaction of MACR with methanol to selectively produce MMA as the 
desired product has been investigated by controlling the Ce:Mg ratios and crystallinities 
in the CeO2–Mg(OH)2 supports. The reaction studies revealed that there was an optimum 
Ce:Mg ratio and crystallinity for achieving the highest MACR conversion and MMA 
selectivity with Au-supporting CeO2–Mg(OH)2 as a multifunctional catalyst. The sole 
presence of CeO2 or Mg(OH)2 for supporting the Au nanoparticles is not efficient for the 
DOE reaction consisting of oxidation and esterification pathways. Optimum catalytic 
activity of the CeO2–Mg(OH)2 support was obtained when the support was calcined at 750 
°C; the AuCM(750) catalyst showed significant shifts of the binding energies for Au 4f7/2 
and Ce 3d5/2 to the lowest values, whereas the binding energy of MgO deconvoluted from 
the Mg 2p peak in AuCM(750) was shifted to the highest value. As a result, AuCM(750) 
with a Ce:Mg ratio of 37:63 exhibited the highest MACR conversion of 67.5% with the 
highest MMA yield of 67.0% within 1 h of reaction at 80 °C. The significant enhancement 
in the catalytic activity of the AuCM catalyst can be attributed to the different SMSI effects 
among the three catalytic components of Au, CeO2, and Mg(OH)2; this effect can be 
controlled by the composition of CeO2 and Mg(OH)2 and by the calcination temperature 
of the CeO2–Mg(OH)2 support. The catalytic studies described herein can provide an 
important method for controlling SMSI effects and, thereby, the catalytic behaviors of 
multifunctional heterogeneous catalysts. 

Author Contributions: The manuscript was written through the contributions of all authors. N.K., 
S.L., and S.K. prepared the catalysts and performed reaction studies. Y.C. visualized the graphic 
data. K.N. conceptualized and supervised the work and wrote the manuscript with J.-W.L. All 
authors have read and agreed to the published version of the manuscript. 

  

Figure 8. Correlations of (A–C) MACR conversion or (D–F) MMA yield with the binding energies of (A,D) Au 4f7/2,
(B,E) Ce 3d5/2, (C,F) MgO, as summarized in the table in Figure 7.

4. Conclusions

The effect of the supporting material for Au nanoparticles on the catalytic behavior
during the DOE reaction of MACR with methanol to selectively produce MMA as the
desired product has been investigated by controlling the Ce:Mg ratios and crystallinities in
the CeO2–Mg(OH)2 supports. The reaction studies revealed that there was an optimum
Ce:Mg ratio and crystallinity for achieving the highest MACR conversion and MMA selec-
tivity with Au-supporting CeO2–Mg(OH)2 as a multifunctional catalyst. The sole presence
of CeO2 or Mg(OH)2 for supporting the Au nanoparticles is not efficient for the DOE
reaction consisting of oxidation and esterification pathways. Optimum catalytic activity
of the CeO2–Mg(OH)2 support was obtained when the support was calcined at 750 ◦C;
the AuCM(750) catalyst showed significant shifts of the binding energies for Au 4f7/2 and
Ce 3d5/2 to the lowest values, whereas the binding energy of MgO deconvoluted from
the Mg 2p peak in AuCM(750) was shifted to the highest value. As a result, AuCM(750)
with a Ce:Mg ratio of 37:63 exhibited the highest MACR conversion of 67.5% with the
highest MMA yield of 67.0% within 1 h of reaction at 80 ◦C. The significant enhancement
in the catalytic activity of the AuCM catalyst can be attributed to the different SMSI effects
among the three catalytic components of Au, CeO2, and Mg(OH)2; this effect can be con-
trolled by the composition of CeO2 and Mg(OH)2 and by the calcination temperature of the
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CeO2–Mg(OH)2 support. The catalytic studies described herein can provide an important
method for controlling SMSI effects and, thereby, the catalytic behaviors of multifunctional
heterogeneous catalysts.
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