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Abstract: We describe a graphene and fibrous multiwall carbon nanotubes (f -MWCNT) composite
film prepared by plasma-enhanced chemical vapor deposition for use as a suitable and possible
candidate of hydrogen storage materials. A high storage capacity of 5.53 wt% has been obtained with
improved kinetics. The addition of binary PdMg alloy nanoparticles to the surface of graphene-fibrous
nanotubes composite films raised the storage capacity by 53% compared to the film without PdMg
decorated nanoparticles. Additionally, the graphene/f -MWCNT composite film decorated with
PdMg nanoparticles exhibited an enhanced hydrogen absorption–desorption kinetics. The fibrous
structure of the MWCNTs, alongside graphene sheets within the film, creates an enormous active
region site for hydrogen reaction. The addition of PdMg nanoparticles enhanced the reaction kinetics
due to the catalytic nature of Pd, and increased the hydrogen content due to the high absorption
capacity of Mg nanoparticles. The combination of Pd and Mg in a binary alloy nanoparticle enhanced
the hydrogen capacity and absorption–desorption kinetics.

Keywords: hydrogen storage; carbon nanotubes; nanomaterials; thin films

1. Introduction

Today, hydrogen is considered the next-generation energy carrier for vehicles and
fixed engines or power sources [1–5]. Hydrogen exhibits the highest energy density per
mass of around 40 kWhkg−1. When used as a source of energy, the exhaust product is
water only. Before hydrogen can be used in portable applications, it is necessary to find the
appropriate technology that is most economical and safe to store hydrogen at the highest
possible density. In practice, for a light-duty vehicle, the key for hydrogen storage is how
to release the amount of hydrogen that has been stored to allow a driving range of at least
480 km against the vehicle engineering limits of weight, volume, safety, efficiency, and
cost—plus, of course, the durability. There are currently some different hydrogen storage
technologies that are heavily investigated [6–13]. Unfortunately, all those technologies
did not reach the satisfaction conditions for being commercialized. Accordingly, there is
a strong demand for innovative technology or new materials that exhibit distinctive and
unique properties for hydrogen storage.
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In general, hydrogen can be stored in gaseous or liquid form. However, these methods
require a significantly large volume and weight, which makes them unsuitable for portable
applications. Therefore, storing hydrogen in solid form is a necessary solution, for example,
in the transportation sector.

Solid-state hydrogen storage materials can be classified into: i—hydrides (light metal
hydrides and complex metal hydrides) [14–17]; ii—carbon-based [18–25]; iii—chemical
hydrogen storage [26–33]; and iv—new advanced materials [34–41]. Among these mate-
rials, the hydride is preferred for hydrogen storage due to two facts: large amounts of
hydrogen can be stored, and hydrogen absorption and desorption kinetics can be improved
by varying the metallic alloy elements or compositions.

On this subject, MgH2 has been one of the most considered materials among several
high-potential hydride systems due to its high volumetric (110 kg/m3) and gravimetric
(7.6 wt%) hydrogen storage capacities, as well as its natural abundance and good reversibil-
ity. However, the slow hydrogenation kinetics, low hydrogen diffusion coefficient, and
surface oxide layer formation limit practical applications. Therefore, several solutions
have been proposed to enhance and improve the hydrogen storage properties, including
alloying Mg with other elements and catalysts or producing it at the nanoscale [42–44].

Accordingly, various transition metals, rare earth metals, and other elements produce
magnesium-based metal alloy hydrides for hydrogen storage. In addition, some noble
metal catalysts, such as Pd, have been reported to be effective in assisting the hydrogenation
of MgH2. It was found that during the hydrogenation process, the Pd metal catalyst has
a significant effect, causing an increase in the diffusion of hydrogen atoms at the Pd–Mg
interface. Many investigations are needed to inspect the properties of the lightweight metal
hydrides and tailor their absorption/desorption kinetics.

Another type of metal hydride is complex hydride [16,45–48]. Today, the highest
gravimetric hydrogen density is about 13.8 wt% for LiBH4, making this complex the ideal
hydrogen storage material for vehicle transportations if the storage kinetics are improved
(Figure 1) [49]. Therefore, complex hydrides fortified more studies in the field of hydrogen
storage materials. Today, there is a need for discovering a new complex hydride based on
lightweight metals with the highest possible gravimetric hydrogen density.

Figure 1. Hydrogen storage capacity (wt%) for some important materials. The kinetic conditions for
hydrogen storage are shown.

Dual-tuning impacts of the thermodynamics and kinetics for hydrogen storage materi-
als are significant issues for the hydrogen economy, especially for the metal hydrides such
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as LiBH4 and MgH2. Newly developed ball milling with aerosol spraying for dual-tuning
of the thermodynamics and kinetics of LiBH4 shows future opportunities to improve
the reversible hydrogen storage properties of metal hydride-based materials in a solid
state [42,50–53].

Besides metal hydride-based hydrogen storage materials, many carbon-based nanos-
tructured materials have been considered. Experiments showed that the adsorption–
desorption process is reversible, and the amount of adsorbed hydrogen is relatively low
(about 3 wt%) [12,21,23,54]. Carbon nanostructures and other nanoporous materials have
also been examined for hydrogen storage [23,25,55–58]. It is found that the amount of
absorbed hydrogen, which is very low, increased with temperature and pressure, indicating
that the mechanism of storing is of a chemical reaction nature, preferably physisorption. It is
concluded that the relatively low values of gravimetric and volumetric hydrogen densities
for carbon, carbon-based structures, and other porous materials are significant drawbacks.

When selecting a potential storage system, the kinetic characteristics of the hydro-
gen storage material must be considered. Indeed, obtaining a rapid hydrogenation–
dehydrogenation process is a significant issue for many hydrogen storage materials. There-
fore, the reversible hydrogen storage kinetics and capacity strongly depend on the materials’
preparation methods and applied conditions.

Inspired by the above facts, we have investigated light metal hydrides combined with
a carbon-based nanostructure to obtain an excellent hydrogen storage material to assist
future clean energy.

2. Materials and Methods

Before deposition of carbon nanotubes, a metal-supported catalyst is required. Typ-
ically, nickel or titanium metal is employed to grow fine vertical tubes on a particular
substrate. Silicon is the common universally utilized substrate for CNTs growth. This
research study uses an alloy consisting of two different metals as a metallic catalyst,
specifically palladium and magnesium. This alloy is supposed to generate long carbon nan-
otubes with fibrous-like structures. The fibrous carbon nanotubes will enhance hydrogen
absorption–description kinetics. Moreover, 10 nm PdMg thin alloy film was deposited on Pt
substrate by co-sputtering (Univex 360, Leybold Inc., Cologne, Germany). Two high purity
(99.999%) targets, Pd and Mg, were concurrently sputtered to form the alloy layer with
a power of 40 and 30 watts, respectively. The base pressure was 10−6 mbar, the working
pressure was 10−2 mbar, and the argon partial pressure was 90 sccm. A plasma-enhanced
chemical vapor deposition (PECVD) system (EasyTube 2000, FirstNano Inc., Central Islip,
NY, USA) grew carbon nanotubes on Pt substrate loaded with the PdMg catalyst. After
deposition of the PdMg alloy layer on Pt substrate was accomplished, the substrate was
transferred to PECVD system. The PECVD system was supplied with a graphite heater, a
three zones furnace to obtain a uniform temperature throughout the substrate, a vacuum
pump, and a quartz tube. The quartz tube was evacuated to a base pressure of 10−3 mbar.
As the first step, N2 is purged into the quartz tube for two minutes and followed by an Ar
gas for 5 min. Hydrogen gas with a flowing rate of 90 sccm was introduced into the quartz
tube, and the oven was heated to 500 ◦C with a heating rate of 20 ◦C/min. The system was
halted at these conditions for 30 min. After this time, the furnace was adjusted to reach 650
◦C with a 5 ◦C/min heating rate. At 650 ◦C, NH3 (90 sccm) was injected into the quartz
tube for plasma initialization (50 W). After plasma stabilization at 60 W, a high purity C2H2
gas (25 sccm) was injected into the quartz tube to grow the carbon nanotubes. The oven
cooled down to room temperature under an Ar atmosphere when the preferred reaction
time was achieved. The obtained carbon nanotubes were transferred to the sputtering
chamber to deposit the PdMg thin alloy top layer with the conditions mentioned earlier.

The obtained nanocomposite samples were examined by using a field emission scan-
ning electron microscope (ZEISS Sigma FESEM, Carl Zeiss GmbH, Oberkochen, Germany),
XRD (Ultima IV, Rigaku Corporation, Tokyo, Japan), and a Raman spectroscope (HR800,
HORIBA Europe GmbH, Oberursel, Germany).
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Electrochemical hydrogen storage was performed using a standard three-electrode
cell connected to an electrochemical workstation (PGSTAT302N, Metrohm AG, Herisau,
Switzerland). All measurements have been done at an ambient temperature and pressure.
A commercial platinum sheet with a total surface area of about 1 cm2 was used as a counter
electrode. The thin film sample was attached (free substrate surface) to a platinum wire
using a conductive adhesive to prepare the working electrode. A chemically inert insulating
varnish was applied to the contact and edges of the film to protect them from the electrolyte.
The active surface area of the working electrode was about 2 cm2. The charged–discharged
experiment was performed at a constant current of ±150 mA under a cut-off potential of
−0.5 V vs. Ag/AgCl electrode. To account for the high-rate discharge-ability (HRD), the
working electrode was discharged at different constant currents (A = 25, 50, 75, 100, and
125 mA/g). HDR is defined as HRD = CA/C25 × 100%, and CA is the maximum capacity
at the selected current density.

3. Results

Figure 2 shows the XRD pattern of graphene/f -MWCNT composite film decorated
with top PdMg alloy layer (G/f -MWCNT@PdMg). The XRD pattern in Figure 2b dis-
played three diffraction peaks, two intense diffraction peaks around 36◦ and 42◦ and a
low intensity diffraction peak around 31◦. These peaks are assigned to (440), (533), and
(422) diffraction plans of typical C60. Fullerenes and carbon nanotubes are allotropes of
carbon categorized by a void structure and remarkable physical properties. The void sites
are advantageous for hydrogen adsorption [54]. This result indicates that graphene and
f -MWCNTs are well graphitized. There is no indication of any carbon impurities. The
metal particles of the PdMg top thin layer are not recognized due to their nanoparticle size
of the alloy. In fact, due to the surface nature of carbon nanotubes, the metal particles of
PdMg alloy are dispersed and implanted into the composite structure instead of forming a
continuous top thin layer. Metal nanoparticles, when distributed over carbon nanostructure
materials, demonstrate improved storage capacities and enhanced adsorption–desorption
kinetics [59,60].

Figure 2. XRD pattern: (a) PdMg binary alloy deposited on a glass substrate, and (b,c) graphene/f -
MWCNT nanocomposite decorated with PdMg alloy nanoparticles deposited on Pt substrate before
and after hydrogenation, respectively.

The bottom XRD pattern in Figure 2a is the typical for PdMg alloy deposited on
glass substate. The pattern exhibits one intense peak around 38.81◦ and three other small
peaks around 45.32◦, 66.98◦, and 80.96◦. The first intense peak is corresponding to a
hexagonal Mg structure (JCPDS card no. 00-350-821), while the other three smaller peaks
are corresponding to an fcc Pd structure (JCPDS card no. 00-152-2945).
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It is noted that the position of the first peak is shifted toward a larger angle in compar-
ison to bulk Mg, while the other three peaks shifted toward smaller angles. The calculated
lattice parameter of Pd is 3.96 Å, which is larger than the corresponding bulk cubic structure
(a = 3.89 Å). This information suggested that the cell volume of Mg is contracted due to the
presence of Pd atoms, while the cell volume of Pd is enlarged due to the presence of Mg
atoms. Hence, it is concluded that the deposited PdMg film contains two mixed phases: a
host Mg phase with dopped Pd atoms, and a host Pd phase with dopped Mg atoms. More
information is presented in Table 1.

Table 1. Structure parameters of PdMg alloy.

Phase
2θ◦ d Spacing, Å

∆θ◦ ∆d, Å
Lattice Parameters, Å Cell Volume, Å3

Film Bulk Film Bulk Film Bulk Film Bulk

Mg (101) 38.81 36.62 2.318 2.450 2.19 −0.132 - -
Pd (200) 45.32 46.66 1.998 1.945 −1.32 0.053 3.99 3.89 63.52 58.87
Pd (220) 66.98 68.12 1.396 1.375 −1.14 0.021 3.95 61.63
Pd (311) 80.96 82.09 1.186 1.173 −1.14 0.014 3.94 61.16

XRD is not a very useful tool when distinguishing between graphene and carbon
nanotube is required. Raman spectroscopy is a very effective tool in such a situation.
Usually, Raman spectra for graphene or nanotubes include three different bands: G-band,
D-band, and 2D band. The G-band arises from the vibration of sp2 carbon atoms. The
D-band is known as the disorder band and is related to structural defects of sp3 carbon.
The band is strong in carbon nanotubes and typically very weak in graphene. The shape of
the 2D band is very important. A single symmetric peak means one graphene layer, while
more graphene layers produce an asymmetric 2D peak [61].

Figure 3 shows Raman spectra of the G/f -MWCNT@PdMg sample. The figure exhibits
three bands located at 1355 cm−1, 1587 cm−1, and 2688 cm−1 corresponding to D-, G-,
and 2D-band, respectively. Using a 2D band, the difference among graphene, nanotubes,
and graphene-carbon nanotube composite can be recognized. Nanotubes always display
intense 2D bands, while graphene always shows very weak intensity. Here, the 2D band
is seen with reasonable intensity, indicating that a mixed phase of graphene and carbon
nanotubes is successfully formed.

Figure 3. Raman spectra of graphene/f -MWCNT nanocomposite @PdMg sample.

The surface morphology of the prepared nanocomposite is presented in Figure 4. The
prepared composite without PdMg alloy nanoparticles is shown in Figure 4a,c, while the
composite decorated with PdMg nanoparticles is given in Figure 4b,d. The PdMg nanopar-
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ticles are dispersed into the bulk of the composite film as indicated in the figure by yellow
shapes. All images display the fibrous structure of carbon nanotubes. There are some trans-
parent layers of graphene shown in Figure 4d by green shapes. These SEM images with the
information deduced from Raman spectra confirm that the graphene/f-MWCNT nanocom-
posite @PdMg alloy nanoparticles are successfully formed. The composite contains many
voids and hollow sites, which are favorable for high-capacity hydrogen absorption charac-
teristics. The presence of PdMg nanoparticles is expected to increase storage capacity and
enhance reaction kinetics.

Figure 4. High-resolution SEM images of (a,c) graphene/f -MWCNT nanocomposite and (b,d) graphene/f -MWCNT
nanocomposite decorated with PdMg alloy nanoparticles deposited on Pt substrate. Yellow ovals highlight the decorative
clusters of PdMg nanoparticles.

The charge and discharge curves of G/f -MWCNT and G/f -MWCNT@PdMg nanocom-
posites are shown in Figure 5a,b, respectively. A discharge capacity of 765 mAh/g is
obtained in the G/f -MWCNT electrode corresponding to ∼2.86 wt% hydrogen, while the
best discharge capacity of G/f -MWCNT@PdMg electrode is 1478 mAh/g corresponding to
∼5.53 wt% hydrogen content. It has been stated that the aligned carbon nanotubes exhibit
a better hydrogen absorption capacity compared to non-aligned nanotube [62]. Here,
the G/f -MWCNT@PdMg sample shows a higher absorption capacity than the sample
without PdMg nanoparticles. In fact, the obtained capacity for graphene/carbon nanotube
composite decorated with PdMg nanoparticles displays a higher absorption capacity than
other carbon nanotubes materials found in the literature considering the film structure of
the sample [12,20,21,23,24,36,62]. After several cycles, the samples almost maintain their
capacities (the figure is not shown here).
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Figure 5. The charge–discharge curves in 3M KOH electrolyte for (a) G/f-MWCNT electrode; (b) G/f -MWCNT@PdMg
electrode.

The discharge capacities with appropriate cyclic stabilities and the dehydrogenation
activation properties are the key parameters to judge for good hydrogen storage materials.
Due to the presence of many suitable absorption sites for hydrogen storage, the carbon
nanotubes possessed a high theoretical storage capacity exceeding 2500 mAh/g depending
on structure, morphology, and defect concentration; however, the maximum experimental
storage capacities are still frustrating [63,64].

Figure 6a shows the discharge capacities (30 cycles) at a current density of 25 mA/g
for G/f -MWCNT and G/f -MWCNT@PdMg nanocomposites. A noticeable enhancement
of discharge capacity and cyclic stability is obtained for the G/f -MWCNT@PdMg sample in
comparison to the G/f -MWCNT sample. Another important factor for a suitable candidate
for storage materials is its ability to sustain the discharge performance at a high current
density. The HRD for G/f -MWCNT and G/f -MWCNT@PdMg nanocomposites at different
discharge current densities is shown in Figure 6b.

Figure 6. (a) Discharge capacities of the G/f -MWCNT and G/f -MWCNT@PdMg nanocomposites at a current density
of 25 mA/g: G/f -MWCNT electrode; (b) high-rate discharge-ability of the G/f -MWCNT and G/f -MWCNT@PdMg
nanocomposites.
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The improved HRD performance of the G/f -MWCNT@PdMg sample compared to the
G/f -MWCNT can be explained as follows: the small sizes of PdMg nanoparticles for the
composite sample diminish the diffusion lengths for hydrogen from the absorbed/adsorbed
sites to the electrode/electrolyte interface. This assists in the contact between alloy and
electrolyte, and provides quick charge transfer networks within the sample.

Figure 7 shows an illustration of the hydrogen absorption process in the sample.
Hydrogen is stored in materials through two different mechanisms: absorption when hy-
drogen molecules are stored directly within the free spaces in the material, and adsorption
when hydrogen atoms bonded to the surface of the material. Generally, metal hydride is
formed through a sequence of stages explained as follows: physisorption (Van der Waals
attractive forces between the metal and hydrogen molecules catches in an accessible volume
close to the metal)→ dissociation of the hydrogen molecules at the metal surface (the metal
catalyst, for example; Pd assists this process)→ chemisorption, i.e., the formation of the
hydrogen bond at the metal surface→ α-phase formation (hydrogen occupies interstitial
sites)→ β-phase (new physicochemical properties arise with the increasing concentration
of hydrogen in the metal crystal lattice)→ vanishing of α-phase.

Figure 7. Schematic illustration of hydrogen absorption in G/f-MWCNT@PdMg sample.

Therefore, the nanosize of PdMg particles allows more hydrogen dissociation sites
and shortened hydrogen diffusion pathways that improve storage kinetics [65–68]. In
addition, a larger surface area increases the number of atoms at the grain boundaries,
which in turn enhances hydrogen diffusion rates. On the other hand, the large surface
area of graphene/nanotube as well as the large interstitial volumes within the nanofibrous
structure create huge hydrogen storage sites. Figure 2c shows the XRD pattern of the G/f -
MWCNT@PdMg sample after hydrogenation. The pattern exhibits two new peaks (located
at 67.68◦ and 80.2◦) in comparison to the sample before hydrogenation in Figure 2b. These
new peaks arise from tetragonal MgH2 (JCPDS card no. 00-089-7887) and fcc PdH (JCPDS
card no. 00-065-0557) phases. As mentioned before, the deposited PdMg film contains two
mixed phases, one of which is the host Pd phase with dopped Mg atoms. This phase is
characterized by the high hydrogen storage capacity. Most Mg atoms are surrounded by
Pd atoms. This arrangement allows Mg atoms to absorb more hydrogen, and also creates
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more hydrogen diffusion paths to graphene and nanotube structures with a high hydrogen
diffusion rate. The catalytic nature of palladium enhanced the absorption kinetics, and the
presence of magnesium increased the storage capacity of hydrogen. The fibrous structure
of the nanotubes created room for further absorption of molecular hydrogen. The graphene
layers increased the surface area for atomic hydrogen absorption. Nanoparticles made
of metal alloy embossed with a carbon nanostructure appear to be a viable material for
hydrogen storage applications.

4. Conclusions

This work investigates the hydrogen storage capacity of graphene/multiwall carbon
nanotubes decorated with PdMg alloy nanoparticles (G/f -MWCNT@PdMg). It was found
that the presence of PdMg nanoparticles increased the hydrogen absorption capacity
by 53% compared to the sample without PdMg decorated nanoparticles. The obtained
hydrogen capacities for both samples with and without PdMg nanoparticles are 2.86 wt%
and 5.53 wt%, respectively. This higher value of the hydrogen storage capacity was ascribed
to the fact that PdMg nanoparticles act as active reaction sites for molecular and atomic
hydrogen absorption and desorption. The catalytic nature of Pd metal enhanced the
absorption kinetics, and the presence of Mg increased the hydrogen storage capacity.

Furthermore, the fibrous structure of the nanotubes created rooms for more molec-
ular hydrogen absorption. Moreover, the graphene layers increased the surface area for
atomic hydrogen absorption due to their catalytic nature. Thus, the carbon nanostructure
decorated with PdMg alloy nanoparticles appears to be a viable material for hydrogen
storage applications.
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