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Abstract: The concept of negativity is adapted in order to explore the quantum and thermal en-
tanglement of the mixed spin-(1/2,5) Heisenberg dimers in presence of an external magnetic field.
The mutual interplay between the spin size S, XXZ exchange and uniaxial single-ion anisotropy is
thoroughly examined with a goal to tune the degree and thermal stability of the pairwise entangle-
ment. It turns out that the antiferromagnetic spin-(1/2,5S) Heisenberg dimers exhibit higher degree of
entanglement and higher threshold temperature in comparison with their ferromagnetic counterparts
when assuming the same set of model parameters. The increasing spin magnitude S accompanied
with an easy-plane uniaxial single-ion anisotropy can enhance not only the thermal stability but
simultaneously the degree of entanglement. It is additionally shown that the further enhancement of
a bipartite entanglement can be achieved in the mixed spin-(1/2,5) Heisenberg dimers, involving
half-odd-integer spins S. Under this condition the thermal negativity saturates at low-enough tem-
peratures in its maximal value regardless of the magnitude of half-odd-integer spin S. The magnetic
field induces consecutive discontinuous phase transitions in the mixed spin-(1/2,S) Heisenberg
dimers with S >1, which are manifested in a surprising oscillating magnetic-field dependence of the
negativity observed at low enough temperature.

Keywords: quantum and thermal entanglement; spin-(1/2,S) Heisenberg dimer; exact calculations;

uniaxial single-ion anisotropy

1. Introduction

Extraordinary correlations between subsystems of a quantum-mechanical ensemble,
known as entanglement, belongs to the most fascinating phenomena attracting a lot of
attention during the last few decades. A huge concerment in this field of study closely
relates to perspective applications of this phenomenon in a quantum computing [1-4],
quantum information [5,6], and quantum memory circuits decoding [7-9]. However, a long
period before, it was believed that the entanglement could exist exclusively on the atomic
scale and completely vanishes at macroscopic scales as a consequence of the decoherence
arising from the interactions between a large number of matter constituents and their
environment. It was presumed, in addition, that arbitrarily small thermal fluctuations
rapidly smear out the quantum correlations and thus, the entanglement cannot exist at non-
zero temperatures. Some theoretical predictions [10-15] have presented relevant arguments
that the entanglement could surprisingly exist even at finite temperatures, but rapidly falls
down as temperature increases.

From a theoretical perspective low-dimensional Heisenberg spin models seem to
be a reasonable theoretical ground, which allows an exact study of the quantum and
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thermal entanglement depending on external stimuli such as the magnetic field and/or
temperature [16-28]. Besides the most intensively analysed spin-1/2 case, a few theoretical
works were focused on the entanglement of the mixed-spin Heisenberg systems [26-48].
The particular interest in this field of study has been motivated by the pioneering work
by Wang et al. [26], which demonstrated that a higher difference between dissimilar spin
constituents can slightly enhance the thermal entanglement at higher temperatures due
to the respective shift of its threshold temperature. Unfortunately, the enlargement of a
threshold temperature is simultaneously accompanied by the reduction of the strength
of mutual quantum correlations. In order to minimize the reduction of the degree of
entanglement, many of subsequent studies were concentrated on an extended mixed-
spin Heisenberg chain involving the Dzyaloshinskii-Moriya interaction (DMI) [34-37],
the effect of nonuniform magnetic field [37—43], long-range interaction [44] and uniax-
ial single-ion anisotropy [45,46], respectively. It was verified for the mixed spin-(1/2,1),
spin-(1/2,3/2) and spin-(1/2,5/2) Heisenberg chains that the inhomogeneity of the ex-
ternal magnetic field can be suitable tuning parameter for enhancing the thermal entan-
glement in a high-temperature region. On the other hand, the DMI can enhance the
low-temperature entanglement of the antiferromagnetic mixed spin-(1/2,3/2) Heisen-
berg dimer [36], nevertheless the enhancement of entanglement in the mixed spin-(1/2,1)
Heisenberg dimer is possible only for the ferromagnetic exchange coupling [34]. Based
on the results obtained for the mixed spin-(1/2,1) Heisenberg dimer [45,46], the uniaxial
single-ion anisotropy seems to be another relevant driving force for an enhancement of
entanglement in presence of thermal fluctuations. However, the comprehensive analy-
sis of other mixed-spin Heisenberg dimers with higher spins S > 1 is still absent. This
fact motivated us to study the mixed spin-(1/2,5) Heisenberg dimers involving the uni-
axial single-ion anisotropy and magnetic field simultaneously with the special goal to
verify whether the interplay between the uniaxial single-ion anisotropy, magnetic field
and the spin magnitude S can enhance thermal entanglement at high enough temper-
atures. It should be emphasized that the uniaxial single-ion anisotropy may be rele-
vant for several heterodinuclear complexes as for instance in magnetic compounds [49]
such as the [MnCu(pbaOH)(H0)3]-nH,O (pbaOH = 2-hydroxy-1,3-propylenebis (oxam-
ato)) [50], [Ni(dpt)(H20O)3Cu(pba)]-HyO (pba = 1,3-propylenebis(oxamato) and dpt = bis-(3-
aminopropyl)amine) [51] or [NiCu(pba)(D,0)3]-2D,0 [52].

The paper is organized as follows. The investigated mixed spin-(1/2,5S) Heisenberg
dimer will be defined in Section 2 together with a few details of the calculation procedure
used in our rigorous study. The most interesting results concerned with the quantum and
thermal entanglement under the influence of increasing spin magnitude S will be discussed
in Section 3. Besides the effect of an applied external magnetic field on the thermal
entanglement and the threshold temperature of the mixed spin-(1/2,S) Heisenberg dimers
will be also discussed for an arbitrary spin-S. Finally, some concluding remarks are given
in Section 4 and a few details of analytical derivations are presented in Appendices A-C.

2. Model and Method

Let us consider the mixed spin-(1/2,5) Heisenberg dimers with an uniaxial single-
ion anisotropy under the influence of the external magnetic field defined through the
following Hamiltonian:

A

H = J[APY S +pYSY)+p757]+D(5%)*—Bgup (°+5%). ey

In above, the symbols 1% and 5% (« = x,y,z) correspond to spatial components of
spin-1/2 and spin-S (S > 1) operators, | is the XXZ exchange interaction with an exchange
anisotropy A, D is the uniaxial single-ion anisotropy acting on the spin-S magnetic ion only.
Finally, the model under the investigation accounts for the effect of external magnetic field
B applied along the z-direction, g denotes the gyromagnetic Landé g-factor and yp is the
Bohr magneton.
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In order to study the quantum and thermal entanglement of the mixed spin-(1/2,5)
Heisenberg dimers we will employ the concept of Peres—Horodecki [53,54], according to
which negative eigenvalue of a partially transposed density matrix is a necessary condition
for the onset of entanglement. To quantify the strength of quantum and thermal entan-
glement one may therefore utilize the quantity known as negativity [55]. The negativity
of the mixed state given by the density matrix p is by definition the sum of all negative
eigenvalues A; of partially transposed density matrix p71/2

N(@)= Y Al ©)

Ai<0

It is worthwhile to remark that the negativity of the maximally entangled state is equal
to one-half (M =1/2) for the mixed spin-(1/2,5) Heisenberg dimers, whereas the negativity
completely vanishes (N =0) in the separable states without the bipartite entanglement.

Before calculating the negativity it is necessary to derive the eigenvalues and eigenvec-
tors of the Hamiltonian (1), which can be easily calculated in the standard orthonormal basis
|i#, S*) constructed from all available eigenvectors of z-components of two constituent
spins with eigenvalues y*==+1/2 and 5*=-5,-5+1,...,5—1, 5. For this purpose, let us
introduce first the notation for raising and lowering ladder operators $* = §¥4i$¥ and
fiT =¥ +ifi¥, which allows us to rewrite the Hamiltonian (1) into the more convenient form

N A A N ~ ~ N
=] E(s*;r+sm+)+52pﬁ +D(8%)2—Bgup(p*+5%). (3)

As a result, one immediately realizes that the z-component of the spin operators 5*
(%) trivially act on the original basis states $?|S?) = §7|S?) and ji*|u?) = u?|u*), whereas
the raising and lowering ladder operators ST (27) and S~ (f7) shift the relevant quantum
spin number by unity

15 =[S+ -s (S FISFY,  pTE) = 3w GEF) e F). @)

Subsequently, the application of the Hamiltonian (3) on the basis state | +1/2, §%)
leads to the identity

H|+1,5%) = %\/5(54—1)—52(5211) |F1,5741)
+%[Sz(i]+2Dsz)—h(ZSZil)}H:l,SZ>, (5)

where S =-S5, —-5+1,...,5—1,S and h=Bgup. The non-zero matrix elements define the
block diagonal structure of the Hamiltonian, which consists of two one-by-one blocks and
2S two-by-two blocks characterized by a specific value of the z-component of the total spin
Sf = 5*+p* running from —S—1/2 to S+1/2. Consequently, one can easily derive the
respective eigenvalues and eigenvectors. The extremal values of S =4(S+1/2) define
two one-by-one blocks, whose element is identical with its eigenvalue and the respective
standard basis state designates the corresponding eigenvector

<i%,i5|’mil,i5>Z%[S(I+2DS)¢]1(25+1)],
1
Es,i(s+%) =3 [S(J4+2DS)Fh(25+1)],
|£(S+3)) =1, £8). o
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The remaining sectors with the total spin momentum S} =—-5S+1/2, -5+3/2,...,5—
1/2(§*=-5+1,...,5—1) form two-by-two blocks

( (3,5%1#|3,5%) (3, 57|H| -3, 5% +1) )

(-1, S*+1|H|3,5%) (-5, S*+1|H|—1,53+1)

@)

with the matrix elements explicitly defined as
(3, 5717}, 5%) = 1[5 +2D57) ~h(257+1)],

(~1, 511, 55+ 1) :%[f(SZ+1)(]—2DSZfZD)fh(252+1)],

. N A
(3, H|-%, 85 +1) = (-1, " +1|71| 1, 5%) = %\/S(SJrl)—SZ(SZ—H). 8)

The respective couples of eigenvalues and eigenvectors within those two-by-two
orthogonal subspaces read

¥ PS? 1 2 z F 1 ¢z + 1 ¢z
€550 = —T:FE\/RS{FQS,S? [(SF)5) = Cs,5f|§f5 >:FC5,5tZ -3, 5°+1). 9

For brevity, we have introduced in Equation (9) the new functions Psz, Rsz, Qs sz, C?SF,Sf
denoting the following expressions

Ps: = (J—2D)—D(257-1)(257+1)+4hS;, (10)
Rs: =2(J-2D)S;, (11)
Qs,s: = (JA)?[4S(S+1)— (257 —1)(25; +1)], (12)

1 RSZ
T 1
PV RE4Qss

Based on the knowledge of a complete energy spectrum of eigenvalues €5 1 (5,1/2), 835?

and corresponding eigenvectors | £ (S+1/2)),|(S7)+) (S5f=—S+1/2,...,5-1/2), one is
able to construct the relevant density operator p according to the formula

(13)

p= e s s+ e Moo b (s44))-(s+3)
5-1/2 7/38;,? Iy s fﬁe;rlsz 5z 5z 14
T DI R T C B IR PR TG WT(E S ] | S
§7=—5+1/2

where B=1/(kgT), T is an absolute temperature, kg is a Boltzmann'’s constant and Z is
the partition function

_Bs Bh SEH? bp, B
Z:Z{e 7 (J+2DS) COSh|:(25+1):| + ) et cosh(,/RzerQs 5z> . (15)
2 Si="541/2 4 St t

The density matrix p representing a matrix representation of the density operator (14)
again has in the standard basis the same block diagonal form (classified according to
the 57 value) involving two one-by-one blocks with the extremal values of the total spin
S; = £(S+1/2) and 2S two-by-two blocks with S = —S+1/2,...,5—1/2. All non-
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zero elements of the density matrix can be commonly expressed through the following
general formulas

Lo Pos, if §5=8;57=5+1;
—Be~ —Bet
(3,5%1pl3,5%) = z (Cs_,sg)2e ﬂss'sf-F(C;sf)ze ﬁgs's?}, (16)
if $°=—8,—5+1,...,5-1,
1 1
Se=—5+1,...,5-1,
LePssh,f gm_g5 5 =51
—Be~ —Bet .
<_%,SZ|‘6|_%,SZ>: % (C;,S;’)ze ﬁ85/5?+(C§,Sf)Ze ,585,5; , (]7)
if $?=-5+1,-S+2,...,55:=5"—1,
Si=—S5+3,...,5—3,
Coc:Cd o [ _get g
(3, 5711}, 57+1) = (~}, 5% +1pl}, 57) = 2% [ Posi e 5]
if §°=—5,—5+1,...,5-1,
1 1
z_ - _ = 1
S; S+2,...,S 5 (18)

For a completeness, the readers can find the explicit form of the density-matrix ele-
ments for a few selected mixed spin-(1/2,S) Heisenberg dimers (5=1,3/2,2,5/2) in the
Appendix A.

In order to calculate the density matrix p71/2 partially transposed with respect to the
spin-1/2 subsystem, it is sufficient to replace the bra and ket state vectors referred to the
spin-1/2 subsystem. It is clear, that the diagonal elements derived from Equations (16)
and (17) remain unchanged, whereas off-diagonal ones are moved to other positions. The
partial transposition does not conserve the total spin momentum S7, but it conserves the
staggered spin momentum S}, = 5% —u* running from —S—1/2 to S+1/2. Subsequently,
the non-zero elements of the partially transposed density matrix p71/2 expressed in term of
57, have the form

Lo Frasy, if 57=5;87,=5—1
<l SZ‘pTl/Z‘l SZ>: 1 (cs )2 7‘B€;5?7 o ( n )2 7&;55 o (19)
2/ 2/ Z |\Cs,5:,+1)7€ " Cs,s: +1)°€ "
if $*=-5,—-S+1,...,5-1,
3
Sfmzfsfi,...,S*j,
Lo Pseeh), if 57=-5;57, =—S+1
_Re— __Ret
(-3 51021-1,8) =0 L |(edg, )% SR e e P, 20
if $=-S5+1,-5+2,...,5,
S, =—S+3,...,5+3,
Coe: Coe _ Be—
(—3, 816213, 55+1) = (3, 55+ 1|72 -}, 57) = 2SS {e PeSsin _e /555/5?"1},
if $°=-5,—5+1,...,5—1,
1 1
2 = S4s,...,5—>. (21
tm S+zr rS 2 ( )
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Note that the density matrix p71/2 is a block diagonal with a maximal block’s size of
2 x 2 achieving a specific Sf,, value. Two one-by-one blocks with extremal Sf,, =4(5+1/2)
involve a single element

2 _ge 2 _
(3 FspheEL 7S =2 | (T ) HCsrs-1)) ©  (22)

which directly determines two positive eigenvalues A, (s,q/7) of a partially transposed
density matrix

LI+ 2Py [ 2 Pl
A¢(S+%):§ <CS,1(S—§)) e +<CS,3F(S—%)> e T2 (23)

Other 25 two-by-two blocks determined by basis state vectors with 57, = —S+
1/2,...,5-1/2

( <%/SZ|pATl/2’%,SZ> <%/SZ|p‘T1/2|_%,SZ_l> )
<_

L5 -10pT21L,57) (~, 5 1]pTe| -4, 5 -1)

N—

M(Siy)= () e

mpy My

immediately result to the remaining couple of eigenvalues

1
A;Ffm =5 [(mn +my)F \/(mn m22)2+4m12m21}. (25)

Due to length of explicit form of the Equation (25), the readers can find them in Appendix B.
At the same time, the complete list of partially transposed density matrices §'1/2 for the
mixed spin-(1/2,5) Heisenberg dimers with specific spin values S=1,3/2,2,5/2 is given
in Appendix C. Analysing Equation (25) in detail one identifies that only eigenvalues /\g,tzm
can be negative, and hence, the respective bipartite entanglement is in accordance to the
definition (2) determined by the formula

5—3
N =- ) min(O,AS_?m). (26)

— 1
sfm__s+7

3. Results and Discussion

In order to minimize the huge parametric space, all further discussions will be lim-
ited to the physically most interesting case with an isotropic exchange interaction defined
through the parameter A =1. For simplicity, the gyromagnetic factor g of both types of mag-
netic ions is set equal to two (g =2). It is worthwhile to note that other choice of the unequal
g factor has only the quantitative, but not qualitative, impact on all obtained observations.

3.1. Quantum Negativity

The behaviour of the quantum negativity of the mixed spin-(1/2,5) Heisenberg dimers
with §=1,3/2,2,5/2,3,7/2 is illustrated in Figure 1 in the D/] — upB/] plane by con-
sidering the antiferromagnetic exchange coupling | > 0. The density plots of quantum
negativity simultaneously illustrate stability regions of all relevant ground states |(S})—)
and |S+1/2).

It is worthwhile to remark that the negativity at zero magnetic field was compre-
hensively analysed in our preceding paper [28] and thus, the case ugB/ ] =0 will be just
marginally explored in our subsequent discussions. It has been found that the negativity
at upB/] =0 exhibits qualitatively different behaviour for integer and half-odd-integer
spin-S constituents, if the uniaxial single-ion anisotropy D/] > 0 of easy-plane type is
taken into account. It was surprisingly detected that the enhancement of a degree of entan-
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glement for the mixed-spin Heisenberg dimers involving an integer spin S emerges as a
consequence of interplay between the increasing spin magnitude S and uniaxial single-ion
anisotropy D/] >1/2. Nevertheless, the highest negativity "= (1/5—1)/4 reached for
the mixed-spin Heisenberg dimers with integer spin S at the specific value D/J=1/21is
significantly smaller than the maximal negativity /' =1/2 detected for the mixed-spin
Heisenberg dimers with an arbitrary half-odd-integer spin S.

8 (a) S=1 8 (b) S=2

2 13/2)

upB/J

0 0 0
-02 0 02 04 06 08 1-02 0 02 04 06 08 1-02 0 02 04 06 08 1
3

(d) S=3/2 (e) S=5/2

22 0 02 04 06 08 102 0 02 04 06 08 1-02 0 02 04 06 08
D/J D/J D/J
Figure 1. Density plots of a quantum negativity in the D/] — ugB/] plane for the spin-(1/2,S)
Heisenberg dimers with the antiferromagnetic exchange coupling | >0 for an integer (upper panels:
(@S =1,()S =2, () S = 3) and half-odd-integer (lower panels: (d) S = 3/2,(e) S = 5/2,
(f) S = 7/2) spin magnitude and isotropic interaction (A=1).

The external magnetic field reduces the degeneracy of the mixed spin-(1/2,5) Heisen-
berg dimers due to the Zeeman's splitting of energy levels and the quantum negativity of
an arbitrary mixed spin-(1/2,5S) Heisenberg dimer in a state with the total spin S7 can be
expressed through the general formula

(27)

1 45(S+1)— (25 —1)(257+1)
N:C;Sfcs,s;: \/

2/ (257)2(1-20)2+45(S+1)— (257 -1) (257 +1)

It is evident from Equation (27) and Figure 1 that the quantum negativity of each |(S)—)
ground state is fully independent of the external magnetic field and its magnitude de-
creases towards to the completely separable (N = 0) ferromagnetic state |1/2+S) with
57 =5+1/2. However, the increasing magnetic field is responsible for existence of discon-
tinuous changes of the quantum negativity at all field-driven magnetic phase transitions. It
follows from Figure 1 that maximal bipartite entanglement is reached for the specific value
of the uniaxial single-ion anisotropy D /] =1/2 (similar as in the ypB/] =0 case), at which
an arbitrary mixed spin-(1/2,S) Heisenberg dimer shows, in agreement with Equation (27),
the highest quantum negativity A’ =1/2 until the sufficiently high magnetic field reorients
both spins into its direction.

The behaviour of the quantum negativity in the regime of easy-axis uniaxial single-ion
anisotropy D/ ] <0 confirms previously reported findings [30,33,34] that the increasing
spin magnitude S enlarges the stability of entangled state with respect to the magnetic
field. Nevertheless, the degree of respective bipartite entanglement is gradually reduced.
Contrary to this, the increasing spin magnitudes S induces the enhancement of a quantum
negativity for an arbitrary |(S7)—) (Sf < S—1/2) ground state of the mixed spin-(1/2,5)
Heisenberg dimers assuming easy-plane single-ion anisotropy D/ > 0. In contradiction



Nanomaterials 2021, 11, 3096

8 0f 23

to the zero-field case, the enhancement of a negativity is observed even for 0<D /] <1/2
as a consequence of reduction of ground-state degeneracy in respective parametric space.
This is a very important observation from the application perspective, because variation
of a magnetic ion in the mixed spin-(1/2,S) Heisenberg dimers, offers a relative simple
alternative how to enhance the bipartite entanglement. The origin of qualitatively different
behaviour of the negativity below and above D/] = 0 can be explained through the
respective variation of the total spin value S7. In the |(S—1/2)_) ground state emergent in
easy-axis regime D /] <0, the total spin S; =S5—1/2 is gradually enhanced with increasing
spin size S, but the difference 45(S+1)— (25 —1)(257+1) entering into the Equation (27)
remains constant, 8S. Consequently, the quantum negativity decreases as the spin S
magnitude enlarges according to the formula

-1/2

+4 (28)

(1-29)%(25-1)
N= [ 25

Considering the fixed value of the total spin S; and the easy-plane regime D/ > 0 the
difference 45(5+1)—(25; —1)(2S;+1) in Equation (27) enlarges with an increasing spin
size S, which means that the denominator in rewritten form of Equation (27)

—-1/2
4(287)*(1-28)?

S-S 1) 25 +1)

(29)

“

increases and the respective quantum negativity is thus naturally enhanced. In the special
case of D/] = 0 the negativity is an inverse function of spin magnitude S and thus the
quantum entanglement reduces upon strengthening of the spin size S.

For the ferromagnetic exchange coupling | <0 (Figure 2), the quantum entanglement
can be achieved only for the mixed-spin Heisenberg dimers with an easy-plane single-ion
anisotropy D/|]J| >0 due to possible preference of various ferrimagnetic or antiferromag-
netic ground states |(S7)+) (Sf <S—1/2). Since the previously derived relation remains in
force, the quantum negativity of each |(S7)+) ground state with the total spin 57 <S—1/2
always increases as the spin magnitudes increase. It should be pointed out that the degree
of bipartite entanglement for an arbitrary |(57)4) ground state is significantly smaller in
comparison to its antiferromagnetic counterpart, which makes the ferromagnetic quantum
mixed-spin Heisenberg dimers less attractive for practical utilizations. For a completeness,
it should be emphasized, that the invariant point at D/|J|=1/2 is completely absent in the
ferromagnetic case | <0 and the highest negativity (excluding the ground state |(0))) can
be found in a proximity of the isotropic point D/ |J| =0. Strictly at D/|J|=0and ppB/] =0
all [(S7)+) (|SF| £S—1/2) ground states and | &= (S+1/2)) ones are degenerate and the
respective negativity follows the simple relation

(5-1)

N= (S+1)(25+1)°

() §=2 0.5

(30)
N
Io.4

0.3
0.2
0.1
0

15/2)

1sB/|J|

0 0 0
-02 0 02040608 1 -02 0 02040608 1 -02 0 02040608 1
Figure 2. Cont.
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(d) §=3/2
15} { 1.5}
12)
17 1 17

0.5 ﬂ 0.5r1
0

0 0
-02 0 02040608 1 -02 0 02040608 1 -02 0 0204 0608 1
D/|J] D/|J]| D/J]|

upB/|J]

Figure 2. Density plots of a quantum negativity in the D/|J| — upB/|]| plane for the spin-(1/2,5)
Heisenberg dimers with the ferromagnetic coupling constant | < 0 for an integer (upper panels:
@S =1,()S =2, (c) S = 3) and half-odd-integer (lower panels: (d) S = 3/2,(e) S = 5/2,
(f) S = 7/2) and isotropic interaction (A=1).

3.2. The Thermal Negativity

In order to analyse the thermal behaviour of the negativity we have chosen the specific
sets of model parameters under the influence of magnetic field being consistent with
|(§—1)—) ground state (Figure 3), [(0)+) or the [(1/2)+) ground state (Figure 4) and finally
with the |(1)+) or [(3/2)+) ones (Figure 5).

Focusing on Figure 3 we can generalize our previous zero-temperature conclusion [28],
which states that the increasing spin magnitude S reduces the quantum as well as low-
temperature thermal negativity. On the other hand, the increasing spin magnitude S
enlarges the threshold temperature, which subsequently allows us to detect a subtle
enhancement of the thermal entanglement at larger temperatures if the spin size S increases.
The obtained results are in a perfect quantitative agreement with previous observations for
the Heisenberg dimers without the uniaxial single-ion anisotropy D /] [26,29,33,34].

0.5 ‘ ‘
D/J=-0.2, ugB/J= 0.5
0.4F
L S=1
N
. - 5=3/2
0.3r -~ i\?\\ __g_9
= RN 5=5/2
0.2} - 5=3
S=17/2
0.1} o
0 . e DS | \\\\
0 0.5 1 1.5 2

kpT/J

Figure 3. The thermal dependence of the negativity for a few different values of spin magnitudes S
calculated at D/J=—0.2 and ugB/]=0.5. The choice of model parameters corresponds to the region
where the ground state |(S—1/2)_) is favoured.

The most significant finding follows from Figures 4 and 5. It is evident from these
figures that the increasing spin magnitude S can enhance not only the threshold tempera-
ture, but it can also enhance the degree of thermal entanglement in contrast to previous
knowledge. It should be emphasized that the above statement holds provided that the
ensemble of integer or half-odd-integer spins S is taken into account separately. At low
magnetic fields, the thermal negativity of Heisenberg dimers consisting of both half-odd-
integer-spins always saturate in the maximal value A =1/2 in the asymptotic limit of
absolute zero temperature, whereas the maximum of negativity of Heisenberg dimers
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composed of integer and one-half spin converges to the value N = 1

45(5+1)
(1-2D/])%+4S(S+1)

Hence, one can immediately conclude that the negativity of the Heisenberg dimers with
integer spins S can reach the maximum value N'=1/2 just for the special case D/]=1/2.

0.50~ ‘
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'y Y
al \ 047 % S=1
0. N . 03 \\ -—-8=2
N 0.2 o 5=3
0.3} AN 01
?\\ 0 - SN
= _>~_ 0 05 1 15
0.2+ 5=3/2 NN kgT/J
——S§=5/2 RN
——S8=17/2 N
0.1r / N
(a) upB/J=10.2 \‘\\\ T
O L e
0 0.5 1 15

=

0.5

0.4r

031

0.2

0.1r

0

= ‘
W §=3/2 05 )
Y -—S§=5/2 0.4 i) g—1
N 7o S=7/2 2 03 —-s=2
A 0.2 N>, —-8=3
N 01 N
v NN
N =
N N 0 0.5 1 1.5
SN ksT/|J|
(b) psB/I|= 01
0 0.5 1 15

kgT'/|J|

Figure 4. The thermal dependence of the negativity for a few different values of spin magnitudes
S calculated at D/J=1and (a) ugB/]=0.2, [ >0 or (b) ugB/|J| =0.1, ] < 0. The choice of model
parameters corresponds to the region where the ground state |(0)+) (half-odd-integer spin S) or

[(1/2)+) (integer spin S) are favoured.

0.5

I 0.5
4 b\‘\\\ y §=1
0.4+ N\ o4 \\\ —o9=2
R 0.3 "~ ——5=3
N = RGN
0.2 .
0.3} RN NN
= 01
RN T e
0.2¢ 5=3/2 SN0 05 1 15
- 8=5/2 RN kgT/J
——85=17/2
0.1f
(a) ppB/J=1.1
0 : —
0 0.5 1 15

=

0.5

0.4

0.3f

0.2r

0.1r

0

§=3/2 05 o1
---8§=5/2 04 . §_s
TN S=T/2 o3 -~ §=3
R AN |
N \\\ 0.2 ’\‘?\\\
SN 0.1 NN
0 RN
AN 0 0.5 1 1.5
“ N kpT/|J|
(b) ppB/|J[=06 "~ -
0 0.5 1 15

kgT/1J|

Figure 5. The thermal dependence of the negativity for a few different values of spin magnitudes
S calculated at D/J =1 and (a) ugB/J=1.1, ] >0 or (b) ugB/|J]| =0.6, ] < 0. The choice of model
parameters corresponds to the region where the ground state |(1)+) (half-odd-integer spin S) or

[(3/2)+) (integer spin S) are favoured. In case of S =1 the |S+1/2) ground state is realized in

both panels.

Furthermore, in Figure 6, we present, the behaviour of the thermal negativity under
the changes of magnetic field. The same model parameters have been used as in the above
analysis. It should be emphasized that absence of Zeeman’s term leads to the ground-state
degeneracy in the zero-temperature limit and thus, the zero-field negativity is always
smaller than that in an arbitrary small but non-zero magnetic field. This fact is visualized
through the symbols on the y-axis determining the respective asymptotic values of the

negativity in zero-field limit.

In agreement with general expectation the increasing temperature reduces the bipar-
tite entanglement with a significant drop of the negativity emergent in a proximity of all
magnetic-field-induced phase transitions associated with crossing of energy levels. Around
each level-crossing field the interplay between thermal and quantum fluctuations is the
most pronounced and the negativity shows a marked local maximum located between two
neighbouring level-crossing fields. In a consequence of that, the mixed spin-(1/2,S) Heisen-
berg dimers exhibit very specific oscillating changes of the negativity at low and moderate
temperatures (Figure 6b). It is worthwhile to remark that such oscillating behaviour is
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possible only for the spin-(1/2,S) Heisenberg dimers with higher spin magnitude S >1,
because existence of at least two level-crossing fields has to be guaranteed. In addition it
turns out that the distance between two local maxima can be tuned through the uniaxial
single-ion anisotropy D/ |, which unambiguously determines the stability region (field
range) of a given magnetic ground state (see Figures 1 and 2).

0.5 : : :
ksT/J=0 (a) D/J=-0.2
046 - o> ___|
¢
0'3!# T'];O 5
2 gl /J=0.5 5.1
| ——S5=3/2
0.2 ey
S=5/2
(O S
| k)=~
| S N,
o : Pt R
0 0.5 1.5 2

1
;J,BB/J

Figure 6. The negativity as a function of the external magnetic field for four different spin magnitudes,
three different values of temperature and two selected values of the uniaxial single-ion anisotropy:
(@D/J=-02;(b)D/]=1.

Finally, let us turn our attention to the dependence of the threshold temperature on
the spin magnitude S as well as the external magnetic field. The results presented in
Figure 7 in the form of the threshold temperature versus magnetic field plot for a few
selected spin sizes S confirm previous conclusions [26,29,33,34] that the threshold temper-
ature gradually enlarges with an enhancement of the spin magnitude S. It is also quite
evident from Figure 7b that the antiferromagnetic mixed spin-(1/2,S) Heisenberg dimers
are more persistent against rising temperature and magnetic field than their ferromagnetic
counterparts (the negative values of kg1, /] in Figure 7b correspond to the mixed-spin
Heisenberg dimers with the ferromagnetic exchange coupling | <0). Another remarkable
finding is that all investigated mixed spin-(1/2, S) Heisenberg dimers exhibit a striking
reentrant behaviour of the threshold temperature regardless of the character and size of the
exchange coupling and the uniaxial single-ion anisotropy. The origin of the unconventional
reentrant phenomenon could be explained by incapability of the magnetic field to suppress
the thermally induced population of the entangled excited states, which is reflected in
a thermally stimulated rise of the negativity. It appears worthwhile to remark that exis-
tence of magnetic-field-driven phase transitions gives rise to a stepwise dependence of the
respective threshold temperature. The threshold temperature slightly decreases at each
level-crossing field for the antiferromagnetic Heisenberg dimers (J >0), while an opposite
effect is observed for the ferromagnetic Heisenberg dimers (] <0), see Figure 7b.

) N=0 ®)
””” Tl S=1
F-—=——- - AN —m§=3/2
e R
~ ~ 1 by / S§=5/2
> = S s
Eriu &‘:, o d , . S=7/2
= = gk -
= N N AN
,,,,, 4 N\ \
|, - \
1 ’ N=0
0 1 2 4 5 6

Figure 7. The behaviour of the threshold temperature as a function of external magnetic field and
various spin-S magnitude. Results are calculated for two different values of uniaxial single-ion
anisotropy: (a) D/J=—0.2 and (b) D/] =1, respectively.
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4. Conclusions

In the present paper, we have exactly examined the effect of the spin magnitude S,
magnetic field and uniaxial single-ion anisotropy on the quantum and thermal entangle-
ment of the mixed spin-(1/2,S) Heisenberg dimers. In particular, it has been verified that
the concurrent interplay of the uniaxial single-ion anisotropy and the external magnetic
field basically influences bipartite entanglement of the mixed-spin Heisenberg dimers.
To quantify the degree of bipartite entanglement we have derived the exact analytical
expression for the negativity in terms of Peres-Horodecki criterion [53,54] followed by the
mathematical formulation due to Vidal and Werner [55]. In the present study, we have
provided first an exhaustive analysis of all possible ground states of the mixed spin-(1/2,5)
Heisenberg dimers as a necessarily prerequisite for further entanglement analysis. Two
different scenarios were observed for both the antiferromagnetic (J > 0) and ferromagnetic
(J <0) coupling constants depending on the character of an uniaxial single-ion anisotropy
D/]. For the easy-axis single-ion anisotropy D/ ] <0 the mixed-spin Heisenberg dimers
exhibit either one or none magnetic-field-driven phase transition, whereas the increasing
magnetic field generates S+ (25 mod 2)/2 consecutive field-driven phase transitions be-
tween the ground states with the total spin |S7| < S—1/2 for the easy-plane single-ion
anisotropy D/ >0.

As a direct consequence of different effect of easy-axis and easy-plane uniaxial single-
ion anisotropy one detects very different influence of increasing spin magnitude S on
the bipartite entanglement. In the case of easy-axis uniaxial single-ion anisotropy, an
increasing spin S always suppresses the degree of quantum entanglement as dictated
by the formula Equation (28). In contrast to this, the increasing spin magnitude S for
the easy-plane single-ion anisotropy D/ ] > 0 leads to the coincidence of regions with a
fixed number of the total spin 57 <5—1/2, and in accordance with the Formula (29), the
enhancement of a quantum entanglement can be observed. Interestingly, two specific
conditions with maximal entanglement invariant on external stimuli have been identified
for: (i) antiferromagnetic mixed spin-(1/2,5) Heisenberg dimers with an arbitrary spin-
S magnitude for the particular value of the uniaxial single-ion anisotropy D/] =1/2,
or (ii) the antiferromagnetic ground state |(0)_) exclusively existing only in the mixed
spin-(1/2,5S) Heisenberg dimers with both half-odd-integer spin constituents.

The comprehensive analysis of a thermal entanglement above a unique ground state
|(§—1/2)-) confirms previously reported findings that the increasing spin magnitude
S enlarges the threshold temperature, but unfortunately reduces the degree of thermal
entanglement. However, a completely novel and unexpected behaviour has been observed
for the easy-plane single-ion anisotropy D/ ] >0, where the increasing spin S may simulta-
neously enlarge the threshold temperature as well as the degree of thermal entanglement if
one compares solely integer or half-odd-integer spin-S cases. It has been evidenced that
except the particular case with D/]J=1/2 the mixed spin-(1/2,5) Heisenberg dimers with
both half-odd-integer spins generally achieve higher degree of entanglement, which makes
them more attractive for a practical utilization. Last but not least, a fascinating oscillating
changes of the negativity were observed upon the variation of the external magnetic field
at low and moderate temperatures. The unconventional oscillating behaviour of the nega-
tivity originates from existence of consecutive field-driven phase transitions emergent at
level-crossing fields, at which the negativity rapidly falls down before it produces signifi-
cant local maxima localized in between two level-crossing fields. It is noteworthy that the
local maxima of the negativity of the mixed spin-(1/2,5) Heisenberg dimers with integer
and half-odd-integer spin S are not equal due to existence of different ground states in the
parameter region of the easy-plane single-ion anisotropy D/ ] > 0. Of course, the envelope
of such oscillations is gradually suppressed upon strengthening of the magnetic field until
the fully polarized state is reached.
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Appendix A. Density Matrices
Appendix A.1. Density Matrix of the Mixed Spin-(1/2,1) Heisenberg Dimer

The density matrix of the mixed spin-(1/2,1) Heisenberg dimer can be recast into the
following block-diagonal form

X 121 =31 1300 =31 31 [-30
(3,1 / p1a 0 0 0 0 0
<—%/—1| 0 06,6 0 0 0 0
o= <<%/(1)I 8 8 02,2 02, 8 8 (A1)
e o o
27 033 03,5
(~3,0] 0 0 0 0 05,3 05,5
The individual elements of the density matrix are defined as
1 —pe s
pLi=(3 10013 1)=5e "2, (A2)
1(, ., B —pe;
p22=(3,00013,0)= 5 [ (c;))%  “+(c], e ), (A3)
Z L3 L3
« 1 _ P —Pe 4
P3,3—<2,—1P|§,—1>—Z<(611)26 (el )Pt 2), (A4)
) )
~ 1 “Pe i, Py
p4l4:<—%,1p|—%,1>zz((le)Ze L3 +(Cll)2e 1'2>/ (A5)
2 2
R 1 Py —PBe, 4
ps,s—<—2,om—;,o>=z<<cf]>2e V(e e ) (46)
72 72
A 1 —Be, 3
66=(—3, —1lp|—3,— )=Ze b7z, (A7)
+ —
C lC 1 7/3€+ Be~
024=(L,000]-1,1) = 1'221'2 (e 1l e 1,%>,
e + -
. L1y [ —pe —pe
P2 ==, 1|pl3,0) = (e e 1'%>. (A8)
+ —
e ac
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C+—1C1_—l —pel =P 4
p5,3—<—%,0|p|%,—1>—'2’2<e 1 ) (A9)
The partition function Z of the mixed spin-(1/2,1) Heisenberg dimer reads as follows

Z:Z{efg(HZD) cosh(#) +2e§(172D> cosh {g (]*2D)2+8(]A)2} Cosh(%h) } (A10)

Finally, the probability coefficients C;sg and the respective energies sf, 5 (5] =-3/2,
—1/2,1/2,3/2) have the explicit forms

102D 1\ [-2D)248(jA2, (A1D)

»MH

5= (J—2D) e
L-3 JU—2D)2+8(JA)2  1-%

1: \/ J—2D e, =
L3z V(J-2D)2+8(JA)2" Lz

Cc 3=1 &€ 3 =
2 143~

Y —apsom i (J—2D)248(JA)2, (A12)

N\»—\ )-Mr—‘

(J+2DF3h). (A13)

Appendix A.2. Density Matrix of the Mixed Spin-(1/2,3/2) Heisenberg Dimer

The density matrix of the mixed spin-(1/2,3/2) Heisenberg dimer can be recast into
the following block-diagonal form

19 15D D D D LD D L
(331 01,1 0 0 0 0 0 0 0
33 0 Pss 0 0 0 0 0 0
(3,3 0 0 02,2 02,5 0 0 0 0
= <*1%/%| 0 0 05,2 055 0 0 0 0 . (A14)
(35l |0 0 00 s om0 0
e T I S
(1,3 0 0 0 0 0 0 P44 04,7
e
The individual elements of the density matrix are defined as
1 —pes
_ (1 31511 3y_ ;
91,1—<§r§\P|jr§>—§e 22, (A15)
. 1 _ o P , B
p22=(3,310l3,3) =5 | (c; )%~ 2'+(cj )% '), (Al6)
Z\\"21 31
STV PO CURE ) PPEY Sy PONSER
p33=(3,=3Ip13 —3) =z (e V% (g )Pe 20, (A17)
Z 20 20
RPN E S U B VP S PRI S
paa=(3 =30l —3) =% (C%/,l) e +(C%,71) A K (A18)
LT ST O IR P S
ps5=(=2.3l0l=3,3) =% (c3 )e 2'+(c; )%e 21|, (A19)
Z 31 21
a1 = L 2 0 o 2 P
P66—<*§r§|P|*§/§>:§ (C%,O) e ¥ +(C%,O) e 27, (A20)

,/g-*-
((cf{_l)ze 2y )e 8%"1>, (A21)
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prs=(-1 —3lpl-1 D =ze "I, (a2)
pos= 3, Hol 4,8y = (éﬁ%le"“? )

p52=(—13,31013,3) —C;lzc%’l (e_ﬁﬁ%’l—e_ﬁsg‘), (A23)
SRR L (7).

pe3=(—%31pl3, %)= Cg'(;%'o (eﬁgéo —eﬁ£3'°> , (A24)
pa7=(3,—31l=3,—3)= C;_gg'_l (eﬁeg e ﬁgé'*) ,

PO T T (’5-‘3> (a25)

The partition function Z of the mixed spin-(1/2,3/2) Heisenberg dimer reads as
follows

zzz{e—%mm Cosh(25h)+2e§(f—5D> cosh(g (J—2D)2+3( ]A)2> cosh(Bh)
+efU-D) cosh(ﬁ (]A)z)}. (A26)

Finally, the probability coefficients C:St,Sf and the respective energies £§Sf (5 =-2,-1,
0, 1, 2) have the explicit forms

¥ (J-2D) F __1 2
it = f¢ TTaniE U0 F/U 2D (A2)
Ty T =— 5 U-D)F U8R (A28)

] ZD) F :71 _ 1 _ 2 2
c%,1 \f\/ T 2D 3007 £, 4(] 5D+4h)$2 (J—-2D)243(JA)?,  (A29)

¢ 0=, 1 12= 2 (J+3DF2h). (A30)

Appendix A.3. Density Matrix of the Mixed Spin-(1/2,2) Heisenberg Dimer

The density matrix of the mixed spin-(1/2,2) Heisenberg dimer can be recast into the
following block-diagonal form

12.2) =32 151 =32 130 =31 51 =30 32 |-3-1)

(1,2 o1 0 0 0 0 0 0 0 0 0
-3,-2| 0 £10,10 0 0 0 0 0 0 0 0

(3,1 0 0 022 026 0 0 0 0 0 0
1,2 0 0 062 066 0 0 0 0 0 0

o= (0 | 0 0 0 0 P33 P37 0 0 0 0|, (A31)

211 0 0 0 0 073 P77 0 0 0 0
(3,1 0 0 0 0 0 0 P44 P48 0 0
(=3,0] 0 0 0 0 0 0 P84 P88 0 0
(32l 0 0 0 0 0 0 0 0 P55 P59
5.1 0 0 0 0 0 0 0 0 P95 09,9
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The individual elements of the density matrix are defined as
. 1 —Be,s
pLi=(321l3,2)=ze "3, (A32)
R 1 _ —Pe, 5 —Be s
pz,z=<;,1|p|;,1>=z(<c23>2e 24 (e, e ) (A33)
2 %)
1 _ —/Ss_l _ﬁ3+l
p3,3=<2,0|p|§,0>=z((c21>2e 24 (c] )% ) (A34)
72 72
« 1(, - —Pe, 1 —Pe, 1
p44=<2,—1|p|%,—1>:2<<c2,yze (e ) ? ) (A35)
. 1( _ —Pe, s —Pe; 5
p5,s=<2,—2|p|§,—2>=2<<c2g>2e (e y)e ) (A36)
1 (O T S Y B g
pss={~b 2l -3 2 =2 (Ve Pl Ve 2, (437)
’2 2
Al_1 L T L P oS}
o= (bl =B =2 (e ey e 2, (A38)
72 72
51 L T Y S
P88:<_2/0|P|_2r0>:§ (02,_%) € 7+(C2,_%) € 2, (A39)
R 1 —Be, 3 _ —Be, 5
099="_(—13,—11p|-3, - >:Z((C;,§)2€ : 7+(02,7%)2e > 7), (A40)
. 1 —Be, s
p1010—<—2,—2|p\—§,—2>:§e 21, (A41)
+ —
C QC 3 —‘BS+ —Be-
pe=(1 11p|-4,2) = =122 ( *i—e )
e + -
R 2,372,3 —Be 5 —pe 5
po2=(=3,20pl3, 1) =~ 2<e e ) (A%2)
+ —
C lC 1 *‘BEJF —Be”
037=(3,0lp|—3,1)= 2/232/2 (e *1—e 2’%>,
+ —
cricoy [ _pet g
— (L1l 0y= 222 (o Pay Py A43
p73=(—7,1/p|3,0) Zz ’ (A43)
+ —
C _lC 1 —ﬂ8+ _58*
P4,8_<2,—1|ﬁ|—§,0>= % 222' 2 (e 275 _e 2,—%>,
+ —
C _lC 1 _/SS+ —ﬂ87
84— \773, 5r == e 2 —e 2 ,
o R e -} -} (Ad4)
+ —_
C 7§C 3 —,BS+ —ﬁS_
p59_<2!72|p\|7%r— >: 2 22,’2’ <e _%76 2_%>r
+ —
C 7§C 3 —‘B€+ B
Pg,s—<—§,—1|ﬁ§,—2>—2’222’2<e 23 _e 2/%>. (A45)

The partition function Z of the mixed spin-(1/2,2) Heisenberg dimer reads as follows
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Z:Z{efﬁUHD) cosh(#) +2efUF10D) cosh(g \/9(]—2D)2+16(]A)2) COSh(#)
42ek0-2D) cosh(g (]fZD)2+24(]A)2) cosh(%h) } (A46)
Finally, the probability coefficients csi,Sf and the respective energies sfle (S = =5/2,
—3/2,-1/2,1/2,3/2,5/2) have the explicit forms
¥ :L 3(J—2D) ¥ :,1 _ _ 1 _ 2 2
G 3 ﬁ\/li 50207 T 160AT & 3 7 J—10D—6h)F 9(J—-2D)2+16(JA)2,  (A47)
= 1 (J—2D) Y gapoam L -2y 124(]0)
G 1 2\/11 DTN g1 4(] 2D 2h):|:4 (J—2D)2+24(JA)?, (A48)
F _1 (J—2D) Fo__ Lo 1 _2D)2 2
o8 2\/1:p BT N ) U 2D+2h)¢4,/(} 2D)2+24(JA)?, (A49)
¥ o_ 1 3(J-2D) T :_1 _ 1 B 2 2
oF 2\/@ TSN 3 4(] 10D+6h)qc4,/9(] 2D)2+16(JA)?, (A50)
u3=1 €13 :]+4D$%. (A51)

Appendix A.4. Density Matrix of the Mixed Spin-(1/2,5/2) Heisenberg Dimer

The density matrix of the mixed spin-(1/2,5/2) Heisenberg dimer can be recast into
the following block-diagonal form

123 1=3-3) 123 -3 1z -3 122 -3 123 =31 133 |-
(33l [ e1a 0 0 0 0 0 0 0 0 0 0 0
3.3 0 P12,12 0 0 0 0 0 0 0 0 0 0
(3.3 0 0 022 027 0 0 0 0 0 0 0 0
(1, % | 0 0 072 077 0 0 0 0 0 0 0 0
(1,131 0 0 0 0 0353 038 0 0 0 0 0 0
p= (23l 0 0 0 0 P83 Pss 0 0 0 0 0 0 - (A52)
(3,-3 0 0 0 0 0 0 o 049 0 0 0 0
(-3.-3 0 0 0 0 0 0 094 099 0 0 0 0
3.3 0 0 0 0 0 0 0 0 P55 05,10 0 0
(-1 0 0 0 0 0 0 0 0 0105 010,10 0 0
<%'7%‘ 0 0 0 0 0 0 0 0 0 0 P66 Pe,11
23 0 0 0 0 0 0 0 0 0 0 P11,6 p11,11
The individual elements of the density matrix are defined as
1 —Bes
_ /1 5151 5\ _ 53
pLi=(330l3,3)=5e 27, (A53)
1 Bes —Bes
_ /1 31411 3\ __ — \2 2 + \2 22
p22=(3.31013.3) Z<( 5,) +(c3,) , (A54)
27 27
1 Be's —Bes
_ /1 1Al 1y _ - \2 1 + )2 51
P3,3—<zr2|Pzr2>—Z<(Cgl) e +(Cg,1) e (A55)
1 —pes —pet
1 1Al 1y _ 2 0 + 32 0
p1a=(5,—3l0l7,—3) =75 | (c5 )% (cs )7e 27, (A56)
Z 0 3.0
1 —pes —pet
_ /1 _ 31511 _3\_ - 32 1 + 32 1
ps5=(3 —3l0lz,—3)=—=|(c5 _)7e 27'+(c; )%e 27, (A57)
Z 51 3,-1
1 —Bes —pe§
_/1 51411 5\ __ - 2 2 + 2 2
Pos={2—3lpl2, —3)= % ((Cs L)t (e )T 27, (A58)
3,
1 —pes —pet
_/_1 515 _1 5\_ 2 2 -2 2
pr7=(=3.3pl=2,3)= 3% ((Cg2) e (c5,)%e 27, (A59)
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1A 1 Lo P g e
p8/8:<77’§‘p‘7§r§>:* (Ci )e 2’ <|>(C§ )e 27, (A60)
Z 3.1 31
A 1 —pe5 B —pet
P9r9:<§f%P§'§>:Z((C§,0)2e (e )% 2'0>' (A61)
A 1 7,5557 -~ 7‘8557
p10=_(-%—-30l-3, -3 == (cf_)% 27+(; ) 7], (A62)
z 31 3,-1
o 1 —Bes _ —pet
pun=(-3 3003, - =5 (5 e I7+(c5 e 7, (A63)
z 372 3,2
R 1 —pBes
Plzlz—(—%,—g\pl—%,—%>:§e 273, (A64)
+ -
C52050 ( Bk,  —pes
prr= (3. 3lpl-}, §) =21 ( e 5e),
+ -
€320 [ Bk, by
P72_<‘%/%W%I%>: ZZZ (e 22_e 27, (A65)
+ —
Cs 1C§ 1 fﬁet —PBe5
p38_<%r%|ﬁ‘_%/%>: ZZZ (e ?/1—6 31 ,
+ —
€511 [ Bk —pes
ps3=(=2 313 3)= 25 <e Poe A (A66)
+ —
CEOCEO 7/5845 /Sg’s
pa9={3,—3lpl-3 3)= ZZZ (e W—e 20,
+ —
Co0f50 [ Bk —Bes
poa=(=2,3lPl3. —3) = =% (e Poe ), (A67)
+ —
€3,-1%3,1 ( Pt —,Se5
pst0= (b —Hpl— — = B (TP

. 5,195, 1 ( —pet */585
pus= (-1, ity - =2 (o ) (69

+ —
C5 _,Cs —Bet 7/38
1 _ 5151 _3y_ 372372 3 3,
pe11=(3,—3lpl—2,—3)=— Zz e 27— -
+ —
C5 5Cs —Bet —Bes
n 5,-2 3,-2 5 _ 5
P116_<—%/—3P|%/—§>_222(e ¥ioe 277 (A69)

The partition function Z of the mixed spin-(1/2,5/2) Heisenberg dimer reads as
follows

Z :2{e_%(]+5D) Cosh(3,Bh)+2e§U_17D> cosh (g \/4(]—2D)2+5(]A)2> cosh(28h)

4265 0-5D) cosh(g (]fZD)2+8(]A)2> cosh<%)+e4<f D) cosh( 3 (J )2>}. (A70)

Finally, the probability coefficients Csi,Sf and the respective energies ejsﬁ,sf (5 = -3,-2,
—1,0,1, 2, 3) have the explicit forms

20-20)

T .- \[ e b (] 17D—8h)F \/4] 2D)2+5(JA)2, (A71)

vx\:\m«H

(J-2D) Y spam=L -
i, f\/ T ;U—5D—4)F5\/(J-2D)>+8(JA2,  (A72)
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1 1 3
Fp= s T, =3 U-D)F3/UAR, (a73)
1 (J—2D) 1 1
F_ 1 2(J-2D) F_ 1, 1 i ope 2
I, 2\/13F\/4(]2D)2+5(]A)2’ e,=—30 17D+8h):F2\/4(] 2D)245(JA)2, (A75)
es =1, 5 1= Z( J+5D)T3h. (A76)

Appendix B. The Explicit Form of the Eigenvalues Ag:
The explicit form of eigenvalues Ag: (5§, = —S+1/2,...,5—1/2) of the partially
transposed density matrix p’1/2 (25) is as follows

if 52, = —S+1/2:

1 */587 — €+ *‘BE 1
F o_ — 2 8,52 +1 + 2 8,52 +1 S,—(5+5)
Ag: (css: (1) mTi(cg e q)7e " Pt fe 2

T2z n i

F % { {(csrsf”l)zeﬁs;sfm“ + (Céis;mﬂ)zeiﬁsg’sfm” —eﬁgs'“*%)] ’

4 [CS’%C;% <eﬁ£§,5'§m o P, > } ’ } 1/2. (A77)
if S5, =5-1/2:

A, = 2L {eﬁes’(%) (e Ve TSy (Cs*,sfn,—l)zefﬁsg%f1 }
+4|cgq C:Cf,s';m (e—ﬁss,s%m _e_ﬁsgszn ) ] ’ } 1/2. (A78)
if S5 =—5+43/2,...,5-3/2:
/\S:Ffm _ % { (C;Sfm+l )Ze*ﬁsg,sfmﬂ + (C;anﬁl )ze*ﬁsgsf,n+1
i <C§s§m—1 >2e*ﬁ€§,sgmq I <C§,Sfm—1 >2e*ﬁ€§s§w1 }

1 (cs )2e’ﬁ5§,sfm+1+(c+ )2e7ﬁ€;5fm“—(c+ )2e’ﬁ5§,sfm71
T2z 55 t1 8,55, +1 5,54, 1

1/2
5 e Peisi]” 4lcco of begs: _ bebe \1? A79
_(CS,SZ 1) e tm + CSrSfm CS,SZ e tm —e tm . ( )

tm tm
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Appendix C. Density Matrices Partially Transposed with Respect the
Spin-1/2 Subsystem

Appendix C.1. Partially Transposed Density Matrix of the Mixed Spin-(1/2,1) Heisenberg Dimer

The block diagonal structure of the partially transposed density matrix with respect to
the spin-1/2 subsystem of the spin-(1/2,1) Heisenberg dimer reads

|%/*1> |7l/1> ‘%r1> |7%/0> |% 0> |7%/*1>

(3,1 033 6 0 0 0 0
1,1 0 044 0 0 0 0
Tz — <%,1I 0 0 P11 pap 0 0 (A80)
< §,0| 0 0 p2,4 p5r5 0 0
(0] 0 0 0 0 02,2 053
(-, 0 0 0 0 035 06,6

The non-zero elements of piTJl,/ * are explicitly defined in Equations (A2)—(A9).

Appendix C.2. Partially Transposed Density Matrix of the Mixed Spin-(1/2,3/2) Heisenberg Dimer

The block diagonal structure of the partially transposed density matrix with respect to
the spin-1/2 subsystem of the spin-(1/2,3/2) Heisenberg dimer reads

B8 D D 1-RD D - D b
(373 [ Paa 0 0 0 0 0 0 0
1,3 0 05,5 0 0 0 0 0 0
(2,31 0 0 P11 ps2 0 0 0 0
pTia = 11 0 0 025 06,6 0 0 0 0 . (A81)
(41 0 0 0 0 022 06,3 0 0
1,1 0 0 0 0 03,6 077 0 0
(3,31 0 0 0 0 0 0 £33 07,4
(—3,—3] 0 0 0 0 0 0 P47 08,8

The non-zero elements of pl.T}/ * are explicitly defined in Equations (A15)-(A25).

Appendix C.3. Partially Transposed Density Matrix of the Mixed Spin-(1/2,2) Heisenberg Dimer

The block diagonal structure of the partially transposed density matrix with respect to
the spin-1/2 subsystem of the spin-(1/2,2) Heisenberg dimer reads

22 =52 132 =31 13D =30 130 -3 |1 [-3-2)
(3,-2] 055 0 0 0 0 0 0 0 0 0
1.2 0 P66 0 0 0 0 0 0 0 0
(2.2 0 0 o1 Pe2 0 0 0 0 0 0
(1| 0 0 P26 P77 0 0 0 0 0 0

T2 — (3.1 0 0 0 0 022 073 0 0 0 0 . (A82)

—1,0] 0 0 0 0 037 088 0 0 0 0
(3,0l 0 0 0 0 0 0 P33 P84 0 0
(.1 0 0 0 0 0 0 Pas P99 0 0
(71 0 0 0 0 0 0 0 0 P4 P95
3.-2| 0 0 0 0 0 0 0 0 05,9 £10,10

The non-zero elements of pl.T,]l»/ * are explicitly defined in Equations (A32)—(A45).
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Appendix C.4. Partially Transposed Density Matrix of the Mixed Spin-(1/2,5/2) Heisenberg Dimer

The block diagonal structure of the partially transposed density matrix with respect to
the spin-1/2 subsystem of the spin-(1/2,5/2) Heisenberg dimer reads

e
|
i
|

o=

NI

NI
|

o=

NIo

e

NIo
|

ol

ol

e

i
|
.

)

o
=
o=
=
iw

|

|
i

(3,3 pﬁ,: 0 0 0 0 0 0 0 0 0 0 20
1.3l 0 077 0 0 0 0 0 0 0 0 0 0
(1,31 0 0 o1 072 0 0 0 0 0 0 0 0
é, | 0 0 027 088 0 0 0 0 0 0 0 0
(3,31 0 0 0 0 022 083 0 0 0 0 0 0
phin= (e 0 0 0 0 038 099 0 0 0 0 0 0 ) ( A83)
(331 0 0 0 0 0 0 033 094 0 0 0 0
-1, 0 0 0 0 0 0 019 010,10 0 0 0 0
(34 0 0 0 0 0 0 0 0 014 0105 0 0
3 0 0 0 0 0 0 0 0 05,10 p11,11 0 0
(L3 0 0 0 0 0 0 0 0 0 0 055 P16
3.3 0 0 0 0 0 0 0 0 0 0 Pe,11 p12,12

The non-zero elements of piT}/ ? are explicitly defined in Equations (A53)—(A69).
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