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Abstract: Magnesium oxide (MgO) thin films with different magnesium concentrations ([Mg2+] = 0.05,
0.1, 0.15 and 0.2 mol·L−1) in a spray solution have been successfully grown using a spray pyrolysis
technique. X-ray diffraction (XRD), Maud software, FTIR spectroscopy, a confocal microscope,
Wien2k software, spectrophotometry and a Photoluminescence spectrometer were used to investigate
the structural, morphological and optical properties. XRD analysis revealed a better crystalline
quality of the MgO thin layer synthesized with [Mg2+] = 0.15 mol·L−1, which crystallized into a
face-centered cubic structure along the preferred orientation (200) lattice plan. The enhancement
of the crystalline quality for the MgO thin film ([Mg2+] = 0.15 mol·L−1) was obtained, which was
accompanied by an increment of 94.3 nm of the crystallite size. No secondary phase was detected and
the purity phase of the MgO thin film was confirmed using Maud software. From the transmission
spectra results, high transparent and antireflective properties of the MgO thin film were observed,
with an average transmission value of about 91.48% in the visible range, which can be used as an
optical window or buffer layer in solar cell applications. The films also have a high reflectance value
in the IR range, which indicates that the highly reflective surface will prevent an increase in surface
temperature under solar irradiation, which could be beneficial in solar cell applications. A direct
band gap type was estimated using the Tauc relation which is close to the experimental value of
4.0 eV for optimal growth. The MgO material was tested for the degradation of methylene blue (MB),
which reached a high photodegradation rate of about 83% after 180 min under sunlight illumination.
These experimental trends open a new door for promising the removal of water contaminants for
photocatalysis application.

Keywords: magnesium oxide (MgO) thin film; physical properties; antireflective; photocatalysis
application

1. Introduction

Magnesium oxide (MgO) belongs to the transparent oxide family and crystallizes
into a face-centered cubic structure, having a = b = c = 4.217

.
A [1,2]. It is characterized by

high transmission values in the visible range near to 90% [3] and a wide direct band gap
of 7.8 eV for pure MgO [4]. Heo et al. [5] measured a gap energy lower than 7.8 eV and
attributed the low band-gap energies to the existence of defects in type FS and FB.
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A MgO material has the following main advantages: non-toxicity [6], an abundance of
its constituents as well as chemical and physical stability [7]. These properties recommend
MgO for a wide range of applications in which its antibacterial [8], antimicrobial [9]
and photo-catalytic properties [3,10] could be used. Moreover, MgO can be used for
photovoltaic devices [11,12] and gas sensor applications [13].

Many experimental techniques have been developed to obtain MgO materials, such
as: thermolysis of an ultrathin Mg(OH)2 precursor under a dynamic vacuum to obtain
ultrathin single-crystalline MgO nanosheets with a preferential orientation stacked by
(111) planes [6], sol-gel [14–16], chemical vapor deposition (CVD) [17], pulsed laser de-
position [18], reactive sputtering [19], laser ablation [20], metal organic molecular beam
epitaxy [21] and a chemical spray pyrolysis technique [3,22]. Currently, heavy environ-
mental pollution has motivated researchers to seek new treatments, such as the extractive–
pyrolytic method [23], to remove pollutants and protect the environment. For these reasons,
semiconductor materials are involved in the photocatalysis process for the degradation of
organic pollutants, which are hazardous to human health and harmful for the environment.
In this work, many experimental techniques and tools are used to investigate the magne-
sium oxide thin film, such as X-ray diffraction (XRD), FTIR spectroscopy, Maud software,
confocal microscopy, spectrophotometry and photoluminescence spectrometry. The main
goal of this study is to investigate the physical behaviors of sprayed magnesium oxide thin
films with different magnesium concentrations in the sprayed solution ([Mg2+] = 0.05, 0.1,
0.15 and 0.2 mol·L−1) and look for possible optoelectronic applications.

2. Materials and Methods

MgO thin layers were synthesized on glass substrates using the liquid-phase spray
pyrolysis technique. Before the deposition process, all glass substrates were cleaned in
an ultrasonic bath containing double-distilled water. Magnesium II chloride hexahydrate
(MgCl2, 6H2O, 99%) was purchased from AppliChem (Council Bluffs, IA, USA). MgCl2
was dissolved in 100 mL of bi-distilled water. This solution, which contained the precursor,
was sprayed onto preheated substrates as fine droplets by means of compressed air as
a carrier gas. During the deposition process, the substrate temperature was maintained
at 450 ◦C and the solution flow rate was kept at 10 mL/min. In this work, we varied
magnesium concentrations ([Mg2+] = 0.05, 0.1, 0.15, 0.2 mol·L−1) to study the physical
properties of the MgO material.

The crystalline structure of the thin films was studied by XRD using an X-ray diffrac-
tometer with a 1.5418 Å Cu-Kα ray (automated Bruker D8 apparatus, Karlsruhe, Germany).
The experimental XRD spectra were compared with the Maud software. FTIR spectroscopy
(type VERTEX80 spectrometer for 400–4000 cm−1, Billerica, MA, USA) was performed
to identify the existence of different molecules and ions on the sample surface, and the
existence of MgO in particular. Morphological analysis was performed using a confocal
microscope called “SENSOFAR”. Optical measurements were performed using a Perkin
Elmer Lambda 950 spectrometer (Bridgeport, CT, USA). The type and value of the band
gap were calculated using the Tauc relation. The photocatalysis process of the MgO thin
layer was tested by degrading aqueous methylene blue (MB, 95%, from Sigma Aldrich,
Bengaluru, Karnataka, India) under sunlight irradiation at room temperature and ambient
air. Thus, to prepare the aqueous MB solution, 5 mg of MB powder was dissolved in
double-distilled water (from Bi-distiller water GFL, Burgwedel, Germany) to reach 10−5 M
of dye solution. Next, each sample was immersed in 20 mL of aqueous MB solutions. Then,
all solutions were placed in the dark for 30 min before exposing them to light in order
to achieve the adsorption–desorption equilibrium state. The degradation of MB dye was
measured at different periods of time (from 30 min to 3 h, in steps of 30 min), using a Perkin
Elmer Lambda 950 spectrophotometer.
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3. Results and Discussion
3.1. XRD Analysis

In order to study the effect of magnesium concentrations on the structural property of
MgO thin films, different amounts of Mg were used ([Mg2+] = 0.05, 0.1, 0.15 and 0.2 mol·L−1).
The diffractograms obtained by scanning the 2θ range between 20◦ and 80◦ are presented in
Figure 1. The XRD patterns of the synthesized MgO obtained for [Mg2+] = 0.05–0.1 mol·L−1

show low-intensity peaks. The XRD scans of the MgO thin films present characteristic peaks
that correspond to (111), (200) and (222) plans, which are attributed to the face-centered cubic
structure (JCBD card No# 650476) with space group fm3m. The onset of MgO polycrystalline
material was observed at [Mg2+] = 0.15–0.2 mol·L−1. It is observed that the crystallinity
increases with the increase in the intensity of the (200) preferred orientation for an Mg
concentration of 0.15 mol·L−1. However, an increase in Mg concentration to 0.2 mol·L−1

results in a slight deterioration of crystallinity. The crystallite size D (nm) was calculated
using the Debye–Scherrer equation [3,24]:

D =
kλ

β cos(θ)
(1)

where the constant k equals 0.9, the wavelength of the incident X-ray is λ = 1.54 nm, β
is the full width at half-maximum of the diffraction peak and 2θ is the position of the
preferred orientation (200).
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Figure 1. X-ray spectra of MgO thin films deposited on glass substrates for different concentrations
([Mg2+] = 0.05; 0.10; 0.15 and 0.20 mol·L−1).
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Table 1 summarizes the calculated crystallite size (D), dislocation density (δdis = 1
D2 )

per unit area and the strain (ε = β cos θ
4 ) of MgO thin films synthesized with different Mg

concentrations. The results of these calculations show that D increases with increasing mag-
nesium concentrations, reaching the highest value of about 9 nm at [Mg2+] = 0.15 mol·L−1.
The maximum size of MgO crystallite (D = 9 nm) obtained by the spray technique is less
than D = 50 nm, obtained by Demirci et al. [10], who grew MgO by flame spray pyrol-
ysis, but larger than D = 7.8 nm, obtained by Poonguzhali et al. [2] for MgO nanorods.
It is worth mentioning that this trend is correlated with the improvement in crystalline
quality, as seen in Figure 1. Moreover, Table 1 shows that the dislocation density δdis
was reduced from 35.45 × 1015 cm−2 for [Mg2+] = 0.1 mol·L−1 to 12.1 × 1015 cm−2 for
[Mg2+] = 0.15 mol·L−1. A similar trend was observed for the strain, which varied in the
range of 0.065 × 10−3–0.043 × 10−3%.

Table 1. Structural parameters of MgO thin layers grown by spray for different magnesium concen-
trations: [Mg2+] = 0.05; 0.10; 0.15; 0.20 mol·L−1.

[Mg2+]
(mol·L−1)

2θ (◦) Crystallite Size
D (nm)

Dislocation Density
δdis (1015 cm−2)

Micro Strain ε
10−3 (%)

0.05 - - - -

0.10 42.38 5.31 35.5 0.065

0.15 42.67 9.10 12.1 0.038

0.20 42.50 8.00 15.6 0.043

3.2. Rietveld Analysis

In order to refine the experimental XRD spectra and confirm the face-centered cubic
structure of the MgO material, we used the Maud software (Materials Analysis Using
Diffraction) based on the Rietveld analysis [3]. Additionally, we could estimate the lattice
parameter and crystallite size and we could extract the secondary phases, which may exist
along with the MgO phase. Figure 2 illustrates the Rietveld refinement of the XRD spectrum
for the MgO thin layer prepared using a spray solution containing [Mg2+] = 0.15 mol·L−1.
The results show that no secondary phase exists along with the MgO phase, which proves
the purity of the MgO material. We obtained a high goodness-of-fit (GOF) equal to 1.05.
The crystallite size value was about 11.02 nm, which is very close to the experimental value
obtained in Table 1. After applying the fitting analysis, we obtained a lattice parameter
equal to a = 4.52

.
A, which is in good agreement with the JCPDF card No. #650476.
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3.3. FTIR Spectra

The FTIR spectra of the MgO thin films deposited with [Mg2+] = 0.05; 0.10; 0.15 and
0.20 mol·L−1 show two peaks located at 553 cm−1 and 1272 cm−1 (Figure 3). The peak
at 553 cm−1 indicates the stretching vibration of MgO which was reported by Ashok
et al. [24], who obtained MgO nanoparticles using a microwave irradiation technique and
found a vibrational of MgO at 588 cm−1; they also mentioned that MgO has a stretching
vibration in the range of 550–670 cm−1. Tlili et al. [3] prepared MgO thin films by a spray
pyrolysis technique and they found a vibrational of MgO at 459 cm−1. Kandiban et al. [25]
synthesized MgO nanoparticles using co-precipitation and a hydrothermal method and
found a vibrational of MgO at 548 cm−1.
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Figure 3. FTIR spectra of sprayed MgO thin films deposited with [Mg2+] = 0.05; 0.10; 0.15 and
0.20 mol·L−1.

The peak located at 1272 cm−1 was assigned to the hydroxyl group OH, which
was reported by Moses et al. [22], who found the peak at 1228 cm−1, and by Devaraja
et al. [26], who mentioned that the hydroxyl group of water has an absorption in the range of
1300–1800 cm−1. The spectrum presented in Figure 3 shows no other elements or impu-
rities on the surface, such as carbon monoxide CO [24,25] or H−, CO3

2− (located at 1076,
1435 cm−1) [27].

As the size of the particle decreases, the resolution of the vibrational bands is better
resolved [28]. The peak intensity of MgO with [Mg2+] = 0.15 mol·L−1 is the largest of all
peaks in the FTIR spectrum, which agrees well with the largest crystallite size obtained by
XRD, and is presented in Table 1.

3.4. Surface Morphology

To study the morphological aspects of the MgO thin layer, a 3D confocal microscope
(1764 × 1321 µm) was used, as shown in Figure 4a. The micrograph clearly shows the
uniform and dense aggregation of particles that have practically the same size. Moreover,
the diagonal profile line of the scanned surface area gives an average thickness of about
0.4 µm, which is close to the value calculated from the double weight that equals 0.36 µm
for optimum growth. It is worth mentioning that the MgO thin film obtained using
[Mg2+] = 0.15 mol·L−1 exhibits a rough surface morphology. This observation is very
important, because a rough surface means a large contact surface, which is a beneficial
feature in photocatalysis, humidity and sensor applications. The surface parameters of the
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MgO material obtained from the confocal microscope data show that the arithmetical mean
height (Sa) value equals 0.15 µm and the root mean square (Sq) equals 0.19 µm. It is clear
that the MgO thin film is grown using [Mg2+] = 0.15 mol·L−1 with high roughness, which
makes it a promising candidate for gas sensor applications as well as for photocatalysis
water treatment [3].
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using [Mg2+] = 0.15 mol·L−1.

Figure 4b,c show the SEM images (top and cross-section views of the MgO thin
film obtained using [Mg2+] = 0.15 mol·L−1. These images show a surface morphology
characterized by spherical, droplet-like particles and a smooth, continuous film without
any cracks. The SEM image of the cross-section view (Figure 4c) shows that the film
has a thickness of 276.6 nm. We also performed a double weighting method to assess
the thickness of the layers. Using a precision balance of 0.0001 g, the film thickness was
estimated to be 290 ± 25 nm, which agrees well with the film thickness measured by SEM.

3.5. Optical Analysis

Using various magnesium concentrations in the spray solution, both morphological
and structural behaviors will induce significant changes in the optical properties of MgO.
Figure 5 displays the transmission T (%) and the reflectance R (%) spectra of the MgO thin



Nanomaterials 2021, 11, 3076 7 of 14

films in UV-Vis-IR regions. High transmission values in the visible range for all samples
recommend the MgO thin film as an optical window or buffer layer in solar cell devices.
Figure 5a shows that T (%) values increase as the Mg concentration increases. Generally,
the enhancement of T (%) could originate from reduced scattering effects, the enhancement
of crystallinity and structural homogeneity, as reported by [29,30]. On the other hand,
a particular behavior was observed, i.e., T (%) exceeded 100% in the UV range around
λ = 350 nm. These results could be explained by the fact that the MgO thin film adsorbed
H2O from the atmosphere. Thus, the water droplets which exist in the ambient air were
well retained on the rough surface of the film, which in turn increased the transmission
values, as mentioned earlier [3]. This observation indicates that the MgO thin film could be
used as a humidity sensor.
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Figure 5. (a) Transmission and (b) reflectance spectra of sprayed MgO thin films grown for different concentrations
[Mg2+] = 0.05; 0.10; 0.15; and 0.20 mol·L−1.

The reflectance spectra presented in Figure 5b show low intensity values close to
8% in the visible range for the MgO film obtained from a spraying solution containing
[Mg2+] = 0.15 mol·L−1. In addition, high reflection values of 45% were obtained in the
near-infrared region. These results indicate that a highly reflective surface will prevent an
increase in surface temperature under solar irradiation, which could prove beneficial in
solar cell applications. On the other hand, point defects may affect the optical absorption,
as was observed in the MgO single crystal [2].

From the transmission T (λ) and reflectance R (λ) values, the absorption coefficient (α)
can be analyzed using the following formula [30]:

α =
1
e

Ln

(
(1 − R)2

T

)
(2)

where e is the film thickness determined by the double weighting method.
The value and the type of the band gap energy were obtained from the Tauc relation,

(αhν) = B(hν− Eg)n (3)

where ν = c/λ, h = 6.62 × 10−34 J.s and B is a constant that depends on the transition
probability. Experimental energy band gaps of MgO thin films were estimated by plotting
(αhν)2 versus hν (eV), as shown in Figure 6. The intersection of the quasi-linear part of
curve with the x-axis shows that the MgO thin film obtained using [Mg2+] = 0.15 mol·L−1

has a large energy band gap of 4 eV. Table 2 summarizes the energy band gap values.
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These values are lower than the band gap energy of pure and bulk MgO (7.8 eV). The large
difference in band gap energy is attributed to the presence of default sites.
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Table 2. Band gap energies of MgO elaborated for different concentrations [Mg2+] = 0.05; 0.10; 0.15;
and 0.20 mol·L−1.

[Mg2+] (mol·L−1) 0.05 0.10 0.15 0.20

band gap energy (eV) 4.08 4.07 4.00 4.01

The refractive index (n) was calculated using the following relation [31]:

n =
1 + [1 − ( 1 − R

1 + R )
2
(1 +

(
λ.α
4π )2

)
]

1
2

1 − R
1 + R

(4)

where: α and R are the absorption coefficient and the reflection, respectively. Figure 7
illustrates the refractive index versus the wavelength (λ) for MgO thin layers obtained from
spray solutions with different magnesium concentrations. Figure 7 shows that n varies in
the range from 1.5 to 2.2. According to Tables 1 and 3, the variation in the refractive index
follows the variation in the film thickness and the reduction in band gap energy, especially
for [Mg2+] = 0.15 mol·L−1.
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Table 3. Film thickness of MgO synthesized with [Mg2+] = 0.05; 0.10; 0.15; and 0.20 mol·L−1.

[Mg2+] (mol·L−1) 0.05 0.1 0.15 0.2

Thickness (µm) 0.11 0.22 0.29 0.40

3.6. Photoluminescence (PL)

We performed photoluminescence measurements at 200 and 220 nm on the MgO thin
layer obtained using a concentration of 0.15 mol·L−1 Mg in the spray solution. When the
film was excited with a wavelength of 220 nm (Supplementary Material, Figure S1), we
observed the presence of emission peaks at 3.35, 3.16 and 2.32 eV, which were attributed to
defect center F2, F + and F, respectively, according to Kotomin et al. [32].

Figure 8 displays the photoluminescence spectra of MgO thin films synthesized with
[Mg2+] = 0.15 mol·L−1 excited with a wavelength of 200 nm, where only two emission peaks
were observed at 310 nm and 341 nm, which correspond to 4 and 3.63 eV, respectively. These
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results agree with the value of the band gap energy of MgO for the [Mg2+] = 0.15 mol·L−1

concentration obtained from the graph of the derivative of T with respect to λ as a function
of λ in Figure 6.
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3.7. Photocatalysis Process

Figure 9 shows the photocatalytic activity of MgO ([Mg2+] = 0.15 mol·L−1) thin film
at different times (i.e., 30, 60, 90, 120, 150 and 180 min) under sunlight illumination. The
MgO thin layer effectively decomposed the aqueous methylene blue (MB) after 180 min. In
order to study the photocatalytic degradation, we calculated the photodegradation rate of
MgO using the following expression [3]:

Photodegradation rate =
C0 − C

C0
× 100 (5)

where C and C0 are the absorbance values of the MB dye solution with and without the
MgO sample, respectively.

The photodegradation rate of MB dye under sunlight irradiation at different times is
illustrated in Figure 10. The value calculated for the photodegradation rate was about 83%
after 180 min. This result could be related to the higher surface roughness of the MgO thin
layer obtained with [Mg2+] = 0.15 mol·L−1.

The kinetic constant was investigated from the following expression [33]:

dC
dt

= −kC (6)

Figure 11 displays the kinetic constant of the MgO thin film, which confirms the
assumption of the first order of the kinetic constant. Plotting the Ln ( C0

C ) curve as a function
of time, the k1 value of the MB solution without sample (Ln( C0

C ) = k1.t) and k2 with the
MgO sample (Ln( C0

C ) = k2.t) were equal to 0.17 10−3 s−1 and 0.13 10−3 s−1, respectively.
The kinetic constant (k = 0.17 10−3 s−1 = 0.01 min−1) is much smaller than k = 0.30 min−1,
obtained by Demirci et al. [10], who used UV light. In our experiments, we used the natural
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solar light to break down the MB, which has an intensity lower than that of a UV lamp. We
can improve the kinetic constant by doping the MgO. In fact, doping or co-doping MgO
with transition metals or with rare earth elements also increases the surface roughness,
which increases the specific contact surface between the MB solution and the MgO material,
increasing the photocatalytic efficiency, as confirmed by Kamoun et al. [34] for the MoO3
films co-doped with Fe or Co.

We note that k2 is greater than k1, confirming the efficiency of the MgO material to
decompose the MB dye. This study suggests that the MgO thin film is a good photocatalyst
for removing organic pollutants in water.
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Figure 9. The temporal change in the original MB solution (0 min) and with MgO thin films under
sunlight irradiation for different times (30, 60, 90, 120, 150 and 180 min).
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Figure 10. Photodegradation rate variation in MB for two MB solutions: the one contained the
optimum MgO (blue) and the other of original solution (pink) for different times.
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4. Conclusions

In summary, MgO thin layers were synthesized by a spray pyrolysis technique at
different concentrations, i.e., 0.05 ≤ [Mg2+] ≤ 0.20 mol·L−1. It was found that the best
results were obtained for [Mg2+] = 0.15 mol·L−1. The XRD and Maud software revealed
that the good MgO phase crystallized into a face-centered cubic structure along (200)
with preferential orientation. The energy band gap value of MgO was estimated by
the Tauc relationship, giving an energy gap value near to 4 eV for MgO obtained using
[Mg2+] = 0.15 mol·L−1. Noticeable optical transmission behavior of the MgO thin films
includes that the T(%) values exceeded 85% in the visible region and were higher than 100%
in the UV region. Owing to its intrinsic properties, we observed that MgO obtained by
an inexpensive method such as spray pyrolysis has a high absorption of water molecules,
which was also confirmed by FTIR analysis. Because of these characteristics, the MgO
thin film can be used as a humidity sensor. Additionally, the MgO thin film presents good
efficiency for the degradation of MB dye under solar irradiation, which recommends this
material for photocatalysis water treatment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11113076/s1, Figure S1. PL emission spectrum for 220 nm excitation of MgO thin films
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