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Abstract: A bifunctional tunable metamaterial composed of pattern metal structure, graphene, and
strontium titanate (STO) film is proposed and studied numerically and theoretically. The dual
plasmon-induced transparency (PIT) window is obtained by coupling the bright state cut wire (CW)
and two pairs of dark state dual symmetric semiring resonators (DSSRs) with different parameters.
Correspondingly, slow light effect can also be realized. When shifting independently, the Fermi level
of the graphene strips, the amplitudes of the two PIT transparency windows and slow light effect can
be tuned, respectively. In addition, when independently tuning the temperature of the metamaterial,
the frequency of the dual PIT windows and slow light effect can be tuned. The physical mechanism
of the dual-PIT was analyzed theoretically by using a three-harmonic oscillator model. The results
show that the regulation function of the PIT peak results from the change of the oscillation damping
at the dark state DSSRs by tuning conductivity of graphene. Our design presents a new structure to
realize the bifunctional optical switch and slow light.

Keywords: plasmon-induced transparency; terahertz; graphene; strontium titanate; slow light

1. Introduction

Electromagnetically induced transparency (EIT) is an effect resulting from quantum
destructive interference. It can generate a narrow-band transparent window when light
propagates through an originally opaque medium [1,2]. However, its application is limited
due to harsh production conditions of the stable optical pumping and low temperature. Com-
pared with the traditional EIT effect, plasmon-induced transparency (PIT) effect overcomes
these harsh conditions [3]. Recently, many researchers have focused on various metamaterial
structures to achieve PIT, which is the analog of EIT effect [4–8]. Previous studies have shown
that PIT effect can be achieved mainly via bright and bright mode, bright and dark mode,
and bright and quasi-dark mode [9–12]. At a PIT peak region, strong dispersion can occur,
causing slow light effect which can be used in optical information processing [13–16].

In order to meet various practical applications, the properties of PIT should be able to
be tuned. The tuning can be realized by changing structural parameters, using tunable ma-
terials and microelectromechanical systems (MEMS) technology. Due to the high flexibility,
tunable materials-based PIT devices have become a research hotspot [17–24]. Graphene
is especially widely used in the design of tunable PIT devices because of its high electron
mobility, high modulation depth, tunable surface conductivity and low insertion loss
characteristics. Tunable graphene-based PIT devices can realize different functions, such as
the single-PIT [18–20], dual-PIT [21–23] and multi-PIT [24]. Recently, STO has also aroused
the interest of researchers due to its temperature-tunable relative permittivity [25]. In 2020,
Zhong proposed a tunable PIT metamaterial based on STO. When the device temperature is
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changed, the frequency of the single PIT window and slow light effect can be adjusted [26].
However, we can see most of the work mentioned above focused mainly on the tuning of
either amplitude or frequency of the PIT peak. For example, in references [18,19,22,23], re-
searchers proposed the metamaterials to realize the regulation of the PIT peak intensity. In
references [20,21,24,26], researchers realized the regulation of the frequency of the PIT peak.
To our knowledge, the tunable PIT metamaterial with independently tunable amplitude
and frequency of dual-PIT effect has not been previously reported.

In this paper, we designed a metal structure to achieve the dual PIT effect and realized
the modulation of the intensity and frequency of the PIT effect by changing the Fermi
level of graphene strips and the temperature of STO films. The mechanisms of the tunable
dual-PIT effect were analyzed using a three-harmonic oscillator model.

2. Materials and Methods

The PIT metamaterial proposed is illustrated in Figure 1. From Figure 1a, it can be
observed that the metamaterial is composed of three layers, which are graphene–metal
structure, STO film, and sapphire substrate. The parameters of metamaterial are shown in
Figure 1b. Two sets of symmetrical half-rings named upper double symmetric semiring
resonators (UDSSRs) and bottom double symmetric semiring resonators (BDSSRs) are
placed on the upper and bottom sides of cut wire (CW), respectively. The thickness of
the metal structure is 0.2 µm. The length of CW is L = 80 µm, and the width is w = 5 µm.
For UDSSRs and BDSSRs, the gap width of splits is g = 5 µm. The outer radius and inner
radius of UDSSR are 20 µm and 15 µm, respectively. The outer radius and inner radius of
BDSSRs are 23 µm and 18 µm, respectively. The distance between two DSSRs and CW is
S = 3.5 µm. Under the UDSSRs and BDSSRs, there are two graphene strips defined as strip
1 and strip 2, respectively. The STO film with a thickness of 100 nm is placed between the
metal–graphene hybrid structure and sapphire substrate. The period of metamaterial is
Px = Py = 120 µm.
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Finite-difference time-domain (FDTD) algorithm is used for numerical simulation and
calculating the near-field coupling of this design. The boundary conditions of x and y
direction are periodic boundaries, and a perfect matching layer is used in the z direction. The
x-polarized terahertz wave is incident vertically along the z direction. In the low frequency
terahertz band, as a loss metal, gold can be represented by a static model, and its conductivity
is 4.56 × 107 S/m [27]. The refractive index of the sapphire substrate is 1.78 [28].

As a 2D material, the electric-magnetic properties of graphene can be described by
surface conductivity σg. According to random-phase approximation (RPA) theory, the
conductivity σg can be expressed by combining intraband σintra and interband σinter [29]:

σg = σintra + σinter =
2e2kBT
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where e is the electron charge, kB is the Boltzmann constant, T is the temperature in Kelvin,
} is the reduced Planck’s constant, ω is the THz frequency, τ and EF are graphene carrier
relaxation time and Fermi level.

For STO materials, the temperature-dependent relative permittivity in the THz spectral
region is [30]:

εω = ε∞ +
f

ω0 −ω2 − iωγ
(2)

where ε∞ is 9.6, representing the high-frequency bulk permittivity, f is an oscillator strength
depending on temperature, with a value of 2.36× 106 cm2 [31]. ω, ω0 and γ are the angular
frequency, soft mode frequency and the damping factor, respectively. The formula related
to temperature can be expressed as:

ω0(T)
[
cm−1

]
=
√

31.2(T − 42.5) (3)

γ(T)
[
cm−1

]
= −3.3 + 0.094T (4)

where T is temperature of STO. ω0(T) can be obtained using the Cochran law and γ(T) can
be fitted by an empirical linear dependence. We can see from Equations (2)–(4) that the relative
permittivity of STO under different angular frequency and temperature can be calculated.

3. Results and Discussions

In order to investigate the mechanism of double PIT transparency windows, we
conducted the simulation for four arrays, composed of CW arrays, UDSSRs, BDSSRs and a
combined array of them. Here, the temperature of STO was set to be 425 K. In Figure 2a, it
can be seen that when the x-polarization plane wave achieves a coupling with the single
CW structure, a transmission valley appears at 0.9 THz because of the localized surface
plasmon resonance (LSPR) at CW. However, due to the symmetry of the isolated DSSRs
structure with respect to the x-polarization incident field, the UDSSRs or BDSSRs are
inactive at the same frequency [32]. Thus, the CW and the two pairs of DSSRs behave as
bright and dark resonance modes, respectively. When the CW, UDSSRs and BDSSRs are
combined into a unit cell, under x-polarized electric field excitation, two PIT windows arise
because of the destructive interference caused by the coupling of the two LC resonance
modes and LSPR mode. As shown in Figure 2b, two transparent windows at 0.87 THz and
1.016 THz can be observed and denoted as peak I and peak II.
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In order to analyze the mechanism of PIT effect, we studied the electric field and
charge distribution at resonance frequency. As shown in Figures 3a and 4a, when CW is
coupled with a plane wave, it can be observed that there is a strong electric field at the
x-axis edges and corners of CW, and the charges are concentrated in the same position.
This phenomenon, which can be excited, directly belongs to LSPR and can be described
as bright resonance mode. When BDSSRs, UDSSRs and CW are placed in the arrays to
achieve coupling, the electric field in 0.873 THz and 1.016 THz are shown in Figure 3b,c,
the charge distribution is shown in Figure 4b,c.
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From Figures 3b and 4b, we can see that the enhancement of the electric field and
accumulation of opposite charge transfer from the edges and corners of CW to the splits
of BDSSRs. Similarly, in Figures 3c and 4c, we can see the electric field enhancement and
opposite charge transfer to the splits of UDSSRs. These two resonance modes generated by
indirect coupling with CW belong to the LC resonance and can be regarded as dark modes.
Due to the phase difference of π between bright resonance mode and dark resonance mode,
destructive interference will occur between LSPR and LC resonance, which results in the
appearance of transparent windows [33].

Next, the individually tunable properties of the device are analyzed. Figure 5 shows
the simulated and theoretical transmission spectrum with different Fermi levels of strip
2 and strip 1, respectively. In Figure 5a,c, it can be found that the two PIT transparency
windows of this metamaterial can be achieved, and the independent on-to-off switching
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function at two PIT windows can be realized by tuning the graphene Fermi level. Figure 5a
(top panel) is the transmission spectra when the graphene strips are absent. The amplitude
of transmission of peak I and peak II are 0.7814 and 0.8017, respectively. When strip 2 is
placed under the splits of the BDSSRs and the Fermi level is set to 0.2 eV, the transmission
of peak I reduces to 0.424. As the graphene Fermi level increases, peak I undergoes a
continuous decrease, whereas peak II changes minimally. Previous studies have shown that
the graphene Fermi level can be modulated to be 1.2 eV [34]. When the Fermi level increases
to 1.2 eV, peak I disappears completely, which causes an off state. In order to quantitatively
describe the modulation depth of the PIT transparent windows, we introduce the formula
∆T =

[(
T0 − Tg

)
/T0

]
× 100%, where T0 and Tg refer to the amplitude of transmission

peak without and with graphene, respectively. Finally, with the Fermi level of 1.2 eV, the
transmission of peak I reduces to 0.137, correspondingly the modulation depth of peak I is
calculated to be 82.4% using the formula.
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In Figure 5c, it can be observed that, as the Fermi level of strip 1 increases from 0.2 eV to
1.2 eV, the transmission change of peak II is similar to that of peak I; namely, the amplitude of
peak II decreases with the increase in the graphene Fermi level. When the graphene Fermi
level reaches1.2 eV, the transmission of peak II is 0.2022. The modulation depth of peak II can
achieve 74.7%. Therefore, this design can realize the optical switch-like regulation of peak I
and peak II by adjusting the Fermi level of strip 1 and strip 2, respectively.

In order to further investigate the independent tunable mechanism of the dual-PIT
transparency window by tuning the graphene Fermi level, we analyzed the interaction of
the bright and two dark modes using the three-harmonic oscillator model [35]. As a bright
mode, the LSPR at CW can be represented by oscillator 1 arising from direct coupling with
the plane wave. As the dark modes excited through near field coupling with the bright
mode, the BDSSRs and UDSSRs are represented by oscillator 2 and 3, respectively. The
coupling effect between the three resonance modes is described by the following formula:

..
x0(t) + γ0

.
x0(t) + ω2

0x0(t) + κ1
.
x1(t) + κ2

.
x2(t) = λ0E (5)

..
x1(t) + γ1

.
x1(t) + ω2

1x1(t)− κ1
.
x0(t) = 0 (6)

..
x2(t) + γ2

.
x2(t) + ω2

2x2(t)− κ2
.
x0(t) = 0 (7)

Here, E represents the incident electromagnetic field, λ0 describes the coupling
strength of the electromagnetic field. ω0, ω1, ω2 are the resonance frequencies of os-
cillator 1, oscillator 2 and oscillator 3, respectively. x0 and γ0 are the amplitude and
damping of the bright resonance mode. x1 and x2 are the amplitudes of the dark resonance
mode at BDSSRs and UDSSRs, respectively, and γ1 and γ2 are the damping of the dark
resonance mode at BDSSRs and UDSSRs, respectively. The coupling coefficients between
the two dark state modes and the bright state are κ1 and κ2, respectively. After solving the
Equations (5)–(7) with ω2 − ωb

2 ≈ (ω−ωb)·2ω, and λ = λ0/2ω, the susceptibility χ of
the PIT metamaterials can be obtained as:

χ(ω) = (χr + iχi) ∝
1
A

(
ω2 −ω− i

γ1

2

)(
ω3 −ω− i

γ2

2

)
(8)

where:

A =
(

ω2 −ω− i
γ1

2

)(
ω1 −ω− i

γ0

2

)(
ω3 −ω− i

γ2

2

)
−

κ2
1

4

(
ω3 −ω− i

γ2

2

)
−

κ2
2

4

(
ω2 −ω− i

γ1

2

)
(9)

In Equation (8) χr represents the dispersion. The transmittance T can be calculated by
the formula T = 1− λ0χi, where χi is proportional to the energy loss [17,36].

Figure 5b,d show the theoretical results of the transmission spectrum. It is observable
that they are in strong agreement with the simulation results shown in Figure 5a,c. Corre-
spondingly, the fitting parameters are obtained and shown in Figure 6a,b. In Figure 6a, it
can be found that the damping rate of the dark mode γ1 has a significant increase from
0.025 THz for the case of no graphene to 0.65 THz for the case of Fermi level of 1.2 eV,
whereas the fitting parameters γ2, κ, and δ remain roughly unchanged. This phenomenon
indicates that the increased Fermi level of strip 2 leads to an increased damping γ1 at
BDSSRs. In this design, as the Fermi level increases, the conductivity of the graphene strip
connecting the two SSRs increases. When the Fermi level is 1.2 eV, the LC resonance at
BDSSRs is hindered. Consequently, the destructive interference between BDSSRs and CW
is weakened and peak I disappears.
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On the other hand, when the Fermi level of strip 1 is changed from 0.2 eV to 1.2 eV,
in Figure 6b, we can see the fitting parameters γ1, κ and δ remain basically unchanged,
whereas the damping rate γ2 of dark mode increases significantly from 0.025 THz to
0.6 THz with the changing of Fermi level from 0.2 eV to 1.2 eV. This phenomenon can be
explained by a similar principle; namely, as the Fermi level of increases, the increase in
the conductivity of strip 1 reduces the intensity of LC resonance caused by the coupling of
UDSSRs and CW, resulting in the weakening of destructive interference. The increase in
damping rate γ2 eventually leads to a disappearance in peak II.

In order to further explain the physical mechanism of the tunable metamaterials, in
Figure 7, we present the distributions of the electric field and charge at resonance peak I
and peak II. The electric field and charge distributions at peak I with different Fermi levels
of strip 2 are shown in Figure 7a–f. In the absence of strip 2, as shown in Figure 7a,d, a
strong electric field and accumulation of opposite charges are observed at the splits of
BDSSRs. Thus, the dark mode at BDSSRs provides weak damping. When placing strip 2
under the BDSSRs and changing the Fermi level to 0.4 eV, the distribution of the electric
field and charge are shown in Figure 7b,e. It is obvious that the electric field and opposite
charge distribution at the splits decreases, while the electric field at CW and the opposite
charge increases. This is due to the fact that the charges that accumulated opposingly
at the splits are neutralized by the conductive graphene, which causes the weakening of
the LC resonance at BDSSR, resulting in the weakening of the destructive interference
between LC resonance at BDSSR and LSPR at CW. When the graphene Fermi level is 1.2 eV,
the simulation result is shown in Figure 7c,f. We can see the electric field enhancement
and the opposite charge accumulation at BDSSRs almost disappear. However, the electric
field enhancement at CW is recovered and the opposite charges are re-accumulated on
both edges and corners of CW. The reason is that the graphene strip almost completely
neutralizes the opposite charges at the BDSSRs splits caused by the strong recombination
effect of the monolayer graphene and the damping of the dark BDSSRs is too large to
support LC resonance.
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Therefore, it can be concluded that the damping enhancement caused by the increase
in the graphene Fermi level weakens the LC resonance mode at BDSSRs and the LSPR
mode, which disappears due to the destructive interference between CW and BDSSRs
recovering gradually.

Figure 7g–l show the distributions of the electric field and charge at peak II with
different Fermi levels of strip 1. In Figure 7g,j, when the graphene strip is not implanted
into UDSSRs, a strong electric field and opposite charges are concentrated at the splits
and the dark UDSSRs exhibit a low damping when placing strip 1 under the UDSSRs and
changing the Fermi level to be 0.4 eV. From Figure 7h,k, it can be found that the intensity
of the electric field at the UDSSRs splits, becomes weaker, and the charge density decreases,
whereas the electric field intensity and charge density of CW increase gradually. With the
maximum Fermi level of 1.2 eV, the simulation result is shown in Figure 7i,l, the opposite
charges at UDSSRs are almost completely neutralized and the intensity of the electric
field almost disappears, resulting in the disappearance of LC resonance. The intensity of
the electric field and the opposite charge at CW are further recovered to achieve a strong
LSPR. This is due to the fact that the high Fermi level of graphene causes the damping at
UDSSRs to be too large to support the LC resonance modes, and leads to a disappearance
of the destructive interference between the UDSSRs and CW. Therefore, the origin of the
independent modulation of two PIT resonance can be attributed to the actively tunable
Fermi level of the graphene strips under the BDSSRs and UDSSRs.
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Previous studies have shown that the PIT effect is usually accompanied by the chang-
ing of dispersion properties and causes the light to slow down. Generally, group delay can
be used to describe the slow light effect quantitatively [37], which can be described as:

tg =
dϕ

dω
(10)

where ϕ and ω = 2π f are the transmission phase shift and frequency. The temperature
of STO in this part is maintained at 425 K. Figure 8a,b shows the group delay of devices
with different Fermi levels of strip 2 and strip 1, and it is evident that two parts of group
delay achieve a good modulation. In the absence of graphene, the phase produces a steep
jump at two transparent windows generated by PIT effect, resulting in the group delay of
1.47 ps and 1.15 ps. When strip 2 is placed under BDSSRs, the group delay change of Fermi
level from 0.01 eV to 0.2 eV is shown in Figure 8a. It can be found that with the increase in
Fermi level, the group delay generated at peak I gradually decreases. Finally, when the
Fermi level is 0.2 eV, the group delay at peak II is only 0.45 ps. However, the group delay
at peak II decreases slightly and still maintains the group delay of 0.98 ps.
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Similarly, as shown in Figure 8b, the group delay at peak II decreases gradually
by increasing the Fermi levels of strip 1 from 0.01 eV to 0.2 eV. When the Fermi level
increases to 0.2 eV, the group delay at peak II gradually decreases to 0.32 ps. However, the
group delay at peak I also decreases slightly and still maintains the group delay of 1.27 ps.
Therefore, this design can modulate two slow light effects independently and continuously
by shifting the graphene Fermi level, which is of great research significance for devices
with independent tunable dual slow light.

In this section, we discuss the influence of temperature on the PIT effect. In the absence
of strip 1 and strip 2, by modulating the temperature of STO, the changing of transmission
spectrum is shown in Figure 9a. It can be found that peak I and peak II show blue shift.
Specifically, as the temperature increases from 275 K to 425 K, the frequency of peak I
moves from 0.76 THz to 0.87 THz, and the frequency of peak II moves from 0.88 THz to
1.01 THz.
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Figure 9b shows the frequency change of group delay by tuning the STO temperature.
When the temperature of STO film increases, the two parts of group delay caused by
double PIT effect can achieve blue shift with increasing temperature. Specifically, as the
temperature increases from 275 K to 425 K, the peak frequency of the two group delay
moves from 0.73 THz to 0.83 THz and 0.85 THz to 0.97 THz, respectively. Therefore, the
frequency selection function of double PIT windows and group delay can be realized by
tuning the temperature of STO film.

Since the frequency of the PIT peak is affected by the LC resonance produced by
the dark mode DSSRs, the DSSRs can be regarded as a frequent-selective surface and the
resonance frequency can be estimated by [38,39]:

f =
c

2πR√εe f f
(11)

where R is the effective radius of the DSSRs, and R is constant because of the fixed
parameters of DSSRs. εe f f and c are effective dielectric constants of STO and the light speed
in free space, respectively. In simulation, the εe f f decreases with the temperature increasing,
so the frequencies of PIT peak and group delays both cause the blue shift. Therefore, this
design can not only realize the amplitude tuning of the PIT transparency windows and the
slow light effect, but also realize the selection of the resonance frequency of the dual PIT
transparency windows and the slow light effect.

4. Conclusions

In conclusion, we achieved the modulation of double PIT effect by integrating mono-
layer graphene strips and STO film into PIT metamaterials. The simulation results show
that the two PIT peaks can realize the on-to-off modulation by independently shifting the
Fermi level of strip 1 and strip 2. The coupling effect in the PIT metamaterial has been
studied using the three-harmonic oscillator model, and the theoretical analysis shows that
the recombination effect of the conductive graphene will cause the changing of dark mode
damping, resulting in the tuning of the PIT peak amplitude. Through the study of the slow
light effect of this metamaterial, it was found that two group delays of this metamaterial
can be tuned independently. In addition, the frequency selection function of the double
PIT transparency window and the double slow light is also realized by controlling the
temperature of the STO layer. The multi-functional controllable metamaterial realizes the
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amplitude control and frequency selection of PIT transparency windows and provides a
new path for future PIT control and slow light tuning devices.
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