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Abstract: We have synthesized sulfonamide based nano-composites of SiO2 and TiO2 for selective and
sensitive determination of toxic metal ion Hg2+ in aqueous medium. Nano-composites (11) and (12)
were morphologically characterized with FT-IR, solid state NMR, UV-vis, FE SEM, TEM, EDX, BET,
pXRD and elemental analysis. The comparative sensing behavior, pH effect and sensor concentrations
were carried out with fluorescence signaling on spectrofluorometer and nano-composites (11) and
(12), both were evaluated as “turn-on” fluorescence detector for the toxic Hg2+ ions. The LODs were
calculated to be 41.2 and 18.8 nM, respectively of nano-composites (11) and (12). The detection limit of
TiO2 based nano-composites was found comparatively lower than the SiO2 based nano-composites.
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1. Introduction

Among the several metal ion-based pollutants, mercury is a frontier contaminant
to the human health and environment. Both natural and anthropogenic activities gen-
erate mercury contaminations in the surroundings [1–4]. Mercury in all of its oxidation
states (Hg2

2+, Hg2+, Hg0, [CH3Hg]+) is released in the environment by combustion of
coal, medical and industrial waste [5–7]. Additionally, as a consequence of processes such
as chlor-alkali and gold mining add mercury into the nature. In addition, the inorganic
mercury pollutants possess capability to absorb and transform into organic ones by bacteria
and microbes [8–12]. The most abundant and stable forms of mercury present in nature, are
in its +2 oxidation state. Mercury enters in living system through respiration, skin absorp-
tion and oral take-up. Owing to its high bioaccumulation and bio-amplification, multi-step
contamination of food chain to hazardous level of mercury has been reported [13–15].
Its small amount in the body triggers the long-term irreversible damages to the human
health by incorporating the unfavorable impact on the vital organs and tissues such as
brain, nervous/immune system, kidney, liver and induces the cognitive and motion disor-
ders [16–20]. The maximum permissible concentration of Hg2+ ions is 1 µg/L in drinking
water, which is defined by the United States Environment Protection Agency [21]. There-
fore, it is of great importance to develop a rapid and eco-friendly method to detect Hg2+

ion with high sensitivity and selectivity.
Atomic-absorption spectrometry (AAS) and inductively-coupled plasma mass spec-

trometry (ICP-MS) are the most common instrumental techniques for metal detection
but colorimetric and fluorogenic sensing procedures are found to be more effective and
on-site units for this purpose [22,23]. The colorimetric method is advantageous because
of easy readout with the naked eye and potential for high throughput formats. Being
organic in nature, these sensors are sometimes associated with certain limitation such as
less stability, use of high concentration and also do not have a limit of detection (LOD) as
low as a fluorescent- or luminescent-based approach [24–28]. Moreover, these are incapable
of removing the ions from the medium owing to their diffusive nature which is further
rectified with nano-tool technique.

Nanomaterials 2021, 11, 3082. https://doi.org/10.3390/nano11113082 https://www.mdpi.com/journal/nanomaterials

https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://doi.org/10.3390/nano11113082
https://doi.org/10.3390/nano11113082
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nano11113082
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano11113082?type=check_update&version=2


Nanomaterials 2021, 11, 3082 2 of 22

Nano-tools (nanoparticles/nano-composites) of different compositions and morpholo-
gies have attracted immense attention due to their low LOD, intact composition and
solid-phase-sensing ability [29]. The optical properties of nanoparticles differ from those
of bulk materials because nano-materials have size dependent effects that make their
absorption and scattering unique [30]. Therefore, combination of nano-materials with
well established chemistry results in the formation of nano-tools for biochemical and
chemical assays. Recently functionalized nano-particles witnessed several applications
in drug delivery, bio-imaging and catalysis etc [31–34]. These are proved as important
types of binding hosts for developing functional materials due to their large surface area,
high thermal stability and uniform porosity. The incorporation of the organic ligand on
the solid surfaces such as silica (SiO2) and titania (TiO2) proved as a prevailing tool for
building inorganic and organic nano-composites with improved optical properties [35,36].
The scattering properties of nano-materials depend on the composition, size and shape of
nanoparticles and their surrounding medium. The scattered light intensity by nanoparticles
has been proved to increase by the sixth power of the particle size and hence, modifying
and enhancing the size of nanoparticles help to increase the intensity of scattered light and
immobilization with the organic moieties further help in acquiring a target analyte [37–40].

Hence, in the present work nano-particles of SiO2 and TiO2 were taken as building
blocks for adhering the synthesized organic ligand (3). Since these are non-fluorescent
and provide large surface area due to abundant Si-(OH)n and Ti-(OH)n sites on the nano-
particles’ surface for the attachment of organic ligand via electrostatic interactions between
fluorophore (3) and the amino group of functionalized SiO2 and TiO2. The prepared nano-
composites were found to detect only toxic Hg2+ ions, out of all other tested ions. The
emission spectral data was recorded to analyze the sensing ability of nano-composites (11)
and (12) for Hg2+ detection in aqueous samples and their LODs were found to be 41.2 and
18.8 nM, respectively. It is noteworthy that even on the coating of same organic ligand (3) on
the functionalized SiO2 and TiO2 surfaces there is a visible difference between the detection
limits of the Hg2+ ions. Titania nano-composites (12) were found to be more effective for
detection of Hg2+ ions as compared to silica nano-composites (11) in aqueous medium.

2. Materials and Methods

Commercially available analytical grade reagents and solvents without further pu-
rifications were used. 3-Formyl chromone and sulfanilamide were procured from Sigma
Aldrich (St. Louis, MO, USA) with >99% purity. Tetraethoxysilane (TEOS), tetraiso-
propylorthotitanate (TIPT) and 3-aminopropyl triethoxysilane were purchased from Tokyo
Chemical Industry (TCI) Co. Ltd., Tokyo, Japan and were used without further purification.
Salts of metal nitrates and sodium salts of anions were purchased from Sigma Aldrich
and Hi-Media Laboratories Pvt. Ltd. (Mumbai, India). Pyrogen free distilled water was
obtained from distilled water assembly made from borosilicate glass by Jain Scientific Glass
works (Ludhiana, India). Melting point was determined using Nutronics digital melt-
ing point apparatus available at Central Instrumentation Laboratory, Punjab Agricultural
University (PAU), Ludhiana, India in open capillary and is uncorrected.

Fluorescence spectra were recorded using Agilent Cary Eclipse Fluorescence spec-
trophotometer with excitation and emission wavelength band passes of 2.5 nm from FIST
Laboratory, Department of Biochemistry, PAU, Ludhiana, India. SHIMADZU 1800 PC
spectrophotometer (Akishima, Japan) in the range 200–1100 nm with quartz cuvettes (path
length, 1 cm) was used to perform all UV-vis spectral analysis at Central Instrumentation
Laboratory, PAU, Ludhiana, India. FT-IR spectrum of the ligand and nano-composites
were recorded on a Perkin Elmer Spectrum Two-IR Fourier-Transform spectrophotome-
ter (Waltham, MA, USA) in the range 400–4000 cm−1 (KBr pellets). The 1H NMR and
13C NMR spectra of the ligand (3) were recorded in DMSO on a BRUKER 500 MHz and
125 MHz spectrometer respectively (Fällanden, Switzerland), at room temperature using
TMS as an internal standard and chemical shifts are given in δ. Solid State 13C and 29Si cross-
polarization magnetic angle spinning (CPMAS) NMR were recorded at Bruker 700 MHz
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spectrometer at Tata institute of Fundamental research (TIFR) Centre for interdisciplinary
Science, Hyderabad, India. The surface morphologies of the samples were determined by
Field Emission Scanning Electron Microscope (FESEM, Hitachi, Ibaraki Prefecture, Japan).
Samples were recorded on Hitachi SU 8010 with EDX (Thermo Noran System SIX, Ibaraki
Prefecture, Japan). The X-ray diffraction spectroscopy (XRD) patterns were recorded in the
range of 5◦–85◦ 2θ, on a SAXSPACE, Anton Paar instrument (Gurugram, India), provided
with a Cu-Kα radiation source (λ = 0, 154,060 nm). FT-IR, NMR, FE SEM and Powder
XRD studies conducted at Sophisticated Analytical Instrumentation Facility (SAIF), Panjab
University (PU), Chandigarh, India.

Brunauer–Emmett–Teller (BET) surface area was determined using a Quanta Chrome
Autosobe iQ3 instrument (Cinnaminson, NJ, USA) from Advanced Material Research
Centre situated at Indian Institute of Technology (IIT), North Campus, Mandi, Himachal
Pradesh. Surface area and pore volume were determined using the BET equation and
Barret-Joyner-Halenda (BJH) methods, respectively.

Stock solutions (10−4 M) of cations Al3+, Ag+, Ba2+, Ca2+, Cd2+, Cu2+, Cr3+, Co2+, Fe2+,
Fe3+ Hg2+, Hg+, K+, Li+, Mn2+, Mg2+, Na+, Ni2+, Pb2+ and Zn2+ (nitrate salts) and anions
AcO−, Br−, BO3

−
, CO3

2−, C2O4
2−, Cl−, F−, HSO3

−, HPO4
2−, HCO3

−, I−, NO3
−, NO2

−,
OH−, SO4

2− and SO3
2− (sodium salts) were prepared in double distilled water. Stock

solutions of the nano-composites (11) and (12) were also prepared by dispersing 0.01 g
nano-composites in 1.00 L of double distilled water. Further, these dispersed solutions of
various synthesized nano-composites were sonicated for an hour to obtain a stable colloidal
solution. 3.00 mL of appropriate aliquot were taken in a quartz cuvette, in which 50.00 nM
solution of various metal ions and anions were added sequentially to check the selectivity
of nano-composites for any specific ion.

Finally, the practical utility of the nano-composites (11) and (12) for Hg2+ ion detection
on tap water sample, distilled water and bottled water was checked. The tap water
was taken from research laboratory of Department of Chemistry (PAU, Ludhiana) and
bottled water was purchased from local market. These collected samples were filtered and
adjusted to pH 7.4 (10 mg in 5 mL HEPES buffer). These samples were spiked with various
concentrations of Hg2+ ions. The fluorescence intensities were recorded in triplets with
their mean values as final datum to calculate the percentage recovery.

2.1. Synthesis of 4-((4-Oxo-4H-chromen-3-yl)methyleneamino)benzenesulfonamide (3)

For the preparation of the Schiff’s base ligand (3), sulfanilamide (1) (1.00 mmol, 0.174 g)
and 3-formyl chromone (2) (1.00 mmol, 0.172 g) were taken in a round bottomed flask
containing 15.00 mL of absolute alcohol (Scheme 1). After 5 min, 2–3 drops of glacial acetic
acid (AcOH) were added and the mixture was refluxed until the completion of reaction
(6 h, TLC). Further, reaction mixture was allowed to stand at room temperature and solid
so obtained was filtered and washed with diethyl ether (3 × 40.00 mL). Recrystallization
from absolute alcohol furnished the pure product (3).
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Scheme 1. Synthesis of 4-((4-oxo-4H-chromen-3-yl)methyleneamino)benzene sulfonamide (3).

Analytical data: Shiny yellow colored solid, yield: 91%, melting point: 302–303 ◦C,
Solubility: absolute alcohol, 1H NMR (DMSO-d6, 500 MHz) δ (ppm): 5.84 (s, 1H, OC-H),
7.11–7.17 (m, 2H, Ar-H), 7.29 (s, 2H, SO2NH2), 7.53–7.85 (m, 5H, Ar-H), 8.16 (s, 1H, Ar-H)
and 8.18 (s, 1H, -CH=N) ppm. 13CNMR (DMSO-d6, 125 MHz) δ: 101.05, 104.56, 116.17,
116.35, 118.05, 122.00, 122.40, 125.59, 127.34, 127.50, 134.71, 138.76, 142.42, 144.23, 155.46
and 180.51 ppm. IR (KBr) υmax: 1069 (C-O str), 1160 (C-S str), 1212 (C-N str), 1390 (S=O str),
1472 (C=C str), 1596 (C=O str), 1656 (C=N str), 3077 (=C-H str) and 3308.0 (N-H str)
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cm−1. MS (ESI-MS): calculated for C16H11N2O4S m/z (M++1) 328.05; found, 329.07.
(Figure S1a–d)

2.2. Synthesis of Nano-Composites of SiO2 (7) and TiO2 (9)

Silica nanoparticles were synthesized by hydrolysis of the tetraethoxysilane (TEOS) (4)
using modified St

..
ober process [41,42]. In a 100 mL of conical flask, 1.00 mL of TEOS (4) was

added to 10.00 mL of absolute alcohol and the reaction was sonicated for 5 min. Further,
10.00 mL of 25% ammonium hydroxide solution (NH4OH) and 10.00 mL of absolute alcohol
were added slowly to the reaction mixture while sonication. The reaction mixture was
allowed to sonicate for 1 h to obtain white turbid suspension, which was further centrifuged
for 2 h. The separated nano-composites of silica were washed with water and re-dispersed
in alcohol to centrifuge again for 1 h. Finally, powdered silica (5), so obtained after repeated
filtrations was dried in vacuum oven and calcinated at 400 ◦C in a furnace (Scheme 2).

Likewise, using similar approach, synthesis of the titania (7) was also carried out by
taking tetraisopropylorthotitanate (TIPT) (6) as precursor (Scheme 3) and nano-composites
were obtained in good amount.

Nanomaterials 2021, 11, x FOR PEER REVIEW 4 of 22 
 

 

7.11–7.17 (m, 2H, Ar-H), 7.29 (s, 2H, SO2NH2), 7.53–7.85 (m, 5H, Ar-H), 8.16 (s, 1H, Ar-H) 

and 8.18 (s, 1H, -CH=N) ppm. 13CNMR (DMSO-d6, 125 MHz) δ: 101.05, 104.56, 116.17, 

116.35, 118.05, 122.00, 122.40, 125.59, 127.34, 127.50, 134.71, 138.76, 142.42, 144.23, 155.46 

and 180.51 ppm. IR (KBr) υmax: 1069 (C-O str), 1160 (C-S str), 1212 (C-N str), 1390 (S=O str), 

1472 (C=C str), 1596 (C=O str), 1656 (C=N str), 3077 (=C-H str) and 3308.0 (N-H str) cm−1. 

MS (ESI-MS): calculated for C16H11N2O4S m/z (M++1) 328.05; found, 329.07. (Figure S1a–d) 

2.2. Synthesis of Nano-Composites of SiO2 (7) and TiO2 (9) 

Silica nanoparticles were synthesized by hydrolysis of the tetraethoxysilane (TEOS) 
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Further, to create the organic molecule holding sites these synthesisednano-composites
(5) and (7) were functionalized with 3-aminopropyl triethoxysilane, which provided bind-
ing sites to the organic chemosensor.

2.3. Functionalization of SiO2 and TiO2 with 3-Aminopropyl Triethoxysilane (APTES)

3-Aminopropylated silica nano-composites APTES@SiO2 (9) were synthesized by
adding 2.00 mL of 3-aminopropyl triethoxysilane (APTES) (8) to 50.00 mL of vigorously
stirred dispersion of synthesized silica nano-particles (5) in absolute alcohol and the result-
ing mixture was allowed to stir overnight at room temperature. These freshly synthesized
APTES@SiO2 nano-composites were purified by centrifugation and re-dispersion in alco-
holic solution. In order to remove unreacted 3-aminopropyl triethoxysilane and to get
analytical pure nano-composites (9), the process was repeated thrice [43].

Similarly, synthesis of the APTES@TiO2 (10) was also carried out by using above
procedure with titania(7) as a core material (Scheme 4). APTES@TiO2 was also furnished
in good amount.
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2.4. Synthesis of the Organic-Inorganic Nano-Composites (11, 12) of Chemosensor (3)

Finally, after functionalization of the nano-particles (5) and (7), to obtain adhering
sites for metal ions over (9) and (10), organic chemosensor (3) was coated over their sur-
face to form intact organic-inorganic nano-composite materials (11) and (12). These were
further used for sensing analysis as such without any alterations. Immobilization method
was used to obtain the desired organic–inorganic nano-composites [43]. The synthesized
chemosensor (3) was immobilized on APTES@SiO2 (9) and APTES@TiO2 (10). The mixture
of APTES@SiO2 (11) was refluxed with chemosensor (3) for 3–4 h in 15.00 mL acetone to
obtain raw nano-composites of silica. The product so obtained was washed with acetone
(2 × 40.00 mL) twice and dried in a vacuum oven to afford organic-inorganic nano-
composites (11) as an analytically pure sensing material (Scheme 5).

Likewise, APTES@TiO2 (12) was refluxed with chemosensor (3) for 3–4 h in 15.00 mL
acetone to obtain raw nano-composites of titania. Washing with acetone (2 × 40.00 mL)
and drying in vacuum oven furnished organic–inorganic nano-composites (12) as a final
sensing material (Scheme 5).
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3. Results and Discussion
3.1. Chemoreceptor Spectral Studies

The photo-physical behavior of the nano-composites (11) and (12) was tested indepen-
dently followed by study of variation obtained in emission analysis of nano-composites
(11) and (12) in the presence of various metal ions and anions. Initially, the emission spectra
of the nano-composites (11) and (12) of 10 ppm concentration were analyzed before and
after addition of metal ions and anions with excitation at 290 nm. The result indicated
that the specific variations in emission intensity of (11) was obtained with Hg2+ ions only
and no other metal ion was able to alter the emission peak of the nano-composites (11).
Additionally, linear fitting equation between the fluorescence intensity of nano-composite
(11) and Hg2+ ion concentration (by varying concentration from 4–50 nM) was applied to
verify the emission response of (11) with Hg2+ ion. Similarly, emission spectral analysis
of nano-composite (12) at same concentration was recorded by adding various metal ions
and anions that also showed selectivity towards Hg2+ ions. Molar increment experiment of
Hg2+ ion was conducted between 2–35 nM concentrations as per the range of detection
(Sections 3.2–3.4).

3.2. Chemistry of Nano-Composites (11) and (12) and Their Turn-On Emission Due to Hg2+ Ions

The structures of nano-composites (11) and (12) were designed by keeping in mind
the need of heteroatomic sites for binding of the analytes; that can adhere either because of
its specific size or due to atom selective coordination linkage [44]. Further, nanoparticles
provided solid phase for attachment which can hold it for long period and had strong
binding with the surface.

Prior to investigation of Hg2+ ion selective emission studies of (11) (10 ppm), emis-
sion profile of (11) was recorded as a free sensor with excitation wavelength of 290 nm.
Fluorescence emission data revealed that the nano-composites (11) exhibited a distinct
peak at 445 nm (blue emission) with very low intensity corresponding to excitation at
290 nm and envisaged that nano-composites (11) were not fluorogenic in nature. Further,
nano-composites (11) (10 ppm) were tested against various metal ions (Al3+, Ag+, Ba2+,
Ca2+, Cd2+, Cu2+, Cr3+, Co2+, Fe3+, Hg2+, K+, Li+, Mn2+, Mg2+, Na+, Ni2+, Pb2+ and Zn2+),
merely Hg2+ showed an unambiguous intensity growth (Figure 1). This increment in
intensity is considered as one of the relevant and valid ways to check specific ion presence
as turn-on fluorescence. Auspiciously, fluorescent enhancement factor (FEF) was found to
be 10.9 times hiked in intensity of peak at 445 nm from fluorescence plot of (11) and Hg2+

ions in aqueous medium.

Nanomaterials 2021, 11, x FOR PEER REVIEW 6 of 22 
 

 

The photo-physical behavior of the nano-composites (11) and (12) was tested inde-

pendently followed by study of variation obtained in emission analysis of nano-compo-

sites (11) and (12) in the presence of various metal ions and anions. Initially, the emission 

spectra of the nano-composites (11) and (12) of 10 ppm concentration were analyzed be-

fore and after addition of metal ions and anions with excitation at 290 nm. The result in-

dicated that the specific variations in emission intensity of (11) was obtained with Hg2+ 

ions only and no other metal ion was able to alter the emission peak of the nano-compo-

sites (11). Additionally, linear fitting equation between the fluorescence intensity of nano-

composite (11) and Hg2+ ion concentration (by varying concentration from 4–50 nM) was 

applied to verify the emission response of (11) with Hg2+ ion. Similarly, emission spectral 

analysis of nano-composite (12) at same concentration was recorded by adding various 

metal ions and anions that also showed selectivity towards Hg2+ ions. Molar increment 

experiment of Hg2+ ion was conducted between 2–35 nM concentrations as per the range 

of detection (Sections 3.2–3.4). 

3.2. Chemistry of Nano-Composites (11) and (12) and Their Turn–On Emission due to Hg2+Ions 

The structures of nano-composites (11) and (12) were designed by keeping in mind 

the need of heteroatomic sites for binding of the analytes; that can adhere either because 

of its specific size or due to atom selective coordination linkage [44]. Further, nanoparti-

cles provided solid phase for attachment which can hold it for long period and had strong 

binding with the surface. 

Prior to investigation of Hg2+ ion selective emission studies of (11) (10 ppm), emission 

profile of (11) was recorded as a free sensor with excitation wavelength of 290 nm. Fluo-

rescence emission data revealed that the nano-composites (11) exhibited a distinct peak at 

445 nm (blue emission) with very low intensity corresponding to excitation at 290 nm and 

envisaged that nano-composites (11) were not fluorogenic in nature. Further, nano-com-

posites (11) (10 ppm) were tested against various metal ions (Al3+, Ag+, Ba2+, Ca2+, Cd2+, 

Cu2+, Cr3+, Co2+, Fe3+, Hg2+, K+, Li+, Mn2+, Mg2+, Na+, Ni2+, Pb2+ and Zn2+), merely Hg2+ showed 

an unambiguous intensity growth (Figure 1). This increment in intensity is considered as 

one of the relevant and valid ways to check specific ion presence as turn-on fluorescence. 

Auspiciously, fluorescent enhancement factor (FEF) was found to be 10.9 times hiked in 

intensity of peak at 445 nm from fluorescence plot of (11) and Hg2+ ions in aqueous me-

dium. 

 

Figure 1. Fluorescence response of (11) (10 ppm) towards various cations at excitation of 290 nm. 

Whereas, emission profile of nano-composites (12) was also recorded as a free sensor 

with excitation wavelength of 290 nm. Emission spectral analysis of the nano-composites 

Figure 1. Fluorescence response of (11) (10 ppm) towards various cations at excitation of 290 nm.



Nanomaterials 2021, 11, 3082 7 of 22

Whereas, emission profile of nano-composites (12) was also recorded as a free sensor
with excitation wavelength of 290 nm. Emission spectral analysis of the nano-composites
(12) exhibited a distinct peak at 520 nm (green emission) corresponding to excitation
at 290 nm with negligible intensity of 50.00 a.u. Additionally, nano-composites (12)
(10 ppm) were tested against various metal ions and herein, again, only Hg2+ ion showed
emission intensity enhancement (Figure 2). This also shifted the sensor emission to the
fluorescence turn-on mode for the toxic Hg2+ ions. In case of titania coated ligand (12), FEF
was found to be 11.1 times hiked in intensity of peak at 520 nm from fluorescence plot of
(12) and Hg2+ ions in aqueous medium, which was found to be more than the silica based
nano-composites (11).
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(Inset: image of nano-composite (11) and (12) on addition of Hg2+ ions).

The fluorescence titration profile is shown in Figure 3. The intensity of the peak at
445 nm of (11) gradually increased with increase in the concentration of the Hg2+ ions
without any shift in band emission wavelength. By applying the linear fitting to the plot of
Hg2+ ions concentration and intensity change, the values of LOD and limit of quantification
(LOQ) were assessed with the help of equation LOD = 3Sd/slop and LOQ = 10Sd/slop,
where Sd is standard deviation. The values of LOD and LOQ were found to be 41.2 nM
and 137.3 nM (R2 = 0.972), respectively (Figure 3).

Further, molar increment titration experiment was conducted to study the binding
interactions between (12) and Hg2+ ion. The gradual increase in the weak emissive band
of (12) at 520 nm was obtained with increase in concentration of Hg2+ ions (upto 20 nM)
(Figure 4) and the complex [(12)+Hg2+] became fluorogenic in nature. From the previous
demonstration, we observed that the emission intensity of (12) is directly proportional to
the addition of the Hg2+ ions concentration. Further, the LOD was calculated by linear
emission fitting for [(12)+Hg2+] and was found to be 18.8 nM, followed by LOQ of 62.83 nM
(R2 = 0.975) (Figure 4 inset). These values of LOD in aqueous medium for the detection
of toxic Hg2+ with silica and titania were found to be very low in the terms of aqueous
medium analysis comparative to the some recently reported solid phase dispersive nano-
composite chemosensors (Table 1). From the Table 1, it can be depicted that few sensors are
available for the Hg2+ detection below 20 nM concentration with fluorescence spectroscopy
technique and the sensors for detection limit less than 10 nM concentration were dependent
on potentiometric and digital information method, and were used for catalytic activities
rather than sensing behavior.
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Table 1. Comparative examples of some of recently reported sensors of Hg2+ ions.

Ligand LOD Limitations Reference

Solid phase peptide 7.59 nM Tedious reaction procedure [45]
Azobenzene 50 µM Tedious reaction procedure [46]

Anthracen-9(-ylmethylene)hydrazine 220 nM pH specificity, Effective over
pH 5–8 only [47]

Merocyanin dye 0.27 µM Molecule disrupted by UV light [48]
Pyrazole based derivative 0.473 µM Detection limited to pH 6–11 [49]

2-Hydroxy-5(-4-nitrophenyl) diazonyl benzaldehyde 6.1 µM Solvent specificity, ligand worked
in presence of DMSO only [50]

3-(4-Dimethylamino-phenyl) allylidene-
3-nitro benzohydrazide 0.11 µM pH specificity, effective pH > 7 only [51]

8-Hydroxy-7-(4-nbutyl phenzlazo)quinoline
(Solid phase) 0.18 µg/L pH dependent worked between

5–7 pH only [52]

1-Benzothiazole-2-yl-3(pyridine-3-ylazo)-
nathalen-2-ol 8.5 µM

Lack of specificity, selective for
AcO−, Hg2+, Cu2+, and

electrochemically for Zn2+
[53]

Ninhydrin-thiosemicarbazone 1 µM Dual sensing for Hg2+ and F− [54]
2-(Anthracen-9-ylmethylene-hydrazonomethyl)-

quinolin-8-ol 220 nM pH dependent, worked between
6–8 pH only [55]

Antipyrene Schiff base Silatranes 100 µM Dual selectivity for Fe3+ and Hg2+ [56]
Silica nano-composite (11) 41.2 nM Present work

Titania nano-composite (12) 18.8 nM Present work

3.3. Anion Sensing Analysis of Nano-Composites (11) and (12)

To check the efficacy of nano-composites (11) and (12) against various anions, the
emission spectra of (11) and (12) were recorded with addition of 50 ppm of various anions
viz. F−, I−, CN−, Cl−, Br−, SO4

2−, HCO3
−, OH−, C2O4

2−, HSO4
2−, SO3

2−, and NO2
−. It

was observed that the addition of different anions did not alter the emission spectra either
of two nano-composites, as indicated from Figure 5a,b. After analysing the sensing ability
of nano-composites (11) and (12), further interference study was conducted to check the
potential behavior of the sensors in the presence of obstructive environment.
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3.4. Competitive Binding Analysis (Interference Analysis)

Competitive binding analysis was carried out to calculate the realistic value of (11)
as an Hg2+ ion selective chemosensor in the rival environment of the intrusive metal
ions in aqueous medium. The experiment was carried out by taking 10 ppm of the nano-
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composites (11) and 15 ppb of Hg2+ ions in deionised water and was spiked with all tested
metal ions and anions. No visual alterations in the emission intensities were recorded in
the spiked samples of the metal ions (Figure 6a inset). Therefore, it can be implicated that
(11) exhibited high sensitivity, selectivity and turn-on fluorescence response towards Hg2+

ions. Additionally, to check the efficacy of (11), normalized data plot of Hg2+ ions along
with various intruding metal ions in presented in Figure 6a.
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Additionally, the selectivity of the nano-composites (12) towards Hg2+ ions was tested
with addition of 15 ppb of other interfering ions. It can be seen from the experimental data
that the addition of various ions had no or negligible effect on the emission intensity of
[(12)+Hg2+] complex (Figure 6b inset). The normalized plot of [(12)+Hg2+] was plotted
to compare the emissive behavior of the [(12)+Hg2+] complex with other studied metal
ions (Figure 6b). These results proved that nano-composites (11) and (12) are promising
emissive sensors for toxic Hg2+ ions in aqueous samples even in the presence of most
intruding metal ions and anions.

3.5. Plausible Mechanism of Sensing of (11) and (12)

From the above data, it was observed that various factors can be listed to rationalize the
observed emission enhancement of nano-composite (11) and (12) by Hg2+ (Scheme 6). The
weak fluorescence of the (11) and (12) in the absence of Hg2+ can be attributed due to instant
cis-trans isomerization across the imine (C=N) bond. The possible binding mechanism of
(11) and (12) with Hg2+ that led to the fluorescence changes is shown in Scheme 6. Nano
composites were most likely to bind with Hg2+ ions through the corresponding oxygen and
nitrogen atoms which results in fluorescence enhancement due to the ligand to metal charge
transfer [L-MCT] nature of Hg2+ Upon chelation of probe with Hg2+ Chelation Enhanced
Fluorescence (CHEF) produced within the organic moiety of the nano-composites (11) and
(12) [57]. It was also found that the detection limit of Hg2+ is lesser in case of titania as
compared to the silica coated organic ligand attributed to the fact that the size and the
amount of organic ligand coated on the surface of TiO2 is more than that of the SiO2, which
was also studied in the Solid state NMR and BET studies mentioned ahead.
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3.6. Effect of pH on Nano-Composites (11) and (12) with Hg2+ Ions

pH of the solution is an important variable in sensing studies of aqueous samples as it
affects the surface of the nano-composites and coordination sites while sensing of analytes.
Therefore, the effect of pH on the sensing analysis of nano-composites (11) and (12) were
carried out in the range of pH 2–11. Various solutions of nano-composites (11) and (12)
over a wide range of pH were prepared along with the different solutions of complexes
[(11)+Hg2+] and [(12)+Hg2+] to compare their sensing behavioral changes. 0.1 N NaOH
and 0.1 N HCl were utilized to adjust the pH of the different solutions of nano-composites
(11) and (12). As shown in the Figure 7a,b; pH values from 1–3 (acidic) affected the Hg2+

ion complexes with respective nano-composites (11) and (12). This is attributed to the
blocking of the coordination sites of nano-composites (11) and (12) with excessive H+ ions,
which in turn, reduced the ligand to metal charge transfer (L-MCT) and was responsible
for decrease in emissive intensity of respective complexes with Hg2+ ions. Furthermore,
with increase in pH up to neutral value i.e., pH 4–10, it was visualized that coordination
sites became freely available for binding of Hg2+ ions, which again enhanced the intensity
of the nano-composites (11) and (12) to the initial level. Proceeding towards the alkaline
pH due to excess of hydroxide ions in the solutions, tendency of Hg2+ ions towards OH−

increased due to opposite charges and hence resulted the formation of Hg(OH)2. According
to literature reports, Hg(OH)2 is highly unstable and is converted to HgO in aqueous media
readily [58]. This was found to be the fundamental reason behind quenching of the emission
intensity of complexes (11) and (12). Thus, the results indicated that the optimum pH for
the detection analysis of toxic Hg2+ ions is 4 to 10 at room temperature.

3.7. Characterization of Nano-Composites (11) and (12)
3.7.1. FT-IR Studies

Structural analysis of the nano-composites (11) and (12) was performed to rule out the
surface modifications of synthesized SiO2 and TiO2 with 3-aminopropyl triethoxysilane
(APTES) (8) and organic ligand (3).
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FT-IR spectrum of the SiO2 showed the presence of functional groups such as
Si–O, Si–O–Si and Si–OH (Figure 8). The IR bands centred at 1087 and 946 cm−1 were
assigned to asymmetric stretching of the Si–O–Si and Si–OH groups respectively. Whereas
the symmetric stretching vibration and bending vibration bands of Si–O–Si were clearly
present at 790 and 480 cm−1, respectively. Additionally, the spectrum presented a broad
band centred at 3500 cm−1 due to hydroxyl (O-H) group of silanol (Si–OH) moiety and
physisorbed water. However, the FT-IR spectrum of APTES@SiO2 (b) showed a significant
decrease in the silanol and hydroxyl group intensities due to the reaction between surface
hydroxyl group and ethoxy (O–C2H5) group of APTES (8) during surface modification
reaction. The functionalization of surface of silica was confirmed by appearance of new
weak bands at 2324.3 and 2340 cm−1, which were assigned to methylene groups (–CH2–)
and band around 1650 cm−1 attributed to NH2 group of APTES (8). Further, the FT-IR
spectrum of nano-composites (11) (c) showed the medium band centered at 1636 cm−1 due
to stretching vibrations of imine (–C=N–) linkage and strong vibration band at 1100 cm−1

which was attributed to sulfonamide (S=O) group. The Si–O–Si group vibrations in nano-
composites (11) were shifted to 950 and 476 cm−1 from 946 and 480 cm−1, respectively
due to surface modifications. Thus, change in the shifting of silica bands and appearance
of new imine and sulfonamide vibrational bands confirmed the successful adheration of
organic ligand (3) to the surface of silica to form nano-composites (11) [59].

Similarly, the FT-IR spectral studies were also conducted to verify the insertion of
organic moieties into the nano-composites (12). Figure 9 showed the FT-IR spectra of
TiO2, APTES@TiO2 and (3)@APTES@TiO2. In all samples, the characteristic bands of
titania framework at around 800 cm−1 (symmetric stretching vibrations of Ti–O), 960 cm−1

(symmetric stretching vibration of Ti–OH), 1200 cm−1 (asymmetric stretching vibrations
of Ti–O–Ti), and 3400 cm−1 (physisorbed water molecules) and 3437 cm−1 (stretching
vibrations of OH groups) were present. The new bands within the range of 2409–2486 cm−1

are characteristic of aliphatic alkyl-chain C–H vibrations (Figure 9b). In Figure 9c, new
bands at around 1179 and 1454 cm−1 were assigned to the S=O and C=N stretching
vibrations of imine linkage. The other observed band around 1538 cm−1 assigned to –NH
vibrations. The band at 1652 cm−1 was assigned to the imine bond formed which confirmed
the coating of functionalized nanoparticles (7).Thus, the FT-IR spectra of titania (7) and
functionalized titania (12) also confirmed the incorporation of the fluorophore groups in
the TiO2 framework.
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3.7.2. Solid-State 13C CPMAS and 29Si CPMAS NMR Spectroscopy

The fuctionalization of silica and titania nanospheres with APTES and the organic
compound (3) was investigated with 13C and 29Si CPMAS NMR spectroscopy studies. In
the 13C spectra of APTES@SiO2, three resonance peaks appeared around δ 22.18, 24.31 amd
30.83 ppm, which were assigned to three carbon atoms of the integrated 3-aminopropyl
chain of APTES. Similarly the 13C CPMAS NMR spectrum of APTES@TiO2 also showed
three peaks corresponding to δ = 10.57, 22.07 and 42.67 ppm, which were also assigned to
the incorporated aminopropyl chain. But in the 13C spectrum of the APTES@SiO2, two
low intensity additional peaks were also seen at δ 66.15 ppm and 42.69 ppm indicating the
existance of tiny amounts of unreacted ethoxy group of APTES as shown in Figure 10. The
above data showed that as compared to silica, titania surface was more effectively covered
and strongly bind to APTES that in turn also helped the organic compound (3) to adhere
the nano-composite surface more efficiently.
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The solid-state 29Si CPMAS NMR spectra of (3)@APTES@SiO2 and (3)@APTES@TiO2
are shown in Figure 11. The peaks appeared around −52.21ppm and −57.32 ppm corre-
sponded to silanol group of the C–Si(OSi)2(OH) group (T2) and the C–Si(OSi)3 group
(T3), respectively, provided clear evidence that the nano-composite sensing material
(3)@APTES@SiO2(11) was made up of a silica scaffold with an organic group covalently
bonded to SiO2 nanoparticles. In addition, the spectrum showed additional peaks that
associated to silica’s inorganic polymeric structure: Si(OSi)4(3D) group (Q4) was allocated
−111.49 ppm and 113.63 ppm, while the free silanol group of Si(OSi)3OH was assigned
to 101.4 ppm (Q3) and linear C-Si(O-Si)3 to −91.34 ppm (Q2). Also the 29Si NMR of the
(3)@APTES@TiO2(12) showed peaks around δ 49.32 and 55.10 ppm (T2) corresponding to
Ti-O-Si-C linkage which confirmed the covalent linkage of organic motiey. Further, other
peaks around 59.33, 63.50, and 68.93 ppm (T3) corresponded to the SiO2 scaffold [60].
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3.7.3. Elemental (C, H, N) and Surface Area Analysis (BET Studies)

Elemental studies for the determination of C, N and H percentages were conducted to
verify the successful modifications of nanoparticles (5) and (7) with organic ligand (3). The
presence of the appropriate percentage of ‘C’ and ‘N’ in (9), (10), (11) and (12) materials
confirmed the formation of organic ligand (3) coated nano-composites (11) and (12) as
shown in Table 2. To ensure the surface modifications with organic ligand, surface studies
of the prepared materials (9), (10), (11) and (12) were conducted. In the BET studies,
the surface area of the nano-composites (11) and (12) were compared with bare silica
nanoparticles (5) and bare titania nano-particles (7).

As listed in Table 2, the BET surface area of the silica and functionalized materials were
found to be 201.81 m2g−1 and 113.21 m2g−1, respectively which were further decreased
to 77.56 m2g−1 for nano-composites (11). As expected, the BET studies revealed that
the surface area of the nanoparticles decreased in order of SiO2(5) > APTES@SiO2(9) >
(3)@APTES@SiO2(11) nano-composites, which confirmed the modification of the silica
surface. It was seen that the immobilization of nano-particles SiO2(5) with the ligand (3)
and APTES blocked nitrogen assess onto the surface of (5). These results were in good
agreement with the previous studies.

Also the surface area of titania compared to APTES coated titania and organic moiety
(3) coated titania decreased with every succeeded coating on titania as shown in Table 2
and confirmed the formation of intact nano-composites (12). Comparison of BET data of
nano-composites (11) and (12), revealed that nano-composites (12) were more intensely
coated with the organic ligand (3) than to nano-composites (11) by reacting same amount
of organic ligand (3), and was responsible for low detection limit of Hg2+ ions with (12)
than (11).

Table 2. BET analysis and CHN data of the SiO2 (5), APTES@SiO2 (9), (3)@APTES@SiO2 (11) and
TiO2 (6), APTES@TiO2 (10), (3)@APTES@TiO2 (12).

Entry Elemental Analysis BET Surface Area (m2/g)

C% H% N%
SiO2 (5) - - - 201.81

APTES@SiO2 (9) 2.53 0.84 0.96 113.21
(3)@APTES@SiO2 (11) 4.52 0.98 1.32 77.56

TiO2 (6) - - - 210.21
APTES@TiO2 (10) 5.65 1.29 1.87 95.35

(3)@APTES@TiO2 (12) 19.24 1.05 1.42 60.43

3.7.4. Field Emission Stimulated Electron Emission (FE SEM) and Energy Dispersive X-ray
Analysis (EDX)

The size, morphology and topographical studies of synthetic nanoparticles were
examined using a Field Emission Stimulated Electron Emission (FE SEM). Figure 12 showed
the FE SEM images of nano-hybrid sensing material (11). FE SEM micrographs revealed
that nanoparticles were spherical in shape having rough coating of organic ligand over
their surface and were not covalently attached all over, which was maintained throughout
and much of particles did not agglomerate into clusters. It was also found that the average
particle size of functionalized SiO2 nanoparticles was approximately 300 nm.

Energy Dispersive X-ray studies (EDX) revealed the presence of sulfur and carbon
which confirmed the coating and functionalization of the nano-composites (11). The
percentage of all the elements present in (11) depicted that oxygen was present in highest
amount followed by the silicon which form the core of nano-composites (11). Presence of
carbon and sulfur confirmed the coating of the organic ligand (3) over APTES modified
nano-particles (9) (Figure 13, Table S1).
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The FE SEM micrographs of (12) was recorded and it showed that the nano-composites
(12) possessed rough coating of organic ligand over its surface and was not covalently
attached all over uniformly and the average particle size of functionalized TiO2 nano-
composite was also approximately 210 nm. Additionally, the presence of sulfur and
carbon in EDX spectra of (12) confirmed the coating of organic ligand (3) on functionalized
nanoparticles (10) to finally obtain nano-composites (12). The percentage of all the elements
present in (12) depicted that oxygen was present in highest amount followed by the titanium
which formed the core of nano-composites (12) (Figures 14 and 15; Table S2).
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3.7.5. Transmission Electron Microscopy (TEM) Analysis

Tem studies were also conducted to check the size and morphology of the synthesized
nano-composites (11) and (12) by using field emission gun at voltage of 300 kV. The samples
were prepared by suspending nano-composites in absolute alcohol and then by drying
a drop of the same on carbon coated copper TEM grid. TEM micrographs revealed that
nano-composites (11) and (12) were mostly mono-dispersive and with an average size of
210 ± 7.73 and 295 ± 8.82 nm of nano-composite (11) and (12), respectively (Figure 16).

Nanomaterials 2021, 11, x FOR PEER REVIEW 18 of 22 
 

 

  

Figure 16. TEM images of functionalized organic-inorganic nano composite (a)—(11) and (b)—
(12). 

3.7.6. X-ray Diffraction (XRD) Studies 
X-ray powder diffraction studies were conducted to confirm the structural 

characterization of SiO2(5), APTES@SiO2(9) and (3)@APTES@SiO2nano-composites (11). 
Powder XRD pattern was obtained from Bragg’s equation λ = 2dsinθ using CuKα 
radiations, as shown in Figure 17a. An amorphous peak with an equivalent Bragg’s angle 
appeared at 2θ = 23°, corresponding to the SiO2 prepared by modified Stöber method after 
thermal treatment at 400 °C temperature. The single broad halo is due to average 
molecular separation in the amorphous phase and it confirmed the non-crystalline nature 
of silica prepared by modified Stöber’s method. The literature citation revealed that 2θ 
value of amorphous silica depends upon temperature treatment and water to 
tetraethoxysilane (TEOS) ratio. Our measured 2θ values of silica were found to analogous 
to the reported 2θ value of silica [61]. Further, the XRD studies of the APTES 
functionalized silica (9) and nano-composites (11) showed 2θ at 23° only with increase in 
peak intensities confirmed the immobilization of APTES and organic ligand (3) on silica 
surface with confined amorphous character of silica. 

  
(a) (b) 

Figure 17. XRD pattern of (a)→SiO2, APTES@SiO2 and (3)@APTES@SiO2(11); (b)→TiO2, 
APTES@TiO2 and (3)@APTES@TiO2. 

Similarly, structural characterization of TiO2, APTES@TiO2 and 
(3)@APTES@TiO2(12), was carried out with powder XRD analysis and the resulting 
patterns are presented in Figure 17b. All samples showed a single broad peak indicating 
their amorphous nature and preserved the non-crystalline nature even after 
functionalization with APTES and organic moieties, which implied that TiO2 
nanoparticles were stable enough to experience the chemical modification reactions same 
as that of silica nano-composites (11). However, XRD peak intensities decreased on 

Figure 16. TEM images of functionalized organic-inorganic nano composite (a)—(11) and (b)—(12).

3.7.6. X-ray Diffraction (XRD) Studies

X-ray powder diffraction studies were conducted to confirm the structural character-
ization of SiO2(5), APTES@SiO2(9) and (3)@APTES@SiO2nano-composites (11). Powder
XRD pattern was obtained from Bragg’s equation λ = 2dsinθ using CuKα radiations, as
shown in Figure 17a. An amorphous peak with an equivalent Bragg’s angle appeared
at 2θ = 23◦, corresponding to the SiO2 prepared by modified Stöber method after ther-
mal treatment at 400 ◦C temperature. The single broad halo is due to average molecular
separation in the amorphous phase and it confirmed the non-crystalline nature of silica
prepared by modified Stöber’s method. The literature citation revealed that 2θ value of
amorphous silica depends upon temperature treatment and water to tetraethoxysilane
(TEOS) ratio. Our measured 2θ values of silica were found to analogous to the reported
2θ value of silica [61]. Further, the XRD studies of the APTES functionalized silica (9) and
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nano-composites (11) showed 2θ at 23◦ only with increase in peak intensities confirmed the
immobilization of APTES and organic ligand (3) on silica surface with confined amorphous
character of silica.
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APTES@TiO2 and (3)@APTES@TiO2.

Similarly, structural characterization of TiO2, APTES@TiO2 and (3)@APTES@TiO2(12),
was carried out with powder XRD analysis and the resulting patterns are presented in
Figure 17b. All samples showed a single broad peak indicating their amorphous nature and
preserved the non-crystalline nature even after functionalization with APTES and organic
moieties, which implied that TiO2 nanoparticles were stable enough to experience the
chemical modification reactions same as that of silica nano-composites (11). However, XRD
peak intensities decreased on moving from TiO2 to APTES@TiO2 to (3)@APTES@TiO2 (12)
which also indicated the successive immobilization of APTES and (3) onto the TiO2 matrix.

On comparing, the powder XRD data of nano-composites (11) and (12), it was found
that there was more effective coating of ligand (3) over the APTES@TiO2 surface than
APTES@SiO2 surface. Additionally, more decrease in peak intensity was noticed on moving
from APTES@TiO2 to (3)@APTES@TiO2(12) comparative to the fall in peak intensity from
APTES@SiO2 to (3)@APTES@SiO2(11) (2θ = 23◦) and pointed to the lower limit of detection
with nano-composites (12).

3.8. Application on Real Samples

To authenticate the practical applicability of the nano-composites (11) and (12), the
composites were also applied to the mercury determination in real samples. Nano-
composites (11) and (12) were successfully applied in three different types of water (tap,
distilled and bottled water) for the detection of Hg2+ ions. Tap water was filtered through
Whatman filter paper prior to its use. After dispersing (11) and (12) in each sample, the
fluorescence spectra of the prepared samples were recorded thrice. Further, the samples
were spiked with known amounts of Hg2+ ions solution and their emissions intensities
were analyzed. From the respective calibration curves of [(11)+Hg2+] and [(12)+Hg2+] com-
plexes, concentrations of Hg2+ ions were determined in spiked samples. The results given
in Table 3 indicated that there was a good agreement between the spiked and measured
number of ions. It was observed that recovery percentages for the known amount of spiked
Hg2+ ions were found between 98–100%, which made the present approach authentic and
reliable for real sample assessment.
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Table 3. Quantitative analysis of an environmental sample with spiked amount of toxic Hg2+ ions
using nano-composites (11) and (12).

Nature of
Sample Studied #

Amount of Hg2+

Ions Added (nM)

Amount of Hg2+

Ions Found
(nM) (n = 3 *)

Recovery %Age
of Hg2+ Ions

Relative
Error %Age

Nano-composite (11)

Tap water
100 98.12 98.12 0.0010
150 148.50 99.00 0.0028
200 198.65 99.325 0.0024

Distilled water
100 99.30 99.30 0.0062
150 149.48 99.65 0.0103
200 199.24 99.62 0.0194

Bottled water
100 98.97 98.97 0.0085
150 147.36 98.24 0.0056
200 199.34 99.67 0.0064

Nano-composite (12)

Tap water
100 99.67 99.67 0.0058
150 149.28 99.52 0.0056
200 199.21 99.61 0.0107

Distilled water
100 99.96 99.96 0.0124
150 149.53 99.69 0.0091
200 199.93 99.97 0.0105

Bottled water
100 99.67 99.67 0.0095
150 149.42 99.61 0.0098
200 199.89 99.94 0.0091

* n = Number of times test conducted, # = samples were taken from Punjab Agricultural University premises.

4. Conclusions

In conclusion, we have successfully synthesized and characterized nano-composites
(11) and (12) of silica and titania (non-fluorogenic), which were evaluated as optical sen-
sors/fluorescence turn-on sensors for Hg2+ ions. It was found that the particle size of
nano-composites (12) were lesser than that of (11). Pleasantly, only Hg2+ ion induced the
metal-ligand chelation enhanced fluorescence in both nano-composites, while all other ions
showed negligible response. None of the intruding ion altered the sensitivity and selectiv-
ity of nano-composites towards Hg2+ ions.The detection limits of the (11) and (12) were
found to be 41.2 nM and 18.8 nM, respectively. Data obtained from p-XRD, BET and EDX
studies showed that there were more amount of ligand (3) adhered on the nano-composite
(12) in comparison to (11), which was found to be the plausible reason behind the lower
detection limit of (12). In addition, the present emission based analytical method provided
an economic and simple synthetic route for a selective and a sensitive quantification of the
one of the toxic metal Hg2+ ionin environmental samples.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11113082/s1, Figure S1: (a) 1H NMR of ligand (3). (b) D2O exchanges 1H NMR
of ligand (3). (c) 13C NMR of ligand (3). (d) Mass spectra of ligand (3); Table S1: EDX% of the
elements present in the nano-composites (11); Table S2: EDX% of the elements present in the nano-
composites (12).
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