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Abstract: The strong spin filtering effect can be produced by C-Ni atomic orbital hybridization in
lattice-matched graphene/Ni (111) heterostructures, which provides an ideal platform to improve
the tunnel magnetoresistance (TMR) of magnetic tunnel junctions (MTJs). However, large-area, high-
quality graphene/ferromagnetic epitaxial interfaces are mainly limited by the single-crystal size of
the Ni (111) substrate and well-oriented graphene domains. In this work, based on the preparation of
a 2-inch single-crystal Ni (111) film on an Al2O3 (0001) wafer, we successfully achieve the production
of a full-coverage, high-quality graphene monolayer on a Ni (111) substrate with an atomically sharp
interface via ambient pressure chemical vapor deposition (APCVD). The high crystallinity and strong
coupling of the well-oriented epitaxial graphene/Ni (111) interface are systematically investigated
and carefully demonstrated. Through the analysis of the growth model, it is shown that the oriented
growth induced by the Ni (111) crystal, the optimized graphene nucleation and the subsurface carbon
density jointly contribute to the resulting high-quality graphene/Ni (111) heterostructure. Our
work provides a convenient approach for the controllable fabrication of a large-area homogeneous
graphene/ferromagnetic interface, which would benefit interface engineering of graphene-based
MTJs and future chip-level 2D spintronic applications.

Keywords: graphene; monolayer; single-crystal; heterostructure; epitaxial growth; ambient pressure
chemical vapor deposition (APCVD)

1. Introduction

The long spin-relaxation length and strong spin filtering effect have proven that
graphene is an emerging material for two-dimensional (2D) spintronics [1–5]. The strong
spin filtering effect at the lattice-matched graphene/Ni (111) interface has been theoretically
predicted and experimentally studied [6,7] and results in an extreme TMR in vertical
graphene/ferromagnetic (FM) spintronic devices [8–10]. However, the performance of
graphene-based spintronic devices largely depends on the quality of the graphene/FM
interface, and it is indeed a great challenge to controllably achieve large-size homogenous
graphene/FM heterostructures with a well-oriented interface.
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Epitaxially grown graphene (EGG) on single-crystal ferromagnetic metals via chemical
vapor deposition (CVD) has been widely reported. E. D. Cobas [11] and A. Dahal [12] syn-
thetized uncontrolled multilayer graphene on single-crystal NiFe (111) and Ni (111)/Y2O3
(111) substrates, respectively. However, it is still difficult to control the uniformity and
orientation of graphene synthetized on ferromagnetic metal, as it is limited by the size
of the single crystal substrate and the high solubility of carbon [11–15]. The segregation
of carbon atoms at Ni grain boundaries easily results in the uneven growth of multilayer
graphene, so that it fails to be seamlessly stitched into the intact single-crystal graphene
film [16,17]. Plenty of studies on the epitaxial growth of single-layer graphene over Ni
(111) film using strict ultra-high vacuum (UHV) CVD systems at low temperatures have
been conducted to solve the problem of dissolved carbon [18–20]. However, it has a low
efficiency, and the exploration of graphene grown on Ni (111) still requires wafer-scale Ni
(111) films for EGG/FM heterostructures to be further improved.

Here, an efficient method has been developed to synthesize large-size uniform and
wrinkle-free monolayer graphene by ambient pressure chemical vapor deposition (APCVD)
based on the preparation technology of wafer-scale Ni (111) substrate. The graphene nu-
cleation and subsurface carbon density are fine-tuned by the growth temperature and
post-growth annealing to control the uniformity of EEG. The results of various characteriza-
tions indicate the high epitaxial quality of continuous EGG and the strong interfacial atomic
coupling of a well-oriented graphene/Ni (111) interface. Our work lays the foundation
for the high-efficiency production of high-quality EGG/FM heterostructures and serves to
increase the applications of graphene-based spintronic devices.

2. Materials and Methods

The graphene is grown on Ni (111) films that are prepared by electron beam evapora-
tion of Ni onto an α-Al2O3 (0001) wafer (Kejing, Anhui Province, China, size of 2 inches,
thickness of 0.5 mm). Wafer-scale single-crystal Ni (111) (self provided) substrate is the
most important prerequisite for the oriented growth of an ultra-flat graphene film. Firstly,
the 2-inch α-Al2O3 (0001) wafer is annealed at high temperature in a quartz tube with an
oxygen atmosphere to obtain an atomically smooth and impurity-free surface, as previously
reported [21]. Secondly, a Ni film with 300 nm thickness is deposited at 480 ◦C with a
background pressure of 5.0 × 10−4 Pa and a deposition rate of 0.2 nm/s for the initial
(111) oriented growth of the Ni film. Finally, the Ni film is annealed in the CVD system at
950 ◦C under ambient pressure with an H2/Ar mixture of 10 sccm/50 sccm to improve the
crystallinity and catalytic activity of the Ni (111) substrate.

The graphene growth process is shown in Supplementary Figure S1. After the Ni (111)
annealing process, CH4 is introduced into the chamber at a set of growth temperatures
for adjusting the nucleation density of the graphene. It is proven that the nucleation
density of graphene decreases with increasing growth temperature due to increases in
the carbon solubility [22] and the desorption rate [23]. Then, it is followed by the post-
growth annealing process without the supply of CH4 and H2 for critically regulating the
subsurface carbon density. Finally, well-oriented graphene domains merge seamlessly to
form a full-covered EGG on the Ni (111) surface during the segregation process of carbon,
when the system is rapidly cooled down by slipping away the furnace.

3. Results and Discussion

Figure 1a shows a typical atomic force microscope (AFM, NT-MDT TS-150, Moscow,
Russia) image of Ni (111) films after the annealing process in the APCVD system. Obviously,
we finally obtain an ultra-flat and clean surface morphology with a roughness of only
0.26 nm. Meanwhile, the clear slip lines with an angle of 60◦ (marked as the white
line in Figure 1a) show textures of Ni film along three orientations at an angle of 60◦,
which is considered to be the result of the threefold symmetry of the metal films with the
energetically favorable out-of-plane (111) orientation [21,24]. Additionally, the electron
backscatter diffraction (EBSD, ULVAC PHI-710, Kanagawa, Japan) mapping (see Figure 1b)



Nanomaterials 2021, 11, 3112 3 of 11

in the uniform blue reveals the out-of-plane (111) orientation without the twin structures
combined with the four evenly distributed points in the pole figure (inside of Figure 1b).
This is furtherly demonstrated by the X-ray diffraction (XRD, Bruker D8 discover, Germany)
results. As shown in Figure 1c, it has only one sharp peak at 44.6◦ in the θ–2θ curves,
suggesting the out-of-plane orientation of (111) over the whole Ni film. As for the in-plane
orientation characterization, the azimuthal off-axis ϕ scan is carried out by rotating the
sample normal to its surface with the high-resolution XRD (HRXRD, Bruker D8 discover,
Bremen, Germany). The diffraction peaks of Ni film at an interval of 120◦, as shown in
Figure 1d, indicate the threefold symmetry of the Ni film, and thus the single-crystal nature
is testified.
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Figure 1. Typical characterization results of the single-crystal Ni (111) film. (a) AFM image of the Ni
(111) film annealed in the quartz tube. (b) Out-of-plane EBSD mapping of the Ni (111) thin film. The
inset shows the pole figure of the same region. (c) XRD θ-2θ scan and (d) HRXRD azimuthal off-axis
ϕ scan of the Ni (111) film.

The growth of graphene on Ni (111) is a complex heterogeneous catalytic reaction.
Normally, it contains two fundamental paths, i.e., direct catalytic growth on the Ni surface
and circumlocutory segregation growth below the Ni surface [15]. To uncover the effects
of temperature on these two growth paths, a series of growth temperatures have been
investigated systematically. Figure 2a–c shows the typical optical microscope (OM, Nikon
LV150NL, Tokyo, Japan) morphologies of the transferred graphene on SiO2 substrates
of 500 nm, which are synthesized on Ni (111) films at different temperatures. Different
graphene layers are identified through the comparison of different gray levels. The light
transmittance of graphene decreases with an increase in layers. At 850 ◦C, many dis-
continuous bilayer graphene pieces are clearly observed in Figure 2a. The layers and
defects of graphene are further characterized by Raman spectra (Horiba LABRAM HR,
Kyoto, Japan), as shown in Figure 2d. This demonstrates that the monolayer graphene
in the bright region has an obvious defect in the D band (1350 cm−1). On the other hand,
the 2D/G band ratio of the graphene in the deep region is even higher than that of the
monolayer graphene, as shown in Figure 2d. This indicates a non-AB stacked bilayer
without electronic coupling [25]. Meanwhile, the torsion angle of the bilayer graphene is
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further confirmed by selected area electron diffraction (SAED, FEI Tecnai G2 F20 S-TWIN,
USA) (see Figure S2). At 950 ◦C, the 2D/G band ratio of the Raman spectra in the lighter
gray region is about 3, indicating a typical monolayer graphene film with no obvious
defects. A transmission electron microscope (TEM, FEI Tecnai G2 F20 S-TWIN, USA) is
used to confirm the monolayer graphene layer grown at 950 ◦C, as shown in Figure S3. In
short, the intensity of the defective D band in the monolayer graphene decreases with the
growth temperature, which indicates that the monolayer graphene quality improves as the
temperature is increased.
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Figure 2. Characterization of graphene obtained at different temperatures. (a–c) OM images of
transferred graphene on SiO2 substrate at 850, 900 and 950 ◦C, respectively. (d–f) Raman spectra of
as-grown graphene with different thicknesses at different temperatures. Raman curves correspond to
the regions in (a–c) marked as circles with the same color as themselves.

Generally, there is inevitable damage to and residual adhesive on graphene films
during the process of transferring the graphene onto the SiO2 substrate [26], and the
evaluation of the wide range of thickness uniformity is seriously affected. Hence, the
typical images of the graphene on Ni (111) film obtained at different temperatures are
directly characterized by scanning electron microscope (SEM, FEI Quanta FEG 250, USA)
in Figure 3b–d. These images both show that the thickness uniformity of the graphene
layer is improved gradually with the growth temperature. Combined with the Raman
spectra and OM images of the transferred graphene on the SiO2 substrate (RDMICRO,
Jiangsu Province, China, (100), resistivity: 2–4 mΩ·cm), the non-uniform distribution of
graphene with the main characteristics of monolayer and bilayer structure types at 850 ◦C
is furtherly confirmed (see Figure 3b). It is important to note that the monolayer graphene
could be accurately prepared at 950 ◦C and fully cover the Ni surface (see Figure 3d),
which demonstrates the perfect uniformity and high quality of large-scale graphene. The
additional regions in samples at 850, 900 and 950 ◦C are characterized by SEM in detail, as
shown in Figures S4–S7, respectively.
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Figure 3. Regulating the growth process of graphene for single-crystal monolayer graphene.
(a) Schematics for the fabrication of graphene on Ni (111) film at two topical temperatures, 850
and 950 ◦C, respectively. (b–d) Typical SEM images of graphene grown on Ni (111) film at 850,
900 and 950 ◦C, respectively. (e–g) Typical SEM images of graphene grown on Ni (111) film under
different post-growth annealing times at 950 ◦C.

A reasonable physical model of graphene growth with different temperatures has
been established, as shown in Figure 3a. According to the classical two-dimensional
nucleation theory, a low temperature is conducive to the adsorption of carbon species on
Ni (111) surface, and the graphene nucleation density decreases with increasing growth
temperature [27]. At 950 ◦C, few nucleation sites and small graphene domains form on
Ni (111) surface at the preliminary stage. Then, the graphene domains with the same
orientation merge seamlessly to form a single-crystal graphene covering the whole Ni
(111) surface by adopting the segregated carbon atoms during the rapid cooling process.
More regions in samples at 950 ◦C are characterized by Raman in detail, as shown in the
Figure S8. By contrast, more nucleation sites and larger graphene domains formed on the
Ni (111) surface with the growth temperature decreased from 950 to 850 ◦C. Then, while
the first layer graphene domains rapidly expand and cover the Ni (111) surface, the second
layer may subsequently grow by cutting into the interface between the first layer and Ni
(111) substrate in the segregation process of carbon atoms [22]. The second layer graphene,
whose orientation may not be unique, is marked in red in Figure 3a. As a result, a mixed
morphology of monolayer and bilayer graphene could be obtained at 850 ◦C, as shown in
Figure 3b. The analysis shows that the initial graphene nucleation density is an important
factor in growing uniform monolayer graphene [20].

It should be noted that the post-growth annealing time greatly affects the uniformity
and integrity of monolayer graphene. There are plenty of nonuniform thick graphene spots
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marked as yellow dotted circles in Figure 3e. After the introduction of the post-growth
annealing process, the uniformity of graphene becomes better as the spots disappeared, as
shown in Figure 3f. The main reason is that the subsurface carbon density is higher than
the carbon density of the Ni (111) bulk, and the carbon atoms continuously diffuse into Ni
(111) bulk during the process of post-growth annealing, which results in decreases in the
subsurface carbon density. Low subsurface carbon density is beneficial to the formation of
monolayer graphene on Ni (111), which is in agreement with the simulation results from
the literature [28]. However, Figure 3g shows that there are some graphene holes with a
post-growth annealing time of 60 min. The integrity becomes worse when the annealing
time is too long, which is attributed to the shortage of subsurface carbon density. Above
all, both graphene nucleation and subsurface carbon density contribute to the result of
uniform monolayer graphene.

In order to analyze the quality of EGG grown on Ni (111) at 950 ◦C, characterizations of
the atomic morphology, defects and flatness are employed for evaluating the microstructure
of EGG. The topical AFM image of EGG is shown in Figure 4a. No obvious folds appear in
the field of view, which benefits from the seamless stitching of graphene domains without
producing grain boundaries. Besides, Figure 4b shows the height trace of the white line
noted in Figure 4a. The maximum fluctuation of the atomically smooth surface is about
7.5 nm, and the average roughness is only 0.64 nm. Meanwhile, the obviously threefold
symmetry step textures with the angle of 60◦ are clearly displayed in the graphene/Ni
(111) sample, which is similar to the data of the Ni (111) film. This suggests the growth
of graphene follows the terraces and steps of the Ni (111) surface. The atomic structure
of as-grown EGG is characterized by scanning tunneling microscope (STM, Specs STM
150, Berlin, Germany) in detail, as shown in Figure 4c. The (1 × 1) graphene structure
is formed based on the identical lattice constants of Ni (111) and graphene (2.49 Å for
Ni (111) and 2.46 Å for graphene), mostly due to the tiny lattice mismatch of graphene
with Ni (111) [29]. This indicates the high quality of our EGG sample. Moreover, the STM
also shows that there are two atomic faces, as shown in Figure 4c, and the step height of
0.20 nm is approximately equal to the atomic layer thickness of the Ni (111) film, which
is less than that of the graphene layer (about 0.34 nm) [20]. Therefore, the image reveals
the information of two terraces in the Ni (111) film with one atom step. It is worth noting
that the hexagonal lattice distribution of the graphene uninterruptedly extends across the
step of the Ni (111) film without any wrinkles. Figure 4d shows the enlarged STM image
of graphene on one terrace, as noted by the rectangular box. Remarkably, no defects or
wrinkles are formed in the graphene film grown on terraces of the Ni (111) surface. The
reasonable explanation for the formation of wrinkle-free graphene is primarily attributed
to two factors: the strong interaction between the graphene and the substrate, and the low
thermal expansion mismatch between the graphene and the substrate [24].

The EBSD mapping of EGG/Ni (111) film (see Figure 5a–d) is entirely identical to that
of Ni (111) film, which reveals that the crystallinity of Ni (111) films is kept well during
the process of graphene growth. To further characterize the epitaxial quality of the entire
graphene/Ni (111) interface, low energy electron diffraction (LEED, BDL 600IR, Ontario,
Canada) characterization is applied to provide evidence for crystal orientation of the mono-
layer graphene synthesized on Ni (111) film at 950 ◦C. Figure 5e–n provides an overview of
LEED patterns along a straight line across the entire sample in 0.5 mm steps for evaluating
the orientation distribution of EGG (supporting information is shown in Figure S9). It is
noted that the hexagonal diffraction patterns of six spots with equal brightness is found in
graphene/Ni (111) film. The formation of graphene could be identified from the behavior
of the spot intensity. When there is no graphene on the Ni surface, as shown in Figure S10,
the electron diffraction patterns of clean Ni (111) are three bright and three dark spots due
to the three-fold rotational symmetry of Ni (111) [20,30,31]. By contrast, the diffraction
patterns of graphene show six evenly distributed spots with equal brightness, owing to
the six-fold rotational symmetry of graphene. As a result, it is proven that graphene does
exist on the Ni (111) film, which concurs with the characterization of Raman and SEM. In
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addition, the relative angle between graphene and Ni (111) could be effectively extracted
from the patterns. As shown in Figure 5e–n, the angles between the diagonal spots and
the vertical direction (marked in the figures) in all of the LEED patterns are 28.7◦, and
no additional diffraction spots or rotation spots of graphene are observed. Therefore, it
is inferred that the carbon atoms of the monolayer graphene are precisely above the Ni
atoms, blocking the scattering of the Ni (111) film [32]. The results prove the large-scale
crystallinity of the continuous graphene film, which consistently follows the orientation of
the Ni (111) film [33].
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AFM image of graphene grown on Ni (111) with an average roughness of 0.64 nm. (b) A profile of
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the Ni (111) surface with an atomic metal step measured under a tunneling current of 1 nA and bias
of 100 mV at room temperature. (d) High-resolution STM image of graphene on a Ni (111) terrace
marked as the rectangular box in (c).

The coupling effect between EGG and Ni (111) substrate is further confirmed by X-ray
photoelectron spectroscopy (XPS, Specs PHOIBOS 100, Berlin, Germany), as shown in
Figure 6. The peaks observed in the XPS measures are only related to nickel and carbon
elements, which shows no other impurities in the surface of the graphene/Ni (111) samples.
More importantly, the distinct C 1s peak appeared after graphene growth, compared with
XPS data of pure Ni (111) films reported in the literature [20,30]. Besides, the C 1s peak
with a binding energy of 285.0 eV is higher than 284.4 eV in graphite, which shows a
strong interaction between graphene and Ni (111). This is probably due to the orbital
hybridization of the C and Ni atoms [30,34]. This strong orbital hybridization between
graphene and Ni atoms is generally considered to be the main reason for the perfect spin
filtering of the graphene/Ni (111) interface, as previously studied [35,36]. Hence, the
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full-covered, clean, epitaxial and strong coupling graphene/Ni (111) interface prepared by
our method will be a highlight for graphene spintronics.
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Figure 5. Characterization of the lattice orientation of the graphene/Ni (111) epitaxial interface
obtained at 950 ◦C. (a) Out-of-plane EBSD mapping of the Ni (111) thin film after graphene growth.
(b) The pole figure of the same region. (c) In-plane EBSD mapping of Ni (111) thin film after graphene
growth in a random direction. (d) In-plane EBSD mapping of Ni (111) thin film in the vertical
direction. (e–n) A series of LEED patterns of monolayer graphene synthesized on Ni (111) film at
950 ◦C are acquired with a step of 0.5 mm at a primary energy of 106.9 eV. The diameter of the
measurement spots is 0.5 mm.
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Figure 6. XPS spectra of the graphene/Ni (111) interface. The inset shows the C 1s peak of the
graphene at 285.0 eV.

4. Conclusions

In summary, we have developed a robust and reliable APCVD strategy for controlled
epitaxial growth of uniform monolayer graphene on single-crystal Ni (111) films with an
atomically perfect graphene/FM interface. The optimal growth method is successfully
achieved by making a tune of the well-oriented nucleation process of the Ni (111) catalytic
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surface and the segregation of the subsurface carbon atoms. High crystallinity and uniform
morphology of EGG are systematically investigated, while well-oriented alignment and
a strong coupling interaction with the lattice-matched Ni (111) film have been carefully
identified, which are attributed to the fact that graphene can uninterruptedly extend across
the step of Ni (111) film and the well-oriented domains seamlessly merge into a continuous
EGG. Our work provides a feasible method for the efficient production of high-quality
graphene/ferromagnetic heterostructures, which contributes to the development of future
2D spintronic applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11113112/s1, Figure S1: Schematic of graphene growth processes and the correspond-
ing flow rates in each step of uniform monolayer graphene growth at 850–950 ◦C at ambient pressure.
Figure S2: SAED patterns of (a) mono- and (b) bi-layer graphene obtained at 850 ◦C. Figure S3:
TEM image of graphene grown on Ni (111) at 950 ◦C. Figure S4: Schematic of how the SEM images
sequence is recorded across the sample. Figure S5: SEM images of graphene grown on Ni (111) at
850 ◦C for nine regions in Figure S4. Figure S6: SEM images of graphene grown on Ni (111) at 900 ◦C
for nine regions in Figure S4. Figure S7: SEM images of the grown graphene in different regions at
950 ◦C. Figure S8: Raman spectra characterization of the sample. (a) the whole sample is divided into
six regions (b) the Raman re-sults are performed in each region. Figure S9: The scanning LEED across
the entire sample. (a) Schematic of how the LEED patterns sequence is recorded across the sample.
(b) LEED patterns sequences taken across the entire width of the sample in 0.5 mm steps. Figure S10:
LEED patterns of a clean Ni (111) film and graphene synthesized on Ni (111) film. The LEED patterns
are recorded for a primary electron energy of 106.9 eV. The diameter of the measurement spots is
0.5 mm.
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