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1 Bulk parameters of CsPbX3

We investigate the excitonic �ne structure in CsPbX3 NPLs with and without
dielectric e�ects. CsPbX3 (X = Br, I, Cl) parameters are given in Table S1.
Eg is the band-gap energy, ε1 is the relative dielectric constant and εX is
the high-frequency dielectric constant. Some of the numerical parameters
are taken from experimental studies.1�4 In absence of data in literature, we
assumed εX = ε∞ = 4.07 for CsPbCl3.

5 The exciton Bohr radius values, aX ,
are calculated following the relationship aX = m0

µX
ε1a0 where µX = 0.126 m0

for CsPbBr3,
1 µX = 0.114 m0 for CsPbI3

1 and µX = 0.202 m0 for CsPbCl3.
2

EPS are the Kane energy for cubic phase perovskites.6 a0 is the Hydrogen
Bohr radius.

Numerical values given in Table S2 summarize the tetragonal parame-
ters used in this work. They are calculated using the 16-band k.p model in
tetragonal bulk crystals.7 We denote by ∆C the spin-orbit coupling and T
the tetragonal crystal �eld coupling, both de�ning the phase parameter, θ,

according to the relationship tan θ = 2
√

2∆C

(∆C−3T )
, with 0 < θ < π

2
.
(
EPS,ρ , EPS,z

)
are the related energies to the anisotropic interband momentum-matrix for
the x (= y) and z polarizations, (PS,ρ, PS,z). These Kane energies

(
EPS,ρ , EPS,z

)
are de�ned as EPS,ρ = 2m0

}2 P
2
S,ρ and EPS,z = 2m0

}2 P
2
S,z. m0 denotes the free elec-

tron mass.

2 Derivation of the Long Range Hamiltonian

Excitonic �ne structure is calculated using pair states formed by the lowest
electron and hole states only. The CB and VB states are respectively:


∣∣je = 1

2
, jez = +1

2

〉
= i [−α |XC ↓〉 − iβ |YC ↓〉+ γ |ZC ↑〉]∣∣je = 1

2
, jez = −1

2

〉
= i [−α |XC ↑〉+ iβ |YC ↑〉 − γ |ZC ↓〉]∣∣jv = 1

2
, jvz = +1

2

〉
= |Sv ↑〉 ,

∣∣jv = 1
2
, jvz = −1

2

〉
= |Sv ↓〉

(S1)

Excitonic �ne structure is then calculated using pair states formes by the
lowest electron and hole states only. The hole states are deduced from the
VB electron states

∣∣jv = 1
2
, jvz = ±1

2

〉
via the time-reversal operator I. Four

electron-hole pairs can be obtained (see Eq (12) of the main text). Using a
basis formed by {|+1〉 , |−1〉 , |0B〉 ; |0D〉}, the long-range (LR) contribution
to the electron-hole exchange interaction is represented by the matrix:

S1
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Table S. 1: Summary of basic physical parameters used in calculating the excitonic
�ne structure splittings.

Compound Eg (eV) ε1 εX aX (nm) EPS (eV)
CsPbBr3

a 2.342 7.3 4.45c 3.07 28.41f

CsPbI3
a 1.723 10 4.3d 4.64 23.81f

CsPbCl3
b 3.056 6.56 4.07e 1.72 29.81f

a Reference [1];b Reference [2];c Reference [3];d Reference [4]; e Reference [5];f

Reference [6].

HLR =


Σd Σod 0 0
Σod Σd 0 0
0 0 Σz 0
0 0 0 0

 (S2)

The matrix elements of the HLR operator can be calculated according to
the general expression of the LR interaction8,9

HLR
m′n′
mn

(
r′e r′h
re rh

)
=
∑
i,j

Qij
m′In
In′ m

∂2

∂rie∂r
j
e

VC(re − r′h) δ (re − rh) δ (r′e − r′h)

(S3)
VC is easily deduced from VC by replacing ε1 in the denominator by εX which
is the dielectric constant at the exciton resonance; m, m' (n, n') are the Bloch
states of the electron in the conduction band (the hole in the valence band),
and (re, r

′
e) and (rh, r

′
h) denotes the coordinates of the electrons and holes,

respectively. I is the time-reversal operator to use in the hole convention.
Qij

m′In
In′ m

is given by

Qij
m′In
In′ m

=
}2

m2
0

〈m′| pi |In′〉 〈In| pj |m〉
(E0

m − E0
n) (E0

m′ − E0
n′)

, (S4)

where pi (pj) is the i (j) component of the p momentum; E0
ν (ν = m,m′, n, n′)

is the νth band energy.
To derive the expression of the LR Hamiltonian, it is then necessary to

calculate
(
∂2UC/∂rie∂rje

)
and

(
∂2WC/∂r

i
e∂r

j
e

)
. First, we consider the con-

tribution of UC . From the Equation (9) and in the reciprocal space (wave
vector q), one deduces:
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Table S. 2: Numerical values of the tetragonal parameters used in this work. They
are determined from the 16-band k.p model [7].

Compound ∆C (eV) T (meV) θ (◦) EPS,z (eV) EPS,ρ (eV)
CsPbBr3 1.49 147 40.4 15.65 16.80
CsPbI3 1.43 155 39.56 17.03 19.81
CsPbCl3 1.55 148 37.65 15.24 17.21

∂2UC
∂rie∂r

j
e

=
1

(2π)3

∫
dq

(
e2

ε0εX

qiqj
q2

)
1− η4

1 + η4 − 2η2 cos(2qzLz)
exp iq. (re − rh)

(S5)

Recalling that η = (ε1−ε2)
(ε1+ε2)

. The associate LR contribution can then be
written:

1

(2π)3

∫
dqF(q)Qm′In

In′ m
(q) exp iq. (re − rh) δ (re − rh) δ (r′e − r′h) (S6)

in which one has de�ned the function

F(q) =
e2

ε0εX

1

q2

1− η4

1 + η4 − 2η2 cos(2qzLz)
(S7)

and the operator

Qm′In
In′ m

(q) =
∑
i,j

Qij
m′In
In′ m

(q)qiqj (S8)

The explicit form of the matrix representation of Qm′In
In′ m

(q) in the basis

{|+1〉 , |−1〉 , |0B〉 ; |0D〉} is:

1

E2
g



(
α2P 2

S,xq
2
x

+β2P 2
S,yq

2
y

)
−
(

αPS,xqx
−iβPS,yqy

)2 √
2γPS,zqz

(
αPS,xqx
−iβPS,yqy

)
0

c.c.

(
α2P 2

S,xq
2
x

+β2P 2
S,yq

2
y

)
−
√

2γPS,zqz

(
αPS,xqx

+iβPS,yqy

)
0

c.c. c.c. 2γ2P 2
S,zq

2
z 0

0 0 0 0


(S9)
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where c.c. denotes the complex conjugate. (PS,x, PS,y, PS,z) are the nonzero
matrix elements of the momentum operator p according to the D2h point
group symmetry.10

Using the exciton wave function and its parity, it is possible to write the
contribution of UC :

{
ΣUd = α2

E2
g

}2
2m0

EPS,x
∫
dqq2

xF(q)
∣∣∫ drΨ(r, r) exp iq.r

∣∣2
+ β2

E2
g

}2
2m0

EPS,y
∫
dqq2

yF(q)
∣∣∫ drΨ(r, r) exp iq.r

∣∣2 (S10)

{
ΣUd = − α2

E2
g

}2
2m0

EPS,x
∫
dqq2

xF(q)
∣∣∫ drΨ(r, r) exp iq.r

∣∣2
+ β2

E2
g

}2
2m0

EPS,y
∫
dqq2

yF(q)
∣∣∫ drΨ(r, r) exp iq.r

∣∣2 (S11)

{
ΣUz =

2γ2

E2
g

}2

2m0

EPS,z

∫
dqq2

zF(q)

∣∣∣∣∫ drΨ(r, r) exp iq.r

∣∣∣∣2 (S12)

where EPS,j = (2m0/~2)P 2
S,j (j = x, y, z).

The contributions ΣWλ (λ = o, od, z) of WC will depend on:{
∂2WC

∂rie∂r
j
e

= 1
(2π)3

∫
dq
(

e2

ε0εX

qiqj
q2

)
2η(1−η2) cos(qzLz)

1+η4−2η2 cos(2qzLz)

× exp
[
iq‖. (ρe − ρh) + iqz(ze + zh)

] (S13)

Doing a similar derivation, the associate LR contribution can then be
written:

1

(2π)3

∫
dqG(q)Qm′In

In′ m
(q) exp

[
iq‖. (ρe − ρh) + iqz(ze + zh)

]
δ (re − rh) δ (r′e − r′h)

(S14)
where one has de�ned the function

G(q) =
e2

ε0εX

1

q2

2η(1− η2) cos(qzLz)

1 + η4 − 2η2 cos(2qzLz)
(S15)

The contributions ofWC , namely ΣWλ can then be derived and are similar

to ΣUλ , with the square r-integral
∣∣∫ drΨ(r, r) exp iq.r

∣∣2 replaced by

S4



∫
drΨ(r, r) exp iq.r

∫
drΨ(r, r) exp iq.r (S16)

with r = (x, y, z) and r = (x, y,−z). Due to the parity of the function Ψ(r, r)
both integrales are equal. This leads to the same expressions as for ΣUλ , with
F(q) replaced by G(q).

Finally, the LR coupling coe�cients Σλ are written according to eqs (S9-
S11) with F(q) replaced by

D(q) =
e2

ε0εX

1

q2

(1− η2) cos(qzLz)

1 + η2 − 2η cos(qzLz)
(S17)

and it is then possible to estimate the whole LR couplings:
Σd =

(
α2EPS,xIx + β2EPS,,yIy

)
Λ

3π2a3X |N (a,ζ)|2

Lz

Σod =
(
−α2EPS,xIx + β2EPS,,yIy

)
Λ

3π2a3X |N (a,ζ)|2

Lz

Σz = 2γ2EPS,zIzΛ
3π2a3X |N (a,ζ)|2

Lz

(S18)

with Λ = 1
3E2

g

}2
2m0

e2

ε0εX

1
πa3X

. The integrals Ij (j = x, y, z) are written as

Ix =

∫
du

r2s2u2
x

r2s2u2
x + s2u2

y + r2u2
z

sin2 ux
u2
x

sin2 uy
u2
y

sin2 uz(
u2
z − π2

4

)2d(uz) (S19)

Iy =

∫
du

s2u2
y

r2s2u2
x + s2u2

y + r2u2
z

sin2 ux
u2
x

sin2 uy
u2
y

sin2 uz(
u2
z − π2

4

)2d(uz) (S20)

Iz =

∫
du

r2u2
z

r2s2u2
x + s2u2

y + r2u2
z

sin2 ux
u2
x

sin2 uy
u2
y

sin2 uz(
u2
z − π2

4

)2d(uz) (S21)

in which d(uz) = (1−η2)
1+η2−2η cos(2uz)

. r = Ly/Lx and s = Lz/Lx are the anisotropy
parameters.
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3 Coulomb interaction enhancement factor and

self-energy potential in CsPbBr3 NPLs

Figure S. 1: Upper panel: Enhancement factor as the ratio of the modi�ed
Coulomb potential (Eq. (7) in main text) to the `usual' e-h electrostatic poten-

tial, VC (re, rh) = − e2

4πε0ε1
1

|re−rh| , for ze = zh = 0 (median NPL plane) in CsPbBr3

(ε1 = 7.3); solid lines: Lz = 2.90 nm ≈ aX (5 ML); dash lines: Lz ≈ 10× aX . As
expected, the enhancement factor reaches ε1

ε2
at long inter-particles distances with

a more extended transition for larger thicknesses NPLs. Lower panel: plots of the
`self-energy' potential (Eq. (6) in main text) in a CsPbBr3 NPL as a function of
the NPL thickness (4= 4 ML, � = 5 ML and � = 50 ML) and outer dielectric
constant, ε2 (red curve: ε2 = 1, green curve: ε2 = 2 and blue curve: ε2 = 7.0).

S6
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4 Near band-gap energies of CsPbI3 and CsPbCl3
NPLs

Figure S. 2: (a) Free e-h pair energy Eeh (black line) and excitonic energy EX
with di�erent dielectric mismatches, for CsPbI3. The dashed line correspond to the
bulk gap energy Eg. (b) Energy di�erence ∆ = EX − Eeh with di�erent dielectric
mismatches.

S7
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Figure S. 3: (a) Free e-h pair energy Eeh (black line) and excitonic energy EX
with di�erent dielectric mismatches, for CsPbCl3. The dashed line correspond to
the bulk gap energy Eg. The black symbols are experimental data from Ref.11 and
Ref.12 (b) Energy di�erence ∆ = EX − Eeh with di�erent dielectric mismatches.
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5 Exciton binding energy of CsPbI3 and CsPbCl3
NPLs

Figure S. 4: Binding energy Eb of the e-h pair including the Coulomb interaction
and the dielectric e�ects with di�erent dielectric mismatches, in (a) CsPbI3 NPLs
and (b) CsPbCl3 NPLs. The dashed line corresponds to the bulk binding energy R:
(a) R = -15.5 meV; (b) R = -63.4 meV.

S9
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6 Wave function normalization factor and vari-

ational Bohr Radius versus the NPL thikness

for CsPbBr3

Figure S. 5: (a) Normalization factor N (a, ζ) of the trial function versus the thick-
ness Lz with di�erent dielectric mismatches, for CsPbBr3 NPL. N (a, ζ) is normal-

ized by the 2D factor N2D =
√

8
πa2X

associated to the exciton wave function in a

perfect 2D system. (b) E�ective Bohr radius normalized by the bulk Bohr radius
aX .

In absence of dielectric e�ect, the wave function normalization factor

N (a,ζ) tends to N2D =
√

8
πa2X

, the value associated to the exciton wave

function in a perfect 2D system (Lz = 0), as con�rmed by the blue curve

S10
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(ε2 = 7.3) on Figure S.5a. The e�ective Bohr radius, a, shows the expected
behavior, converging to aX

2
for Lz = 0 (see Figure S.5b). In presence of

dielectric e�ects, the coe�cient N (a,ζ) increases with η = ε1−ε2
ε1+ε2

, giving an
extra contribution to the �ne structure splitting. Due to the single self en-
ergy potential induced by the image charges, a lateral con�nement appears,
reducing the e�ective Bohr radius as shown on Figure S.5b.

7 Fine structure splitting for CsPbI3 NPLs in

the cubic and tetragonal symmetry

Figure S. 6: Bright-Bright splitting ∆E and Bright-Dark splitting δBD, in CsPbI3
NPLs with an Oh cubic symmetry (upper curves) and a D4h tetragonal symmetry
(lower curves). Di�erent dielectric mismatches are considered, the outside dielectric
constant ε2 varying from 10 to 1. The vertical line gives the value of the exciton
Bohr radius.

S11
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8 Fine structure splitting for CsPbCl3 in the

cubic and tetragonal symmetry

Figure S. 7: Bright-Bright splitting ∆E and Bright-Dark splitting δBD, in CsPbCl3
NPLs with an Oh cubic symmetry (upper curves) and a D4h tetragonal symmetry
(lower curves). Di�erent dielectric mismatches are considered, the outside dielectric
constant ε2 varying from 6.56 to 1. The vertical line gives the value of the exciton
Bohr radius.

9 Energy levels con�guration: a summary

To be comprehensive, four cases should be considered. For each symme-
try, D4h (tetragonal) or D2h (orthorhombic), the �ne structure spectrum will
depend on the c axis orientation: (i) orthogonal to the platelet plane (Z
orthogonal to the platelet plane if using the notation of the main text), or
(ii) c lying in the platelet plane.

S12
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The energy levels are obtained by the diagonalization of the SR and LR inter-
action Hamiltonian given by equations (14) and (15). The resulting excitonic
structures are brie�y described below.

Please note that the eigenenergies calculated below (Σ+, Σ−, Σk with
k = X, Y, Z) are absolute energies that place the �ne structure levels on an
absolute scale with a ground dark state setting the zero (energy Σ0 = 0).
In contrast ∆E, ∆E1 and ∆E2 used in the main text are energy di�erences.
For clarity reasons, and as a reminder, their de�nition are provided in each
of the addressed cases.

We �nally emphasize that, with the used convention for the |X〉 and |Y 〉
states (i.e. |X〉 = 1√

2
[|+1〉 − |−1〉], |Y 〉 = 1√

2
[|+1〉+ |−1〉]), the dipoles as-

sociated to |X〉, |Y 〉 and |Z〉 oscillate along the x, y and z physical axis,
respectively.

1. D4h, Z (= c axis) orthogonal to the NPL plane.

In the 2D limit, Ix = Iy = 0 and Iz 6= 0 in the Σd and Σod terms (LR
interaction matrix). We thus obtain:

Σd = Σod = 0 and ΣZ = 2γ2EPS,zIzΛ
3π2a3

X

Lz
|N (a, ζ)|2 (S22)

Moreover α2 = β2 = cos2 θ
2

and γ2 = sin2 θ (see main text).
Summing the LR and SR contributions, one �nds for the eigenvalues

(equation (20) in the main text):

{
Σ± = 9

4
∆SRπa

3
X
|N (a,ζ)|2

Lz
cos2 θ for |±1〉

ΣZ =
[

9
4
∆SR + 3EPS,zIzπΛ

]
πa3

X
|N (a,ζ)|2

Lz
× 2 sin2 θ for |0B〉

(S23)

The �ne structure consists of a degenerate doublet, |±1〉 and a higher
energy singlet, |Z〉. We �nd that Σ+ = Σ− � ΣZ and ∆E=ΣZ −
Σ±. Here (and below) `�' means that the energy of the |0B〉 state is
signi�cantly larger.

2. D4h, Z parallel to the NPL plane.

One has to consider Ix = Iz = 0 and Iy 6= 0. y (and the dipole

S13



associated to the |Y 〉 state) is orthogonal to the NPL plane. This leads
to:

Σd = Σod = β2EPS,yIyΛ
3π2a3

X

Lz
|N (a, ζ)|2 and ΣZ = 0 (S24)

Taking into account the SR interaction contribution (and noticing that
α, β and γ parameters, that depend on the symmetry, are unchanged
as compared to the previous case), one �nds the eigenenergies:

ΣY =
[

9
4
∆SR + 3EPS,yIyπΛ

] πa3X
Lz
|N (a, ζ)|2 cos2 θ for |Y 〉

ΣX = 9
4
∆SR

πa3X
Lz
|N (a, ζ)|2 cos2 θ for |X〉

ΣZ = 9
4
∆SR

πa3X
Lz
|N (a, ζ)|2 × 2 sin2 θ for |Z〉

(S25)

ΣX 6= ΣZ and the states degeneracy is fully lifted. The state having its
dipole orthogonal to the NPL plane is the highest energy one.
We note that ΣX < ΣZ � ΣY . Here the smaller splitting will be noted
∆E1 = EZ−EX while the larger is ∆E2 = EY−EZ . We refer the reader
to the main text and to the �rst sections of the SI for a quantitative
estimation of the energy di�erences in CsPbBr3 and CsPbCl3, CsPbI3
compounds respectively.

3. D2h, Z orthogonal to the NPL plane.

First we take Ix=Iy=0 and Iz 6=0 to evaluate the Σd and Σod terms
(LR interaction contribution). They are given by eq. (S22) . Then one
has to diagonalize the SR interaction hamiltonian in its `more general
form' with α 6= β 6= γ. A basic derivation provides the eigenvalues 2α2,
2β2 and 2γ2 for the matrix part in (14). The �nal eigenenergies thus
reads (equation (22) in the main text):

ΣY = 9
2
∆SRπa

3
X
|N (a,ζ)|2

Lz
β2 for |Y 〉 = 1√

2
[|+1〉+ |−1〉]

ΣX = 9
2
∆SRπa

3
X
|N (a,ζ)|2

Lz
α2 for |X〉 = 1√

2
[|+1〉 − |−1〉]

ΣZ =
[

9
2
∆SR + 6EPS,zIzπΛ

]
πa3

X
|N (a,ζ)|2

Lz
γ2 for |Z〉

(S26)

Thus a triplet is also predicted with ΣX < ΣY � ΣZ . The splittings
in energy are ∆E1 = EY − EX and ∆E2 = EZ − EY .

4. D2h, Z parallel to the NPL plane.

S14



y chosen orthogonal to the NPL plane implies that Ix=Iz=0 and Iy 6=0.
Σd, Σod and ΣZ are already known (see eq. (S24)). When incorporating
the SR interaction contribution, one gets, after diagonalization:

ΣY =
[

9
4
∆SR + 3EPS,yIyπΛ

] πa3X
Lz
|N (a, ζ)|22β2 for |Y 〉

ΣX = 9
4
∆SR

πa3X
Lz
|N (a, ζ)|22α2 for |X〉

ΣZ = 9
4
∆SR

πa3X
Lz
|N (a, ζ)|22γ2 for |Z〉

(S27)

In this case, ΣX 6= ΣZ and, as α2 < γ2, ΣX < ΣZ � ΣY . Again the
degeneracy is lifted and the bright exciton �ne structure consists of a
triplet (splittings ∆E1 = EZ − EX and ∆E2 = EY − EZ).

10 Estimation of the depolarisation factors in

2D geometry

To predict the NPL optical (experimental) response in emission one needs
to take into account the manner the applied �eld might be reduced inside
the nanostructure due to the strong dielectric mismatch that exists between
the inside and the outside. Such e�ects (`local �eld e�etcs') are taken into
account in the �attened ellipsoid model that provides an access to analytical
formula when estimating the attenuation factor of the electromagnetic �eld
(for example the approach was successfully used in ref13 and ref14). The
main elements of the theory can be found in the work of A. Rodina and A.
Efros.15

When an emitting dipole is set along the direction µ = x, y or z (z is per-
pendicular to the NPL plane), the probability to emit light is reduced by the
screening factor Dµ:

Dµ =

[
1

1 + nµ(k − 1)

]2

, (S28)

where nµ is the depolarization factor for the µ direction, and k is the ratio
between the relative dielectric constants - inside and outside the NPL - taken
at the emission wavelength: k = εin/εout(λem).
In the 2D limit, nx = ny = 0 and nz = 1 so that Dx = Dy = 1 and Dz =

1/k2 = [εout/εin]
2
.

S15
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Considering εin ∼ 7 for CsPbBr3 as determined in,16 Dz ranges from ∼ 1/50
to 1/12, as εout varies from 1 to 2. The coupling of the light with a z oriented
dipole is then weakened within a factor that is at least ∼10 as compared to
the in-plane coupling. Let us note that the calculations might be carried out
in the situation of large (non in�nite along x and y) platelets as in ref13 and
ref14 showing that the results are very poorly a�ected as long as Lx,y � Lz.

11 How the NPL exciton �ne structure spec-

trum might show up in a micro-PL experi-

ment

Three main e�ects will play a crucial role in `shaping' the optical response
of the NPLs in a micro-photoluminescence experiment. They are presented
here as operating sequentially: (i) fast energy transfer (E.T.) inside the �ne
structure manifold that will quench the higher energy state emission at low
temperature; (ii) the local �eld e�ect that will have a drastic impact, reduc-
ing the internal �eld inside the nanostructure i.e. the light-dipole coupling.
The e�ect will be signi�cant along the highly con�ned direction (z or y in
the Figure S.8); (iii) the detection geometry: due to the dipolar emission
pattern, a poor photon collection will be achieved in the direction aligned
with the emitting dipole axis. The polar diagram - right side of Figure S.8 -
provides the angle distribution of the radiated intensity that would be mea-
sured on a photodetector placed behind an analyzer in the detection path
(along the optical axis). (a) and (b) are for D4h symmetry while (c) and (d)
relate to the D2h symmetry. In (b) and (d) the c cristallographic axis lies in
the platelet while it is perpendicular to it in the con�gurations (a) and (c).

The possible optical signatures consist either of a single line (with an
isotropic distribution of the intensity in the plane perpendicular to the optical
axis, either of a doublet with linear crossed polarizations). The doublet might
be observed if the homogeneous broadening allows it. The expected splitting,
∆E1, is in the meV range for platelets having a thickness of few MLs (see
main text). Using the previous results, it is also seen that `edge-lying' NPLs
would always contribute in the form of a single linearly polarized line.

Note that the correct scaling in the PL peak intensity is not the one used
in the Figure S.8. A 102 to 103 attenuation factor can easily result from the
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Figure S. 8: Scheme depicting how the exciton �ne structure spectrum might be
in�uenced as observed in a photoluminescence microscopy experiment (�at lying
nanoplatelets).

E.T. process at low temperature (τd in the ps/sub ps range and τr in the
hundred of ps/ns range). In the quantum well limit (in�nite extension along
x and y), the depolarization inside the structure leads to an apparent ∼12
times weakening of the emitting dipole aligned along the direction of strong
con�nement15 (considering the typical values εin ∼ 7.0 and εout ∼ 2.0.16).
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