
nanomaterials

Article

Determination of the Size Distribution of Metallic Colloids
from Extinction Spectroscopy

Yehia Mansour, Yann Battie * , Aotmane En Naciri and Nouari Chaoui

����������
�������

Citation: Mansour, Y.; Battie, Y.; En

Naciri, A.; Chaoui, N. Determination

of the Size Distribution of Metallic

Colloids from Extinction

Spectroscopy. Nanomaterials 2021, 11,

2872. https://doi.org/10.3390/

nano11112872

Academic Editors: Lukasz Piatkowski

and Michał Kotkowiak

Received: 3 October 2021

Accepted: 25 October 2021

Published: 28 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Université de Lorraine, LCP-A2MC, F-57000 Metz, France; yehia.mansour@univ-lorraine.fr (Y.M.);
aotmane.en-naciri@univ-lorraine.fr (A.E.N.); nouari.chaoui@univ-lorraine.fr (N.C.)
* Correspondence: yann.battie@univ-lorraine.fr

Abstract: In this paper, we explore the ability of extinction spectroscopy to characterize colloidal
suspensions of gold nanoparticles (Au NPs). We demonstrate that the Au NPs’ size distribution can
be deduced by analyzing their extinction spectra using Mie theory. Our procedure, based on the
non-negative least square algorithm, takes advantage of the high sensitivity of the plasmon band
to the Au NP size. In addition, this procedure does not require any a priori information on the Au
NP size distribution. The Au NPs’ size distribution of monomodal or bimodal suspensions can be
satisfactorily determined from their extinction spectra. Finally, we show that this characterization
tool is compatible with in situ measurement and allows following the change in NPs’ radii during
laser exposure.
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1. Introduction

Colloidal suspensions of noble metal nanoparticles (NPs) exhibit strong optical ab-
sorption due to surface plasmon resonance (SPR) of NPs. The position and width of the
SPR bands depend on the NPs’ size, shape, and environment [1,2]. This tunability makes
metallic NPs great candidates for a wide range of applications such as photothermal ther-
apy [3], plasmonic catalyzers [4], chemical sensors [5], or optical filters [6]. Conventional
synthesis routes unavoidably produce NPs with sizes distributions that induce drastic
changes in the optical properties of colloids. These distributions are commonly determined
by transmission electron microscopy (TEM). However, since TEM is a local characteriza-
tion tool, the observed NPs may be minimally or not representative of the whole sample,
and TEM is often time-consuming. Thus, the development of nonlocal characterization
techniques is crucial to evaluate NPs’ size distribution after their synthesis.

Nonlocal techniques such as small-angle X-ray scattering (SAXS) [7–9], wide-angle
X-ray diffraction [10], mass spectrometry [11], dynamic light scattering (DLS) [12,13],
gravitational sedimentation [14,15], optical pulse scattering [16], and analytical ultracen-
trifugation analysis (AUA) [17] are widely used to determine NPs’ size distribution of
colloids. As SAXS is sensitive to NPs’ a few nanometers in size, it has been used to investi-
gate the evolution of the size of gold nanoparticles (Au NPs) during their growth [7,8]. DLS
only measures the hydrodynamic radius of NPs. Therefore, the NPs’ sizes can be overesti-
mated due to the presence of capping agent around the NPs, which strongly interacts with
the surrounding liquid [12,13,18]. In addition, as the scattering cross-section of large NPs
is higher than that of small NPs, DLS could also produce misleading results if NPs are not
monodisperse. AUA, which consists of the determination of the sedimentation coefficient
of NPs, is a powerful method to evaluate complex NP size distributions. However, as
pointed out by Mahl et al., AUA tends to underestimate NP size due to the presence of
capping agent around the NPs [18].

Extinction spectroscopy is a noninvasive optical characterization technique, which
can be used to gain quantitative insights on NP morphology [19–25]. Haiss et al. [19] used
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the position of the plasmon band and the ratio between the absorbance at the plasmon
band and the absorbance at 450 nm to estimate the mean diameter of gold NPs. However,
their approach does not take into account the NP size distribution. As shown by Eustis
et al. [25], the aspect ratio distribution of metallic nanorods can be estimated by fitting their
extinction spectra with Gans theory. We recently improved this approach by analyzing the
extinction spectra with shape-distributed effective-medium theory [20,21]. Several efforts
have also been devoted to evaluating NP size from extinction spectroscopy [9,26–29]. The
optical properties of isolated spherical nanoparticles are well-described by Mie theory [30].
Several authors used this theory to determine NPs’ mean radius and concentration from
their extinction spectra [26]. However, they did not take into account the polydispersity
of NPs. As shown by Amandola et al. [29], the NP concentration estimated by analyzing
the extinction spectra of Au colloids with Mie–Gans theory, is barely affected by the size
distribution of Au NPs. This result was confirmed by recent simulations performed with
modified Maxwell–Garnett–Mie theory [31].

In this context, the NP size distribution is introduced in Mie theory. By solving the in-
verse problem using Mie theory, we unambiguously demonstrate that the size distribution
of spherical Au NPs can be estimated from their extinction spectra. Contrary to several
works, our method, based on a constrained non-negative least square algorithm [32], does
not require any a priori information concerning NP size distribution. The unique assump-
tion is that NPs have a spherical shape. The comparison between the distribution obtained
by TEM and extinction spectroscopy reveals the reliability of our method. We also show
that the determination of the size distribution is fast enough to be suitable for in situ
measurements.

2. Materials and Methods

The investigated colloids were purchased from Sigma-Aldrich (Saint-Quentin-Fallavier,
France). These colloids consist in spherical Au NPs in water. TEM images of Au NPs
were recorded with a Technai CM200 microscope operating at 200 kV. The TEM samples
were prepared by evaporating a drop of colloidal suspension on a copper TEM grid. Ex-
tinction measurements of Au NP suspensions were recorded using a Horiba Jobin-Yvon
spectrophotometer equipped with a quartz cell with a 1 mm light-path.

Laser-induced fragmentation of Au NPs was also conducted. In this experiment, 2 mL
of gold colloids, introduced in a 1 cm light-path quartz cell, was horizontally exposed
to nanosecond laser pulses. The suspension was continuously stirred with a magnetic
stirrer during the laser exposure. The laser pulses were delivered from a Nd-YAG laser
(Continuum Surelite I, Evry, France) set to its fundamental wavelength (1064 nm). The
pulse width, repetition rate, and laser fluence were 6 ns, 10 Hz, and 3.2 J·cm−2, respectively.
Extinction spectra of the suspensions were recorded in situ during the laser exposure by
using a homemade set-up [33]. The latter was mainly composed of a 200 W mercury–
xenon arc lamp source (Newport) and a compact UV–visible spectrophotometer (AvaSpec-
ULS2048L-USB2 Avantes, Apeldoorn, The Netherlands). The extinction spectra of the
colloidal suspension were recorded in the range of 400–900 nm with an acquisition rate of
10 Hz.

3. Model

Colloidal suspensions are composed of spherical Au NPs in water. In the following,
the presence of surfactant is neglected. The extinction cross-section of an isolated spherical
NP with radius R calculated for a wavelength λ from Mie theory [30] is given by the
following expression:

σext(R, λ) =
2π

k2

∞

∑
n=1

(2n + 1)Re(an + bn) (1)
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where k is the norm of the wavevector; an et bn are the Mie coefficients defined by the
following equations:

an =
mψn(mx)ψ′n(x)− ψn(x)ψ′n(mx)
mψn(mx)ξ ′n(x)− ξn(x)ψ′n(mx)

(2)

bn =
ψn(mx)ψ′n(x)−mψn(x)ψ′n(mx)
ψn(mx)ξ ′n(x)−mξn(x)ψ′n(mx)

(3)

with x = kR
√

εm; m =
√

εnp/εm; ψn and ξn are the nth-order Riccatti–Bessel functions;
and εnp and εm are the dielectric function of the NPs and the host matrix, respectively.
As shown from ellipsometric measurement performed on colloids [34], the presence of
capping agent and counter ions in a suspension can be neglected and the dielectric function
of water can be used as the dielectric function of the matrix. The dielectric function of Au
NPs is given by [31]:

εNP = εbulk −
ω2

p

ω(ω + iΓ0)
+

ω2
p

ω
(

ω + i
(

Γ0 +
v f
R

)) (4)

where εbulk is the dielectric function of bulk given by Johnson [35]; ωp = 8.44 eV and
Γ0 = 0.08 eV are the plasma frequency and the damping energy of gold, respectively; and
v f = 1.4× 106 m·s−1 is the Fermi velocity of free electrons. The first and second terms
of Equation (4) are related to the contribution of interband transitions of bound electrons
of bulk gold. The last term is associated with the intraband transitions of conduction
electrons of gold NPs. The intraband transitions are described by the Drude dispersion.
This dispersion law is modified to consider the intrinsic confinement effect that occurs for
NP radii smaller than the mean free path of conduction electrons.

According to our previous work, the concentration of NPs in a suspension is suffi-
ciently small so the electromagnetic coupling between NPs can be neglected [34]. Therefore,
the extinction coefficient of the suspension can be obtained by weighting the extinction
cross-section of individual Au NPs by their concentration.

α(λ) =
n

∑
i=1

N(Ri)σext(Ri) (5)

where N(Ri) is the concentration of NPs that have a radius Ri. In the following, we use
a constant step size ∆R = Ri+1 − Ri. By using the same procedure regardless of the
wavelength, we obtain a set of linear equations that can be rewritten as follows:

Y = AX (6)

with

Y =

 α(λ1)
...

α(λm)

, A =

 σext(λ1, R1) · · · σext(λ1, Rn)
...

. . .
...

σext(λm, R1) · · · σext(λm, Rn)

 and X =

 N(R1)
...

N(Rn)


The vectors Y and X are related to the extinction spectra and the NP size distribution

of colloids, respectively. The matrix A is calculated by using Equation (1). For a given
distribution of NP size, Equation (6) allows a simulation of the extinction spectra of the
colloidal suspension. Equation (6) can also be used to estimate the NPs’ size distribution
from their extinction spectra. The mathematical solution is given by the following ordinary
least square regression:

X =
(

AT A
)−1

ATY (7)
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The mathematical solution given by Equation (7) can be unphysical because this
procedure does not ensure positive concentrations. To avoid unphysical solutions, we
decided to solve the following constrained non-negative least square problem:

X = argminX(AX−Y) with N(Ri) > 0 (8)

The vector of NP size distribution (X) is obtained without prior information concerning
the NPs’ size distribution by using the non-negative least square algorithm [32]. The choice
of the step size ∆R in Equations (7) and (8) has a significant impact on the estimated size
distribution. To estimate the optimal value of radius step, we introduce two parameters, e1
and e2, defined as follows:

e1 = ‖Ymes − AX‖ (9)

e2 = ‖(AT A)(AT A)−1‖/
√

n (10)

e1 traduces the difference between the measured spectra (Ymes) and the modeled spec-
tra (AX). It describes the ability of our model to reproduce spectroscopic measurements.
e2 was used to evaluate the numerical accuracy of the matrix inversion

(
AT A

)−1 which
appears in Equation (7). e2 is equal to 1 for an invertible matrix, whereas it tends toward
infinity for a close-to-singular matrix. Figure 1 shows the evolution of e1 and e2 with
radius step.
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e1 is almost constant for a ∆R smaller than 60 nm, whereas it drastically increases
for higher radius step. In other words, the spectra cannot be reproduced for a too-large
sampling step size. e2 is equal to 1 for step size higher than 4 nm. However, it diverges
for smaller step size. Thus, for a too-small step size, the matrix A is ill-conditioned (i.e.,
despite the matrix being able to be inverted, it is close to a noninvertible matrix) and several
distributions could produce the same optical signature. According to these results, we
used, in the following, a step size of 5 nm. This step size was found to be sufficient to
induce measurable changes in extinction spectra.
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4. Results and Discussion
4.1. Simulations

The influence of NP size on the extinction spectra of colloids is illustrated in Figure 2
through some simulations based on Mie theory (Equation (6)). These simulations were
performed by considering all Au NPs in the suspension as having the same radius. The
concentration of NPs was set to 1020 m−3.
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Figure 2 shows that the amplitude of the extinction spectra increases with NP radius.
According to the Rayleigh approximation, the absorption and the scattering cross-sections
of NPs are proportional to the volume and the square of the volume of the NPs, respectively.
In the 400–500 nm spectral range, the extinction coefficient is almost independent of
the wavelength and is mainly dominated by the interband transitions of Au NPs. The
plasmonic effects can only be observed at wavelengths above 500 nm. For a NP radius
smaller than 30 nm, the extinction spectra exhibit a band centered at 525 nm, attributed
to the dipolar plasmon mode of NPs. This plasmon band is progressively redshifted and
broadened for a mean NP radius larger than 20 nm. These spectral variations are attributed
to dynamic effects and radiation damping, which are due to the nonuniformity of the
electric field inside large NPs [2,31]. For a NP radius larger than 70 nm, a second band
can be observed [2]. This band, assigned to the quadrupolar plasmon mode of NPs, is
progressively redshifted from 530 to 565 nm as the NP radius increases from 70 to 100 nm.
These results confirm that the extinction spectra are sensitive to NP radius.

For the purpose of evaluating the impact of the polydispersity of NPs, the extinction
spectra of colloids were calculated by considering a Gaussian NP size distribution with
various standard deviations. The NPs’ mean radius and concentration were set to 30 nm
and 1020 m−3, respectively. As shown in Figure 3, as the standard deviation (σ) of the NPs
size distribution increases, the plasmon band broadens. The contribution of the larger NPs
is traduced by an asymmetrical broadening of the plasmon band toward the red region of
the spectra. Therefore, the symmetry of the plasmon band could provide insights into the
polydispersity of the NPs’ population. Note that this broadening is accompanied by an
increase in the plasmon band and a redshift in its position. When compared to the spectra
in Figure 2, the plasmon band position appears to be more sensitive to the NPs’ mean
radius than the polydispersity.
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4.2. Characterization of Colloids

In order to confirm the agreement of the model with the experimental results, the
measured extinction spectra of a gold colloidal suspension were compared to the calculated
spectra. The extinction spectra of six commercial colloidal suspensions (Sigma Aldrich)
denoted Si (with i = 1, . . . , 6), were recorded in the spectral range of 400–800 nm and their
NPs population was characterized by transmission electronic microscopy. As shown in
Figure 4, these suspensions were composed of nearly spherical Au NPs in water. Their
radius distributions, determined from TEM images processing, are shown in Figure 5. The
mean radius of S1, S2, S3, S4, S5, and S6 NPs are 2, 4, 10, 14, 15, and 22 nm, respectively, and
their polydispersity indexes, defined as the ratio between the standard deviation and the
mean value of NPs radius, are 0.2, 0.3, 0.3, 0.1, 0.2, and 0.2, respectively.
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The main feature of extinction spectra of these colloids, shown in Figure 6, is a single
band that progressively shifts from 520 to 535 nm as the NPs’ mean radius increases.
According to the simulations depicted in Figure 2 and the NP size determined by TEM
(Figure 5), this band can be assigned to the dipolar plasmon mode of Au NPs. The intrinsic
confinement effect occurring for small NPs explains the broadness of the plasmon band
observed for S1. These results illustrate the correlation between the extinction spectra and
the NPs’ size distribution.

The NP size distributions estimated by analyzing each spectrum with Equation (8)
are presented in Figure 5. The NP sizes obtained from extinction spectroscopy are globally
in agreement with those determined by TEM. The modes of the calculated distribution
(Figure 5) satisfactorily predict those measured by TEM image processing. In addition, as
shown in Figure 6, the extinction spectra calculated from these distributions are close to
the measured ones. These results suggest that the distributions calculated from extinction
spectroscopy have the same optical signature as the NPs population in the suspension.
The deviation between the distribution obtained by TEM and extinction spectroscopy can
be due to the optical constant of gold introduced in Mie theory, the small number of NPs
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measured by TEM, and the deviation of NP shape from perfect sphere. Several Au dielectric
functions with large differences were reported in the literature [36]. Contrary to TEM, the
number of NPs probed by extinction spectroscopy is estimated as 1010–1012 (depending on
the colloidal suspension), which is sufficiently significant to provide an accurate estimation
of the NPs’ size distribution. Concerning the shape of NPs, we found, by analyzing the
extinction spectra with shape-distributed effective-medium theory [20,21] (not shown), that
NPs can be considered spherical. Some improvements beyond the scope of this study can
be proposed. First, the dielectric function of gold NPs could be estimated on benchmark
colloids. Second, Mie theory could be replaced by other numerical approaches, such as
the boundary element method or discrete dipole approximation, to calculate the extinction
cross-section of nonspherical NPs.
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Au colloids.

The presence of a bimodal distribution of NPs is a crucial issue for several charac-
terization tools such as DLS. To investigate the robustness of our method, we produced
three suspensions by mixing two colloidal suspensions (P1 and P2) at several volume ratios
(0.5:0.5, 0.2:0.8, and 0.1:0.9). The extinction spectra of these suspensions, measured in the
400–600 nm spectral range, are shown in Figure 7. The spectra of the P1 and P2 suspensions
exhibit a plasmon band centered at 533 and 521 nm, respectively. The spectra of P2 shows
a broader plasmon band than P1. The spectra of the mixture lies between the spectra of
P1 and P2. In addition, the plasmon band is progressively blueshifted as the volume ratio
between P2 and P1 increases, suggesting that the extinction spectra are sensitive to this
parameter. The NP size distributions of P1 and P2, extracted from extinction spectra, are
reported in Figure 8. P1 was mainly composed of NPs with a radius in the 23–33 nm range;
those constituting P2 had a radius smaller than 8 nm. These sizes are in agreement with
TEM measurements, which described a mean radius of 24 and 4 nm, for P1 and P2, respec-
tively (Figure 8). The distribution of the mixture (not shown) deduced from the extinction
spectra are composed of the same population as P1 and P2 NPs. The difference between
mixtures was due to the relative amount of both populations of NPs. The volume ratio
between both suspensions can be directly determined from the relative concentration of P1
and P2 populations of NPs estimated by extinction spectroscopy. As shown in Figure 9, the
relative amount between both populations of NPs determined by extinction spectroscopy
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increases linearly with the nominal volume ratio between P1 and P2, with a slope estimated
as 1.03. According to these results, the two modes of bimodal populations of NPs can be
distinguished using extinction spectroscopy. In other words, contrary to DLS, the high
sensitivity of the plasmon band to the NP size can be used to gain quantitative insights on
the relative concentration of both populations of NPs.
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In order to evaluate the potential of our technique for in situ characterization, we
recorded the extinction spectra of the diluted S6 sample during its exposure to Nd:YAG
laser pulses. As shown in Figure 10a, the extinction spectra of the suspension, measured
with an acquisition rate of 10 Hz, drastically changed during the exposure. The plasmon
band, initially centered at 535 nm, progressively blueshifted to 523 nm. This variation was
accompanied by a decrease in the width and the magnitude of the plasmon band. Each
recorded extinction spectrum was then analyzed with our model. As shown in Figure 10b,
the model globally reproduces the measured extinction spectra. Figure 10c reports the
evolution of the NPs’ size distribution during laser exposure. The NP size decreased from
25–35 to 1–7 nm after 6 s of laser exposure. The distribution estimated at the final state is
in accordance with those measured by TEM (Figure 10d). As reported by several works,
this NP size reduction is induced by the fragmentation of NPs that occurs during laser
exposure [37]. The absorption of a laser pulse by the NPs induces a rise in its temperature
until it reaches the boiling temperature of gold. Then, small NPs growth via a coalescence
mechanism from the vaporized gold atoms. The advantage of our technique is that the
matrix A of Equation (6) is calculated only once, before the measurements. This matrix is
then reused to analyze all spectra in real time. The central processing unit (CPU) time spent
to analyze one spectra is 50 ms. This example reveals that in situ extinction spectroscopy
coupled with our model can be used to investigate the kinetics of NP size modification.
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of S6 NPs after 30 min laser exposure. The laser fluence, wavelength, and repetition rate were 3.2 J·cm−1, 1064 nm, and
10 Hz, respectively.

We now provide a nonexhaustive comparison between our approach and standard
characterization tools. Contrary to local characterization techniques such as TEM, the
distribution deduced from Mie theory is obtained on a large number of NPs. However,
Mie theory is only valid for spherical NPs, while TEM measurements can be performed on
nonspherical NPs. In addition, the radius step size used in our approach is much larger
than those determined by TEM. Contrary to measurements based on the diffusion of NPs
such as DLS, our approach directly describes the NPs radius. DLS which is sensitive to the
hydrodynamic radius of NPs, tends to overestimate NP size. Finally, contrary to techniques
based on X-ray scattering, our approach does not require large-scale facilities and can easily
be used in line to control the production of colloids.

5. Conclusions

In summary, we introduced NP size distribution in Mie theory. Simulations performed
with this theory confirmed that the position and width of the plasmon band of Au NPs
strongly depend on the NPs size distribution. We showed that the NPs’ size distribution can
be determined by analyzing extinction spectra measured on Au colloids with Mie theory
without any a priori information concerning size distribution. The unique assumption is
that NPs are perfectly spherical. Contrary to DLS or TEM measurements, our technique
allows characterizing bimodal distributions and is suitable for in situ characterization. As
extinction spectroscopy is a nonlocal technique, the NPs’ size distribution was evaluated
on a large number of NPs estimated as 1010–1012. As a proof of concept, we decided



Nanomaterials 2021, 11, 2872 12 of 13

to focus our investigation on spherical gold NPs. This method can also be applied to
other plasmonic nanoparticles such as silver or copper nanoparticles. The plasmon band
of plasmonic nanoparticles is sensitive to nanoparticle size. Our approach can be easily
extended to other NP shapes by calculating matrix A with other formalisms such as the
boundary element method or discrete dipole approximation. However, this extension is
beyond the scope of this study and will be reported in other publications.
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