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Abstract: Formic acid (FA) is found to be a potential candidate for the storage of hydrogen. For
dehydrogenation of FA, the supports of our catalysts were acquired by conducting ZnCl2 treatment
and carbonation for biomass waste. The texture and surface properties significantly affected the
size and dispersion of Pd and its interaction with the support so as to cause the superior catalytic
performance of catalysts. Microporous carbon obtained by carbonization of ZnCl2 activated peanut
shells (CPS-ZnCl2) possessing surface areas of 629 m2·g−1 and a micropore rate of 73.5%. For ZnCl2
activated melon seed (CMS-ZnCl2), the surface area and micropore rate increased to 1081 m2·g−1

and 80.0%, respectively. In addition, the introduction of ZnCl2 also caused the increase in surface O
content and reduced the acidity of the catalyst. The results represented that CMS-ZnCl2 with uniform
honeycomb morphology displayed the best properties, and the as-prepared Pd/CMS-ZnCl2 catalyst
afforded 100% hydrogen selectivity as well as excellent catalytic activity with an initial high turnover
number (TON) value of 28.3 at 30 ◦C and 100.1 at 60 ◦C.

Keywords: porous carbon; Pd nano-catalysts; agriculture waste; formic acid; dehydrogenation

1. Introduction

With the rapid development of social science and technology, a large amount of
traditional fossil energy is consumed in the process of industrialization. The consumption
of fossil energy has produced a series of problems such as energy crisis and environmental
pollution, which makes human society put forward an urgent demand for a new energy
system [1,2]. Hydrogen, with the major advantages of cleanness, high efficiency, high
energy density (142 MJ·kg−1) and renewability, is one of the most promising energy
carriers [3]. However, the preparation, storage, transportation and conversion of hydrogen
are the main obstacles to the practical application of hydrogen [4,5]. At present, liquid
phase hydrogen storage materials, which store hydrogen energy in the form of chemical
bonds and produce hydrogen by catalytic dehydrogenation, are considered to be safe
and efficient candidate materials [6,7]. Among them, hydrogen mass density and volume
capacity of formic acid (FA) are as high as 4.4 wt% and 53.4 g·L−1, respectively. It is a non-
toxic, harmless and cheap chemical hydrogen storage material that can effectively avoid
the problem of hydrogen storage and transportation [8,9]. Through a cycle constituted of
dehydrogenation of FA and CO2 hydrogenation, C1 resources can be effectively recycled,
and zero carbon dioxide emission can be realized in theory, which is of great significance
in the field of energy and environment [10,11]. Under appropriate catalyst and reaction
conditions, FA can be decomposed either through dehydrogenation (Equation (1)) or
dehydration (Equation (2)). Obviously, the key to promote the practical application of
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FA as hydrogen storage material is to design and synthesize highly active and selective
catalysts to decompose FA to hydrogen through dehydrogenation reaction.

HCOOH→ H2 + CO2 (1)

HCOOH→ H2O + CO (2)

A large number of research results showed that almost all heterogeneous catalysts
effective for the decomposition of FA to hydrogen contain metal Pd, yet their catalytic
activity and selectivity still cannot meet the requirements of practical application [12,13].
By introducing another metal to form Pd-based alloy catalysts, such as Pd-Au and Pd-
Ag, the adsorption force of Pd on FA could be adjusted to promote dehydrogenation
efficiency [14]. In addition, metal nanoparticles with small particle size usually show
superior catalytic performance than large nanoparticles in FA dehydrogenation. Typically,
capping agents are used in the preparation of small metal particles to resist thermodynamic
instability due to their high surface energy [15,16]. However, capping molecules will
pollute the active sites and result in the loss of catalytic activity. Therefore, anchoring
active metal nanoparticles on suitable supports is an effective strategy for producing stable
small particles and ensuring optimal catalyst utilization [17–19]. Porous carbon materials
are ideal supports on account of its large surface area, well-developed pore structure and
acid and alkali resistant properties [20,21]. Masuda et al. reported that Pd nanoparticles
supported commercial Maxsorb carbon MSC-30, which had a high turnover frequency
value for Pd/MSC-30 of FA decomposition that reached 5638 h−1 at 75 ◦C [22]. Lee et al.
prepared hierarchically porous graphene-like carbon (KIE-8) support by chitosan, urea
and KOH mixture pyrolysis methods, and the resulting catalyst for FA decomposition was
287 h−1 at room temperature [23].

The natural biomass material is rich in carbon elements, renewable, easy to process
and is low cost as a potential carbon material precursor [24–26]. However, the pore struc-
ture of carbon materials prepared by direct pyrolysis of biomass precursors is generally
underdeveloped and mostly has block structures and single chemical compositions, so it
is not suitable for use as support materials [27,28]. Therefore, the activation of biomass
carbon materials is an auxiliary but essential strategy for improving the material’s chemical
state, internal 3D network and nanostructures [29]. Promoters such as sodium hydrox-
ide/potassium (KOH/NaOH), potassium chloride (KCl), potassium carbonate (K2CO3),
zinc chloride (ZnCl2) and phosphoric acid (H3PO4) are usually mixed with biomass precur-
sors to form porous structures. The basic mechanism is that the surface carbon of biomass
can be consumed by activators at high temperature so as to introduce layered porosity [30].
Nuilek et al. reported that the specific surface area of biomass carbon could be improved
by activating Urtica with KOH [31]. With H3PO4 activation of xylan, the specific surface
area of carbons increased from 548 to 1558 m2·g−1 [32].

According to information compiled by China Rural Statistical Yearbook, the total
peanut and melon seed productions were estimated at about 17.52 million tons and 26.64
million tons in 2019 [33]. If the shell accounts for 30% of the total weight, about 6 million
tons of peanut shell and 9 million tons of melon seed shell can be produced. As by-products,
most of them are discarded or burned, except for a few that are used in processing animal
feed and edible fungus culture medium, resulting in a serious waste of resources and
environmental pollution [34,35]. Using them as precursor of biomass carbon is a win-win
strategy, which not only can realize resource utilization of agricultural waste but also
achieve the goals of carbon neutrality and peak carbon dioxide emissions. Herein, a series
of biomass carbon supports was prepared by pyrolysis of peanut shell and melon seed
shell to synthesize Pd/C catalyzed dehydrogenation of FA. The influence of the support
structure and surface properties on the catalytic performance of the catalyst was discussed.
As a result, the melon seed shell activated by ZnCl2 was used as the best support, and it is
supported Pd nanoparticles possessing high activity and stability for the decomposition
of FA.
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2. Materials and Methods
2.1. Materials

Peanut seeds and melon seeds (the supermarket in Guiyang, China), formic acid
(FA, HCOOH, Aladdin, AR, 98 vol%, Shanghai, China), sodium formate (SF, HCOONa,
Aladdin, AR, 99.5 wt%, Shanghai, China), sodium borohydride (NaBH4, Acros, AR, 98 wt%,
Shanghai, China), zinc chloride (ZnCl2, Macklin, GR, 99.8 wt%, Shanghai, China), nitric
acid (HNO3, Chengdu Kelong, AR, 65–68 vol%, Chengdu, China), hydrochloric acid (HCl,
Chengdu Kelong, AR, 36–38 vol%) and palladium chloride (PdCl4, Guiyan Platinum
Industry, AR, 59.5 wt%, Guiyang, China) were not further purified. Ordinary deionized
water was used as the reaction solvent.

2.2. Preparation of Catalysts

The peanut seed shell and melon shell were dried in an oven at 150 ◦C for 3 h, and
their water contents measured by moisture meter were 10.28% and 10.00%, respectively.
The dried biomasses were crushed by a crusher and sieved through 20 mesh. The samples
were treated with a 50.0 vol% aqueous HNO3 solution for 30 min and then washed with
deionized water to neutral drying for standby. The treated biomasses were dispersed in a
ZnCl2 solution (the mass ratio of ZnCl2 to biomass was 2) and stirred at room temperature
for 24 h. After drying, the moisture contents of peanut seed shell and melon shell treated
with ZnCl2 were 9.72% and 9.57%, respectively. Biomass carbon was obtained by slow
pyrolysis of biomass in a tubular furnace oven under continuous 200.0 mL·min−1 N2 flow
at 800 ◦C (heating rate of 5 ◦C·min−1) for 2 h. The obtained black carbonized samples were
washed to neutral with a 0.5 vol% aqueous HCl solution and labeled as CPS-ZnCl2 and
CMS-ZnCl2 after drying. The acquisition of CPS and CMS followed the above steps except
ZnCl2 activation.

H2PdCl4 was dropped into the support dispersed with deionized water by an incipient
wetness method at 30 ◦C and stood for 24 h. Finally, the solids were reduced at a 0.1 mol·L−1

NaBH4 solution and dried at 80 ◦C vacuum oven for 2 h, and the reduced catalysts were
marked as Pd/CPS and Pd/CMS and Pd/CPS-ZnCl2 and Pd/CMS-ZnCl2, in which the loads
of Pd were 5 wt%.

2.3. Test of Catalysts

The decomposition of FA reaction was conducted in a three-necked flask (Figure S1).
One neck of the reaction flask was reserved for introducing 10.0 mL of mixed solution
of 1.0 mol·L−1 FA and 1.0 mol·L−1 SF, and another was connected to a gas burette. The
third one was inserted into a thermocouple to measure the reaction temperature. After
the mixed solution was injected to the reactor containing catalyst (nPd/nFA = 0.2%), the
volume of the produced gas was recorded by recording the displacement of water in the
gas burette. Unless otherwise specified, the reaction was carried out at 30 ◦C.

The used catalyst was recovered from the reaction mixture by filtration and then
continuously washed with deionized water. After drying, an FA/SF solution was added
for the recycling experiment.

2.4. Calculation Method

The activity of catalysts was compared and discussed in terms of turnover number
and (TON) calculated according Equation (3).

TON =
PV

2nPdRT
(3)

P denotes atmospheric pressure (101325 Pa), V denotes the generated volume of gas,
nPd denotes the total mole number of Pd atoms in the catalyst, R denotes the universal gas
constant (8.3145 m3·Pa·mol−1·K−1) and T denotes 25 ◦C (298 K). TONX denotes TON at
X min.
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2.5. Characterization of Catalysts

The moisture content of biomass was obtained by a moisture meter (SFY-20W, Shen-
zhen, China). Biomasses were detected using a NETZSCH thermogravimetry (TG) 209 in-
strument (Billerica, MA, USA) with a ramp rate of 5 ◦C·min−1. X-ray diffraction (XRD)
analysis was recorded on a Bruker D8 diffractometer (Billerica, MA, USA, 40 kV and 30 mA)
using Cu irradiation (λ = 1.54178 Å). The structural characterization of the catalysts was
measured by transmission electron microscopy (TEM) using a Phillips Analytical FEI Talos-
S (Tokyo, Japan) operated at 200 kV. The surface area and pore volume were performed by
means of N2 adsorption/desorption at−196 ◦C, after dehydration under vacuum at 180 ◦C
for 6 h using ASAP 2460 (Norcross, GA, USA). According to the Brunauer–Emmett–Teller
(BET) model, Barrett–Joyner–Halenda (BJH) method and the t-plot method, the surface ar-
eas, mesoporous volume and microporous volume were estimated, respectively. Scanning
electron microscopy (SEM, ZEISS ΣIGMA, Tokyo, Japan) was used to observe the surface
morphology of the catalysts. The contact angles of the catalysts were determined by using
a Drop Shape Analysis System (Kruss DSA-100, Hamburg, Germany). Fourier Transform
infrared spectroscopy (FTIR, IRAffinity-15, Shimane, Japan) was applied to record the
absorption spectra of the catalysts. X-ray photoelectron spectroscopy (XPS) was carried
out on a Fisher K-Alpha (Waltham, MA, USA) with monochromatic Al Kα (1486.7 eV) as
an X-ray source. The metal content was determined by inductively coupled plasma optical
emission spectroscopy (ICP-OES, Agilent ICPOES730, Santa Clara, California, U.S.). The
reactive products generated from FA were determined by a GC-9560 (Shimane, Japan) with
TCD detector (TDX-01 column) and hydrogen flame ionization detector (FID, Porapak-Q
col-umn, Zurich, Switzerland).

3. Results and Discussion
3.1. Catalyst Characterization Results

TG analysis was used to explore the changes of biomasses during pyrolysis. As shown
in Figure 1a, weight loss in the first stage occurred at about 110 ◦C, which was due to water
evaporation, and about 10% of weight loss was also consistent with the water content in
biomasses. The obvious weight loss in the second stage appeared at 200–500 ◦C, which
might be caused by hemicellulose, cellulose and lignin decomposition [36,37]. When the
temperature raised to 800 ◦C, weight loss of all samples tended to be stable, and weight
loss rates were about 75%. The XRD pattern of the catalyst is shown in Figure 1b. These
catalysts had a broad peak at about 2θ = 24◦ and 44◦, corresponding to the (002) and (100)
planes of carbon (PDF#01-0604). The diffraction peaks of Pd/CPS and Pd/CMS at 40.0◦,
46.7◦ and 68.1◦ belonged to (111), (200) and (220) planes of Pd, respectively (PDF#01-1310).
In Table 1, the average particle sizes of Pd/CPS and Pd/CMS calculated by the Scherrer
equation (Equation (S1)) were 7.2 and 6.8 nm, while Pd/CPS-ZnCl2 and Pd/CMS-ZnCl2
with smaller particle sizes showed weak Pd diffraction peaks, which indicated that ZnCl2
activated supports could prevent the aggregation of Pd particles.

The dispersion of Pd particles was further observed by TEM. As displayed in Figure 2,
Pd/CPS and Pd/CMS had large particle sizes and wide distributions. Pd/CPS-ZnCl2 and
Pd/CMS-ZnCl2 had uniformly dispersed nanoparticles with average particle sizes of 3.6 and
2.9 nm, which was consistent with the results obtained by XRD. Therefore, ZnCl2 activation
had a great influence on the particle size of Pd, which might be related to the structure and
properties of the support.
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Figure 3a,b demonstrated the N2 adsorption–desorption isotherms and the correspond-
ing pore diameter distribution curves of the catalysts, and the corresponding calculation
results are listed in Table 2. Type I isotherms in all catalysts confirmed microporous struc-
ture. Through the activation of ZnCl2, the specific surface area of Pd/CPS-ZnCl2 increased
from 456 to 629 m2·g−1. Moreover, the surface area of Pd/CMS-ZnCl2 was 1081 m2·g−1,
which was about 3-fold larger than that of Pd/CMS (466 m2·g−1). It is rational that ZnCl2
reacted with O2 to form ZnO and Cl2, and the produced ZnO can further react with C
atoms to generate CO2 and Cl2 in order to achieve the purpose of pore making [25,38].
When P/P0 was close to one, the adsorption capacity of all catalysts tended to be satu-
rated and had no obvious hysteresis loop, which indicated that they had relatively small
micropores. It can be observed from Figure 3b that the pore size of the catalysts was
mainly distributed between 0.34 and 0.55 nm. Whether melon seed shells or peanut shells
were used as precursor, the microporous structure of the catalysts activated by ZnCl2 was
more abundant. Moreover, the micropore volume of Pd/CMS-ZnCl2 increased significantly
from 0.20 to 0.44 cm2·g−1, which might depend on the nature of the biomass itself. The
morphologies of Pd/CPS-ZnCl2 and Pd/CMS-ZnCl2 were characterized by SEM. In contrast
to the disordered porous carbon obtained by carbonization of peanut seed shell (Figure 3c),
the structure of melon shell presented a uniform cylindrical honeycomb (Figure 3d).
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Table 2. Textural properties of various catalysts.

Catalyst SSABET
1

(m2·g−1)
SSAMes

2

(m2·g−1)
SSAMic

3

(m2·g−1)
VT

4

(cm3·g−1)
VMes

5

(cm3·g−1)
VMic

6

(cm3·g−1)

Pd/CPS 456 50 406 0.23 0.03 0.20
Pd/CPS-ZnCl2 629 113 517 0.34 0.09 0.25

Pd/CMS 466 50 416 0.24 0.04 0.20
Pd/CMS-ZnCl2 1081 199 882 0.55 0.11 0.44

1 Specific surface area, 2 mesopore and 3 micropore specific surface area. 4 Total pore volume, 5 mesopore and
6 micropore pore volume.

In addition to the structure and morphology analyzed in the previous discussion,
the surface properties of catalysts are also keys for determining its catalytic performance.
The isoelectric point (IEP) test showed that Pd/CPS and Pd/CMS had similar isoelectric
points, which were 5.4 and 5.5 respectively. After activation, the isoelectric points of
Pd/CPS-ZnCl2 and Pd/CMS-ZnCl2 increased to 6.5 and 6.9. From the reaction mechanism,
FA is adsorbed on the Pd surface through deprotonation to form HCOO−. Therefore, high
H+ concentration is harmful because too many H+ may promote the recombination of
HCOO− with H+ and/or delay the deprotonation step, resulting in the reduction in FA
dehydrogenation rate [39].

It could be seen from the photographs of water droplets on the catalyst thin films in
Figure 4 that the contact angles of Pd/CPS, Pd/CPS-ZnCl2, Pd/CMS and Pd/CMS-ZnCl2
were 33.3◦, 30.9◦, 21.7◦ and 19.9◦, respectively. Pd/CMS, Pd/CMS-ZnCl2 obtained by
carbonization of melon seed shell had higher hydrophilicity. Solid catalysts with strong
hydrophilicity can improve the interface and enhance the performance of heterogeneous
catalysts [40]. FTIR spectra analysis exhibited that the catalysts had absorption peaks at
3427.1 and 3427.7 cm−1 corresponding to the presence of an O-H group, and the peak at
1119.2 and 1123.3 cm−1 could be ascribed to a C-OH group (Figure S2). Due to the breaking
and recombination of chemical bonds during biomass pyrolysis, a large number of oxygen-
containing functional groups were formed on the surface of biomass carbon, which was
also the main feature of biomass carbon that was different from other carbons [41].
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XPS spectra were used to analyze surface composition and chemical state of the
catalysts. Figure 5a presented that the O 1s XPS spectra could be divided into four types of
oxygen-containing functional groups: O1 (quinones, 530.8–531.3 eV), O2 (ethers or phenolic
hydroxyl, 532.4–532.8 eV), O3 (lactone or carboxyl, 533.4–534.0 eV) and O4 (adsorbed O2
or H2O, 535.0–535.8 eV) [42], and the corresponding atomic ratios were listed in Table S1.
The surface O content of and Pd/CPS-ZnCl2 and Pd/CMS-ZnCl2 increased by 63% and
55%, respectively, after ZnCl2 activation. Previous studies have showed that the oxygen-
containing functional group on the surface of the support can be used as the nucleation
point of metal particles to promote the interaction between the support and metal particles
so as to form smaller nanoparticles [43,44]. Compared with Pd/CMS (7.33 at%), activated
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Pd/CMS-ZnCl2 had more O2 and O3 contents (11.71 at%). At the same time, similar
results were observed in the other group. The increase in O2 and O3 might increase the
hydrophilicity of the catalyst to a certain extent [45]. From C 1s spectra (Figure 5b), the
content of aromatic C (284.8 eV) [46] in all samples accounts for about 70%–80% of the total
C content (Table S2). It was found that ZnCl2 activation reduced the content of aromatic C.
In addition, phenolic C (286.4 eV) and aliphatic and carboxylic C (287.8 eV) were observed
on the surface of catalysts. The ashes were obtained by calcining the sample at 650 ◦C for
2 h. The results revealed that the carbonization of peanut shell produced more ash than
melon seed shell, and the ash content would decrease with the introduction of ZnCl2. In
the XPS spectra of Pd 3d 5/2 (Figure 5c), two peaks were fitted well at 335.8 and 337.8 eV,
relating to Pd0 and Pd2+, respectively. As observed in Table S3, there was no significant
difference in the electronic state of Pd between different catalysts. Moreover, the Pd content
of all catalysts was similar, both from the surface content determined by XPS and the bulk
content determined by ICP.

Nanomaterials 2021, 11, x FOR PEER REVIEW 8 of 13 
 

 

2 h. The results revealed that the carbonization of peanut shell produced more ash than 
melon seed shell, and the ash content would decrease with the introduction of ZnCl2. In 
the XPS spectra of Pd 3d 5/2 (Figure 5c), two peaks were fitted well at 335.8 and 337.8 eV, 
relating to Pd0 and Pd2+, respectively. As observed in Table S3, there was no significant 
difference in the electronic state of Pd between different catalysts. Moreover, the Pd con-
tent of all catalysts was similar, both from the surface content determined by XPS and the 
bulk content determined by ICP. 

 
Figure 5. XPS patterns of (a) O 1s, (b) C 1s and (c) Pd 3d of various catalysts. 

3.2. Catalytic Activity 
The performance of the catalyst with different biomass supports the total volume (H2 

+ CO2) production at 30 °C as presented in Figure 6a. The best catalytic activity was ob-
served for Pd/CMS-ZnCl2 in which the reaction was completed in 120 min, providing 
TON120 with a value of 484.3 (Table S4). The generated gas was determined by GC to be 
H2 and CO2 with the molar ratio of 1:1, where CO was below the detection limit (<1 ppm) 
(Figures S3 and S4). Similarly, Pd/CPS-ZnCl2 showed the second-best catalytic perfor-
mance, with a TON120 value of 462.5 and conversion of 95% at 120 min. However, under 
the same conditions, the TON120 values of Pd/CMS and Pd/CPS were only 168.5 and 130.6, 
and the corresponding conversion rates were 34% and 27%, respectively. The relationship 
between specific catalytic activity expressed in TON and Pd particle size is observed in 
Figure 6b. The size of Pd particles was negatively correlated with the TON value of the 
catalysts, mainly because the Pd with smaller particle size had more active sites [47,48]. 
Moreover, the smaller nanoparticles had a “clean” surface (uncapped) and more active 
edge/corner atoms, so they showed excellent catalytic performance [13,49]. 

Figure 5. XPS patterns of (a) O 1s, (b) C 1s and (c) Pd 3d of various catalysts.

3.2. Catalytic Activity

The performance of the catalyst with different biomass supports the total volume
(H2 + CO2) production at 30 ◦C as presented in Figure 6a. The best catalytic activity was
observed for Pd/CMS-ZnCl2 in which the reaction was completed in 120 min, providing
TON120 with a value of 484.3 (Table S4). The generated gas was determined by GC to
be H2 and CO2 with the molar ratio of 1:1, where CO was below the detection limit
(<1 ppm) (Figures S3 and S4). Similarly, Pd/CPS-ZnCl2 showed the second-best catalytic
performance, with a TON120 value of 462.5 and conversion of 95% at 120 min. However,
under the same conditions, the TON120 values of Pd/CMS and Pd/CPS were only 168.5
and 130.6, and the corresponding conversion rates were 34% and 27%, respectively. The
relationship between specific catalytic activity expressed in TON and Pd particle size is
observed in Figure 6b. The size of Pd particles was negatively correlated with the TON
value of the catalysts, mainly because the Pd with smaller particle size had more active
sites [47,48]. Moreover, the smaller nanoparticles had a “clean” surface (uncapped) and
more active edge/corner atoms, so they showed excellent catalytic performance [13,49].
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Through the characterization and performance evaluation of the catalysts, the supports
played an important role in the activity of the catalysts. During the preparation of the
supports, ZnCl2 had the functions of swelling, catalytic dehydration and pore forming
in the treatment of biomass raw materials [50]. Therefore, the action of ZnCl2 activating
biomass to obtain biomass carbon support with large specific surface areas was of great
significance in reducing metal particles size and improving dispersion, as it increased
catalyst activity. In addition, more oxygen-containing functional groups could be obtained
through ZnCl2 activation, which could boost the dispersion of Pd nanoparticles and
reduced surface acidity for the purpose of improving catalytic performance. Another
important factor affecting the structure and surface properties of the supports depends on
the properties of the raw material. Compared with peanut shells, the catalyst prepared
by carbonizing melon seed shell had larger specific surface areas, higher hydrophilicity
and uniform honeycomb morphology. Therefore, the selection of appropriate biomass
precursors was also key to the preparation of high-performance catalysts.

The activity of catalysts prepared by activation of ZnCl2 with different masses on the
decomposition of FA is observed in Figure 6c. The TON1 values of Pd/CMS-2gZnCl2 and
Pd/CMS-6gZnCl2 catalyzed FA decomposition were 12.8 and 5.4. By comparison, the TON1
value of Pd/CMS-4gZnCl2 was 2-fold and 5-fold higher than those of Pd/CMS-2gZnCl2
and Pd/CMS-6gZnCl2, respectively. Therefore, it could be inferred that the quality of ZnCl2
affects activation efficiency. A suitable amount of ZnCl2 could adjust the porous structure
of biomass carbons; in contrast, excessive ZnCl2 was likely to boost the volatilization of
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surface species of the support so as to widen the pores and reduce the surface area of
biomass carbons [51].

Biomass carbon was mainly composed of aromatic carbon, amorphous carbon and
ash, and the content of each part was mainly determined by pyrolysis temperature [52].
The swelling function of ZnCl2 and the release of small molecular gases could catalyze
the aromatization reaction at temperature ≥ 400 ◦C and generate a large number of pore
structures [36]. Therefore, the effect of carbonization temperature on catalyst activity was
investigated from 500 ◦C (Figure 6d). When the carbonization temperature was 500 ◦C, the
TON1 value of the catalyst was only 4.4. With the increase in carbonization temperature,
the catalytic activity of the prepared catalyst gradually increased, and the TON1 value of
28.3 was the largest at 800 ◦C. This might be because at lower temperatures, water, CO and
CO2 in biomass volatilize to form amorphous carbon. With the increase in temperature,
alkyl carbon and oxyalkyl carbon fractured in biomass and gradually rearranged into aryl
carbon [53,54]. Among them, aromatic hydrocarbon carbon has strong stability, and this
structure of biomass carbon was also an important reason for its stability. However, the
TON1 value of Pd/CMS-900 was 14.1. From the previous discussion, it could be seen that
the surface oxygen-containing functional groups could promote the activity of the catalyst,
while O content decreased with the increase in temperature, which might be the reason for
decreased catalytic activity with the continuous increase in carbonization temperature.

The activity of Pd/CMS-ZnCl2 for FA decomposition at 20–60 ◦C was investigated
in Figure 7a. With the increase in reaction temperature, the gas generation rate increased
obviously, providing the TON1 values of 15.0, 28.3, 42.5, 63.1 and 100.1. The stability of
the catalyst was important for practical applications. After three cycles, catalytic activity
decreased to a certain extent (Figure 7b). TEM characterization of the catalyst after the
reusability test found that the average particle size increased from the initial 2.9 nm
(Figure 2) to 3.2 nm (Figure 7c). XPS characterization of the catalyst after the reaction
demonstrated that the content of Pd0 decreased (Figure S5). In the dehydrogenation
of formic acid, Pd0 is conducive to the activation of C-H bond, which is often the rate
controlling step of dehydrogenation [50,55,56]. Therefore, the decrease in catalyst Pd0 in
the process might also be another reason for the decline of activity.

Figure 7. (a) Total volume (H2 + CO2) generation catalyzed by Pd/CMS-ZnCl2 at different reaction temperatures and (b) stability
test for the decomposition for FA. (c) TEM micrographs and particle size distribution of the recycled Pd/CMS-ZnCl2.

4. Conclusions

To sum up, high efficiency Pd nanoparticles were loaded on peanut shell and melon
seed shell derived porous carbon for FA dehydrogenation. The catalysts obtained from
biomass activated by ZnCl2 had Pd particle size distributions of 2.9 nm (Pd/CMS-ZnCl2)
and 3.6 nm (Pd/CPS-ZnCl2), which were smaller than those of the unactivated catalyst.
The analysis showed that the specific surface area of the catalysts was improved by ZnCl2
treatment; Pd/CMS-ZnCl2, in particular, had a high specific surface area of 1081 m2·g−1.
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In addition, ZnCl2 also affected the surface properties of catalysts. The surface O content
of Pd/CPS-ZnCl2 and Pd/CMS-ZnCl2 increased by 63% and 55%, respectively. Moreover,
the activated catalysts were closer to neutral, which would be conducive to the removal of
H+ from FA. The properties of biomass also determined the performance of the catalyst.
Notably, Pd/CMS-ZnCl2 afforded the highest TON1 value, reaching up to 28.3 at 30 ◦C,
which is higher than that of Pd/CPS-ZnCl2 (19.0). The Pd/CMS-ZnCl2 with melon seed
shells as precursor had higher specific surface area; thus, it could provide more sites
for Pd nanoparticles. Moreover, its homogeneous honeycomb structure and stronger
hydrophilicity further promoted the decomposition rate of liquid FA. This study not only
provides a method for using agricultural waste as a carbon source of porous carbon but
also accelerates FA as a high-efficiency hydrogen supplier in mobile devices.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11113028/s1, Figure S1: Experimental apparatus of H2 generation from the FA dehydro-
genation, Equation (S1): The average particles sizes were estimated from XRD by Debye-Scherrer,
Figure S2: The spectrum of various catalysts, Figure S3: GC spectrum using TCD for the gas from
FA over Pd/CMS-ZnCl2, Figure S4: GC spectrum using PDHID for the standard gas and the gas
from FA over Pd/CMS-ZnCl2, Figure S5: XPS patterns of Pd 3d of Pd/CMS-ZnCl2 before and after
reaction, Table S1: O content of various catalysts (at.%), Table S2: C content and Ash of various
catalysts, Table S3: Pd content of various catalysts, Table S4: FA dehydrogenation catalyzed by
various catalysts.
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37. Ozdemir, I.; Şahin, M.; Orhan, R.; Erdem, M. Preparation and characterization of activated carbon from grape stalk by zinc
chloride activation. Fuel Process. Technol. 2014, 125, 200–206. [CrossRef]

38. Sun, L.; Tian, C.; Li, M.; Meng, X.; Wang, L.; Wang, R.; Yin, J.; Fu, H. From coconut shell to porous graphene-like nanosheets for
high-power supercapacitors. J. Mater. Chem. A 2013, 1, 6462–6470. [CrossRef]

39. Jae, J.; Tompsett, G.A.; Foster, A.J.; Hammond, K.D.; Auerbach, S.M.; Lobo, R.F.; Huber, G.W. Investigation into the shape
selectivity of zeolite catalysts for biomass conversion. J. Catal. 2011, 279, 257–268. [CrossRef]

40. Xing, C.; Zhang, Y.; Gao, Y.; Kang, Y.; Zhang, S. N, P co-doped microporous carbon as a metal-free catalyst for the selective
oxidation of alcohols by air in water. New J. Chem. 2021, 45, 13877–13884. [CrossRef]

41. Cao, X.; Harris, W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour. Technol.
2010, 101, 5222–5228. [CrossRef] [PubMed]
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