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Abstract: The agglomeration of ferromagnetic nanoparticles in a fluid is studied using nanoparticle-
level Langevin dynamics simulations. The simulations have interdigitation and bridging between
ligand coatings included using a computationally-cheap, phenomenological sticking parameter
c. The interactions between ligand coatings are shown in this preliminary study to be important
in determining the shapes of agglomerates that form. A critical size for the sticking parameter is
estimated analytically and via the simulations and indicates where particle agglomerates transition
from well-ordered (c is small) to disordered (c is large) shapes. Results are also presented for the
hysteresis loops (magnetization versus applied field) for these particle systems in an oscillating
magnetic field appropriate for hyperthermia applications. The results show that the clumping of
particles has a significant effect on their macroscopic properties, with important consequences on
applications. In particular, the work done by an oscillating field on the system has a nonmonotonic
dependence on c.

Keywords: magnetic nanoparticle; Langevin simulation; ligand; magnetic hyperthermia

1. Introduction

The interdigitation and bridging of ligand polymers has been shown to greatly influ-
ence how nanoparticles aggregate to form clumps, chains or even nanocrystals [1–7]. This
is especially important in biological environments where nanoparticles develop a protein
corona, resulting in a different aggregation that in turn affects how they perform diagnostic
and therapeutic functions [8]. Here, we consider magnetic nanoparticles that have unique
applications in fluids [9] such as in magnetic hyperthermia to treat cancer [10], guided
drug delivery [11], lab-on-a-chip devices [12], and contrast agents [13].

It is well-known that when magnetic particles agglomerate, they behave very differ-
ently compared to isolated particles. For example, their effective magnetic anisotropy is
altered [14] and their coercive fields and remanance magnetization (when subject to an
alternating field) can be increased or decreased depending on the clump shape [15–17]. In
order to predict and design materials with these properties, one must be able to correctly
predict what types of aggregates (chains, nanocrystals, clumps, rings) do in fact form when
ligand environments are altered. Until recently [3], very few simulations have included
the role of ligand bridging or interdigitation. Without these effects, long chains of particles
typically form in simulations of ferromagnetic particles with the magnetic dipole moments
joining tip-to-tail. These chains can come together to form thicker bundles when the num-
ber of particles in an agglomerate becomes very large and it therefore becomes entropically
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favorable to do so compared to growing longer and longer single-width chains [18]. (This
has been studied in more detail for superparamagnetic beads in an applied field [19], for
which the physics are somewhat different.) We show here that ligand sticking can stabilize
configurations of nanoparticles whereby the dipolar interactions are not minimized (i.e.,
magnetic dipoles are not aligned tip-to-tail) and so more disordered particle agglomerate
shapes form.

We present particle-level Langevin simulations of ferromagnetic nanoparticles in a
finite-temperature viscous fluid, interacting via magnetic dipolar fields, steric repulsion,
van der Waals interactions, and ligand sticking (due to bridging and interdigitation). We
treat the sticking using a phenomenological sticking parameter that essentially damps the
motion of particles that are part of an agglomerate. In other words, when particles come into
contact with each other, there is resistance to their individual rotation and translation due
to ligands binding or simply becoming entangled with each other. The phenomenological
sticking parameter represents a weighting factor in the Langevin equation, which is in
contrast to previous methods to treat ligand sticking through an effective potential [3] or to
consider that particles are rigidly locked together once they touch [20,21]. Our method has
the advantage of being computationally cheap to implement, and it is more realistic than
rigid-locking. We present preliminary results for 50,050 nm-diameter magnetite particles
simulated for 0.01 s, with periodic boundary conditions. We also present an analytic
estimate for the critical phenomenological sticking parameter that separates the formation
of chains (low stickiness) from the formation of more disordered clumps (high stickiness).
The analytic estimate agrees well with the simulation results and corresponds to realistic
force magnitudes.

Results are also presented for when the particle system is subjected to an oscillating
magnetic field with appropriate amplitude and frequency for magnetic hyperthermia
treatment (100 kA/m at 1.25 kHz). The net magnetization as a function of the applied
magnetic field is found and the resulting hysteresis loops show a marked difference when
there is ligand friction compared to when there is not. For one thing, the area enclosed
by the hysteresis loops—which is correlated with the heat that particles may generate—is
increased and then decreased as the ligands are made more sticky.

2. Materials and Methods
2.1. Simulations

The translational equation of motion for a particle i is given by Newton’s second law
in the Langevin form [22], namely

m
d2~xi
dt2 = ~Fi

[
~xj(t)

]
−miγt~vi(t) +~ζi(t) ≡ ~fi, (1)

where m is the mass of all particles, ~xi is the position of the particle, Fi is the deterministic
force on the particle due to the interactions with all the j other particles (detailed in the
Appendix A), γt is the translational viscous coefficient, ~vi is the velocity, and ~ζi is a random
force that is connected to the viscosity via the fluctuation–dissipation theorem. ~ζ is assumed
to obey a Gaussian distribution with

〈ζα(t)〉 = 0, 〈ζα(t)ζβ(t + t′)〉 = 2mγtkBT δαβ δ(t′), (2)

where kB is Boltzmann’s constant, T is temperature, and α and β represent components of
the force. The drag coefficient is given by Stoke’s formula [22]

mγt = 6πηR, (3)

where η is the viscosity of the fluid and R is the hydrodynamic radius of the particle,
which is on the order of the particle radius r plus the ligand coating length L. In fact,
hydrodynamic interactions between particles are present [23,24] (the disturbance of a
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particle moving through a fluid influences the motion of others), but here they are ignored
as a first approximation and to isolate the effect of the ligand interactions.

We discuss the manipulation of Equation (1) to include phenomenologically the
effects of ligand sticking. Note that the sum of all forces (deterministic, viscous and
random thermal fluctuations) on the right-hand-side of Equation (1) have been denoted ~fi
for convenience.

If a particle i was rigidly stuck inside an agglomerate containing Nagg particles, then
it would have to move in exactly the same way as its neighbors and its equation of
motion becomes

mNagg
d2~xi
dt2 =

Nagg

∑
k=1

~fk. (4)

This situation has indeed been considered by some authors and can be said to “coarse-
grain” the system and speed up simulations [20,21,25]. However, it is more realistic to have
particles inside agglomerates that are both influenced by their neighbors, but also have the
ability to move independently because any ligand sticking force is not infinite in strength.
In fact, we see in simulations that agglomerates change their shape over time, and do so
depending on the strength with which their ligand coatings interact. For example, studies
have found binding forces ranging from 100 to 700 pN over distances from 0 to 7 nm for PEG
ligands attached to a surface [26,27]. One can take this as an estimate for the forces that may
bind ligands to each other. These forces are on the order of the magnetic and thermal forces
acting on particles (see Appendix A and parameters given at the end of this section).

To better model these finite ligand sticking strengths, we write a weighted average of
Equations (1) and (4), namely

m
d2~xi
dt2 = (1− c)~fi +

c
Nagg

Nagg

∑
k=1

~fk, (5)

where c is the weighting factor, which can range from zero (no sticking of particles) to one
(infinite force sticking particles together when they come in contact). We call this parameter
c the phenomenological sticking parameter. If two particles have their magnetic surfaces
separated by distances less than 2L, where L is the ligand coating length, they are deemed
to be part of the same agglomerate. One can check that Equation (5) preserves the laws of
physics; for example, conservation of momentum is preserved.

When magnetic torques are appreciable, then the rotational equation of motion for
particle i must also be considered [28]

I
d~ωi
dt

= ~Ti[~xij(t), θij(t)]− Iγr~ωi(t) + ~Qi(t) ≡ ~τi(t), (6)

where I is the moment of inertia of a particle, ~ωi is the angular velocity, γr is the rotational
viscous coefficient, and ~Ti is the magnetic torque (see Appendix A), which depends on
the separations ~xij and angles θij between all other j particles. ~Qi is a random torque with
statistics related to the temperature and viscous coefficient according to

〈Qα〉 = 0, 〈Qα(t)Qβ(t + t′)〉 = 6mγrkBTδαβδ(t′). (7)

The rotational viscous coefficient for spherical particles is given by Iγr = 8πηR3,
where η is the fluid viscosity and R is the hydrodynamic radius. Note that the ratio
γr/γt = 10/3 for perfect spheres [28]. The right-hand-side of Equation (6) is called τi as
shorthand notation.
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Once again, we assume that the particles that form agglomerates neither rotate truly
independently, nor do they form rigid clumps that cannot change shape over time. To model
ligand sticking, we therefore replace the rotational Equation (6) with the weighted average

d~ωi
dt

= (1− c)
~τi
I
+

c
Nagg

Nagg

∑
k=1

~τk
~Iagg

, (8)

where c is the same phenomenological sticking parameter that was used in the correspond-
ing translational Equation (5) above. In actual fact, these two parameters can be different.
For example, the potential introduced by Wang et al., to account for ligand interdigita-
tion/entanglement in simulations [3] resisted sliding of particles over one another, but
there was no restriction on particles moving apart radially. For simplicity, we here take
the rotational and translation sticking parameters to be the same. Additionally, note that
components of the vector ~Iagg are the moments of inertia of the agglomerate around its
center of mass, relative to rotation around the x, y and z axes.

The inter-particle interactions included are magnetic dipole–dipole interactions (re-
pulsive and attractive) [29], van der Waals attraction and short-range repulsion [30,31].
The equations for the resulting forces are given in the Appendix A. Short-range repulsion
prohibits particles from overlapping in space and provides an equilibrium separation for
particles. Note that the magnetic dipole moments are assumed to be rigidly locked along
a particular axis in the particle. In other words, magnetic relaxation only occurs through
particle rotation (Brownian relaxation), and not through movement of the magnetic dipole
moment within particles (Néel relaxation). We therefore only examine ferromagnetic par-
ticles with large anisotropy energy barriers (large anisotropy constant or large volumes)
in this work. Few works have taken into account both mechanisms as the timescales are
well-separated [32]. We also use a dipole cutoff shell of 10(r + L), outside which the dipole
forces are neglected. As dipole forces decrease with separation as D−4, the maximum
forces at the cutoff shell are 10,000 times smaller than for particles with ligands in contact.
However, we performed one simulation with the dipole cut-off extended to 20(r + L) and
found many of our results did not change (for example, magnetization versus applied
field loops) but that the shape of clumps did change. This will be discussed later. This
one simulation took days longer to run than the others. In the future, our calculation
will be extended to treat the dipole-dipole interactions using Ewald sums that reduce the
computation time so that it scales as N log(N), rather than as N!, where N is the number
of dipoles [33,34].

Equations of motion (5) and (8) are solved numerically using a modified velocity Verlet
algorithm attributed to van Gunsteren and Berendsen [33,35] to solve the second-order,
stochastic differential equations, with random forces and torques.

Magnetite nanoparticles are considered with magnetization M = 3.12× 105 A/m
(corresponding to around 60 emu/g [15] since magnetite’s mass density is 5255 kg/m3),
radius r = 25 nm, ligand length L = 5 nm, distance between ligand heads h = 5 nm and
temperature T = 298 K. The hydrodynamic radius is assumed to be R = L + r = 30 nm.
The surrounding fluid is hexane with a viscosity of η = 2.97× 10−4 N s/m2 and a cor-
responding Hamaker constant A131 = 29× 10−21 J [36]. For assembly in a uniform field,
500 particles are simulated for 0.01 s of real time, with a time step of ∆t = 0.1 ns. Larger
timesteps lead to an unphysical overlap of particles. The time step is less than the momen-
tum relaxation time for the particles, hence the use of the van Gunsteren and Berendsen
numerical integration scheme, rather than a Brownian scheme where the inertial term
is neglected. Periodic boundary conditions were used along with a volume fraction of
magnetic material corresponding to 7.58× 10−4. This density corresponds to 4 mg/mL
of magnetite in hexane, which is an appropriate concentration for applications. For all
simulations the particles are started from random (although non-overlapping) positions
and with random magnetization directions.
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We ran our fortran code on 25 Intel(R) Xeon 2.2 GHz processors for 60–70 h to simulate
500 particles over 0.01 s of simulation time. Runs are repeated to ensure that the results
are consistent.

For the hysteresis loops, 500 particles were again simulated. An applied field with
frequency 1.25 kHz and amplitude 100 kA/m was used and simulations run through
10 cycles of the field. This is sufficient to see the loops reach a steady state.

2.2. Estimate of the Sticking Parameter

Here, we estimate the value of c for which the clumps formed in simulations transition
from long chains to disordered agglomerates. We do this by comparing the time it takes
a particle to diffuse (tdi f f ) towards another, to the time it takes it to rotate so that the
magnetic dipolar interactions are minimized (trot). A similar comparison of diffusion
and magnetic-relaxation timescales proved successful in predicting chaining in our recent
work [37].

A characteristic rotation time for particles in a fluid experiencing a net torque is [32]

trot ∼
8πηR3

(1− c)τtotal
, (9)

where the total torque τtotal a particle in an agglomerate experiences is decreased due to
stickiness by the term (1− c), consistent with Equation (6), and neglecting torques from
far away particles (i.e., those not in the agglomerate). R ∼ (r + L) is the hydrodynamic
radius of the particle. Equation (9) comes from the equation for the torque needed to keep
a sphere rotating with uniform velocity in a still, infinite, viscous fluid [38].

This can be compared to the expected time for agglomeration based on the density of
particles and the thermal energy. Let the time for a particle to diffusively travel a distance
x to the region close to another particle be tdi f f . It is estimated using the fluctuation
dissipation theorem result as [39]

tdi f f =
x26πηR

kBT
. (10)

The distance x is the mean distance between the 500 particles initially in the simulation
volume, i.e., x = (V/N)1/3, where N is the total number of particles and V is the total
simulation volume. Substituting the parameters for 50 nm diameter magnetite particles
into Equation (10) finds a diffusion time on the order of 1 ms.

When the time for a particle in an agglomerate to rotate so that its magnetic moment
points in the local field direction is larger than the average time for another particle to join the
agglomerate, we expect a messy, noncollinear agglomerate to form. The new particle may
stabilize the noncollinear shape. One may imagine an incoming particle to have been affected
by thermal translations and rotations as well as experiencing the complicated superposition
of dipolar fields from all particles on its approach, which is why its magnetic moment is
not automatically aligned with the field of the agglomerate it joins. The condition for messy
agglomerate shapes is therefore tdi f f < trot (see Equations (9) and (10)).

Rearranging for c, one obtains

c ∼ 1− 4kBT
3τtotal

R2

x2 . (11)

Then, for a given particle concentration, temperature and particle size, the stickiness
parameter required to achieve noncollinear agglomerate shapes can be estimated. Note
that for larger thermal energies, less “stickiness” (lower c values) is required for messy
clumps to form, as is to be expected. Furthermore, note here that the fluid viscosity is
absent as both trot and tdi f f are linearly dependent on viscosity and the term cancels.
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Using the parameters for the 50 nm diameter magnetite nanoparticles and assuming a
magnetic torque τtotal for two particles in contact with an angle of 5◦ between their dipole
moments, Equation (11) gives

c > 0.995 (12)

for messy agglomerates to form. This value can vary up to c > 0.999 by assuming the angle
between dipoles is 90◦ before they begin to rotate to minimize the dipole–dipole energy.
Therefore, in Langevin dynamics simulations at zero field, one expects to find chains of
particle when c < 0.995 and messy agglomerates for c > 0.995. This matches exceptionally
well with the simulation results, as will be shown below.

3. Results
3.1. Assembly in a Uniform, Constant Field

In Figure 1, a snap shot of the simulation volume is shown at the end of the 10 ms
duration under different conditions. On the left-hand-side are the results when there is no
applied field, for different values of the stickiness parameter c = (a) 0, (b) 0.9 and (c) 0.999.
The trend downwards (increasing stickiness) is for messier clumps to form. As expected,
when c = 0 we see that agglomerates tend to be single particle width chains or loops with
relatively small angles between the dipole moment of adjacent particles. When the sticking
parameter is increased to c = 0.999 the clumps form shapes other than chains and loops
with significant bends. On the right-hand-side of Figure 1, the corresponding results are
shown for an applied field of µ0H = 5 mT in (d), (e) and (f). This field is large enough
to eliminate any loops for c = 0 (see panel (e)) and to considerably straighten the chains
(it corresponds to an interaction energy mµ0H ∼ 0.39kBT). Some joining of single-width
chains is seen. For strong ligand bridging/friction c = 0.999 (bottom, right panel), shorter,
more crooked chains form.

Of particular note is the fact that there appears to be a transition in behavior from
c = 0.9 (mainly straight lines in (e)) to c = 0.999 (shorter, more disordered agglomerates in
(f)). This is across our predicted critical value of c = 0.995. The results must be explored
quantitatively to support this point.

In order to numerically compare our simulation results to each other (and in the
future to experimental results), we have used two characterization parameters. For the
comparison of the clump shapes that form in a simulation, the average normalized length
of clumps is calculated. This dimensionless parameter is calculated as the length along
the long axis of a clump, divided by 2RNagg, where Nagg is the number of particles in
an agglomerate and R is the hydrodynamic radius. This gives a parameter equal to one
for perfectly straight lines of connected particles. For spherical clumps of particles, the
normalized length goes as 1/(N2/3

agg ).
A dipolar order parameter is calculated as an accurate way of comparing the internal

structure of clumps formed in various simulations. This is simply the total pairwise dipolar
energy of the N particles in the simulation, divided by the dipolar energy of a perfect chain
of N particles, with each dipole aligned tip-to-tail with its neighbor(s), namely

Dipolar order =
∑i,j

1
r3

ij
(3

(~mi ·~rij)( ~mj ·~rij)

r2
ij

− ~mi · ~mj)

∑i,j
2m2

r3
ij

, (13)

where ~rij is the vector between the centers of particles i and j and the sums are over all
particle pairs in the simulation. This parameter accurately reflects the amount of dipolar
ordering, regardless of the particular shape of clumps. In other words, the dipolar order
of a perfectly straight chain or a perfect loop of particles that both have dipoles aligned
tip-to-tail can be similar, even though their normalized length is very different.
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Figure 1. Characteristic simulation results in no field (left panels (a–c)) and a field of µ0H0 = 5 mT
(right panels (d–f)). The disorder in clumps tends to increase as the sticking parameter increases
(higher sticking parameters in low panels).

Note that a fractal dimension may be used to characterize the shape of clumps of
particles [6,40,41]. The results of our simulations over 0.01 s yield agglomerates that are too
small (typically under 20 particles) for the fractal dimension to be a good characterization
tool in this case.

In Figure 2, we show the normalized length (top panels) and dipolar order (bottom
panels) for particles in no applied magnetic field (left) and a field of 5 mT (right), as a
function of time. The characterization parameters tend to vary with time rapidly near the
start of the simulation but settle into a nearly constant state by the end of the simulation.
Corresponding with the shape of the clumps seen in Figure 1, for c = 0 (blue dots) the
dipolar order parameter is closer to 1 and the normalized length is also close to 1. As we
increase the sticking parameter (red squares correspond to c = 0.9 and green triangles
to c = 0.999) we see that agglomerates tend to be more disordered both in terms of their
shape and their internal magnetic structure.

When the sticking parameter is increased to 0.999 (green triangles), which is above
the critical value estimated above, one sees a sharp decrease in both the normalized length
and the dipolar order. The simulations and analytic estimate are therefore in excellent
agreement. Notice that the drop in normalized length is not so marked when an external
field is applied (right panels in Figure 2) because the interaction with the applied field
creates more ordered clumps.
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Figure 2. Characterization parameters for particles in no field (a,c) and a field of 5 mT (b,d). The top
panels show the normalized length as a function of time (values closer to 1 indicate more chains) and
the bottom panels show the dipolar order as a function of time.

Notice that Equation (11) for the critical sticking parameter does not have any depen-
dence on the fluid viscosity. This means that the result is unchanged depending on the
medium in which particles are suspended. What is important is the size of the magnetic
torque through τtotal , the temperature, the concentration of particles through x, and their
hydrodynamic radius R. The larger the hydrodynamic radius, for example, the smaller the
ligand sticking parameter can be to still induce disordered clumps of particles. However,
note that this simple estimate does not take into account hydrodynamic interactions be-
tween particles and these interactions are expected to be appreciable when particles are
near one another [23,24] and the fluid viscosity would indeed play a role.

In the presence of an applied field, the trend in the ordering parameter as a function
of c is nonmonotonic. Here the normalized length is actually a little larger for c = 0.9
(red squares) than for c = 0 (blue dots), although both are close to 1 in Figure 2b. This
slight increase can be explained by a damping of the random thermal motion as c increases
and as particles clump together to form larger masses. This has a resulting increase in
the linearity of the chains. However, when the sticking parameter is increased further, to
c = 0.999 (green triangles), as in the case of no applied field, we again see a decrease in the
magnitude of both the dipolar order and the normalized length.

In the study of colloids, one is often interested in the initial rate of agglomeration and
comparing that rate between different colloidal systems using the so-called “stability ra-
tio” [42,43]. We can do that here by comparing the initial rate (t < 0.1 ms) of agglomeration
between systems with no sticking of ligands (c = 0) to those with our phenomenological
sticking turned on (c 6= 0). The case of zero applied field is considered to this purpose. We
find that for c < 0.999, there is little difference in the agglomeration rate between systems.
This is supported by examining Figure 2c, where one sees that the blue and red data points
lie almost on top of each other for the dipolar order as a function of time. Physically, this
is consistent with the idea that particles only experience friction after they have already
been drawn into an agglomerate, so the agglomeration rate should not markedly change
when c 6= 0. However, this changes for a large sticking parameter c = 0.999, and the rate of
agglomeration slows down slightly then (again, see Figure 2c). This slow down is because
the dipolar order in newly formed agglomerates is less, meaning that there is a weaker
attractive magnetic force drawing in new particles to the agglomerate. Messy clumps have
a lower net moment and so grow at a slower rate than ordered chains.

The agglomeration rate also depends on particle concentration, although only one
concentration is considered throughout most of this article since the focus is on the effect of
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the sticking parameter c. We ran one simulation at half concentration (volume fraction of
magnetic material is 3.79× 10−4) and found that the initial agglomeration rate was roughly
half of that seen in the other simulations.

3.2. Hysteresis Loops

The simulations are run for the same particle systems, but in an oscillating magnetic
field appropriate for magnetic hyperthermia treatments. Namely, the frequency of the
sinusoidal field is f = 1.25 kHz and the amplitude is Hmax = 100 kA/m (ensuring that
Hmax f < 5× 108 Hz·A/m, as required for treatments [44]). Movies of the particle behavior
in the fluid are provided in the Supplemental Material for c = 0 (no ligand friction,
individual particle behavior), c = 0.9 and 0.99 (moderate friction), and for c = 0.999 (strong
friction between ligands, collective behavior of clumps). One finds that the magnetization
reversal process looks very different in these cases. The particles that do not experience
sticking/friction are able to rotate relatively freely in the oscillating field. On the other
hand, the particles with significant sticking assemble into more rigid clumps that rotate
more slowly—due to a larger moment of inertia—to follow the oscillating field. In fact,
for c = 0.999 (beyond the critical value), the particles cannot reverse with the field once
clumps are formed, as their moment of inertia is too large and also because the assembled
clumps are unable to bend or twist in order to assist their reorientation. To quantify this
change in behavior with increasing c, we plot the net magnetization as a function of field
in Figure 3.

Imaging the dynamics of nanoparticles in fluids may be difficult in real time, but
the magnetization as a function of time for a sample can be measured relatively easily.
In Figure 3, we present the normalized magnetization along the applied field axis, as a
function of the applied field with frequency f = 125 kHz. The case for c = (a) 0, (b)
0.9, (c) 0.99 and (d) 0.999 are drawn in the top four panels. The changing color of the
points is designed so that one can follow the changing magnetization as a function of time,
starting from red and going to red after five field cycles. The particles are started in random
orientations at t = 0 and so the initial magnetization is zero. Initially the field is positive,
with the system developing a positive magnetic moment.

For c = 0 in Figure 3a, a regular hysteresis loop develops quickly. Over five cycles of
the field, the loop does not change markedly. There is a coercive field of roughly 0.02 T due
to the finite time it takes for the particles to rotate to align with the applied field. Chains of
particles form, but the individual particles still rotate almost independently to align with
the applied oscillating field.

For c = 0.9 in Figure 3b, the coercivity is larger than for c = 0 as particles in chains
move as single entities and therefore rotate to follow the field more slowly. In the first
few cycles of the field, a shoulder is visible in the top left quadrant of the plot. This
is a signature that first the single-particles rotate, and then the clumps following later.
This difference in timescale is clearly seen in the video (see Supplemental Material). The
magnetization shoulder is still visible after five field cycles, but disappears after 10 cycles
as single particles are absorbed into agglomerates. From that point the hysteresis loop is in
a steady state (see panel (e) for c = 0.9). Note that for a larger fluid viscosity, it takes much
longer for the steady state to be reached, but a very similar steady state was found to occur.
However, we again point out that hydrodynamic interactions between particles are not
accounted for in these simulations.

For c = 0.99 in Figure 3c, the coercive field becomes very large (almost 0.125 T) as
agglomerates become more rigid and also messier, increasing their reversal times. Again
a “shoulder” is seen in the loops, that disappears on consecutive field cycling. The area
enclosed by the M− H loop is much larger than in the previous two cases.

This trend of increasing M− H area does not continue, however. The case of c = 0.999
is drawn in Figure 3d. The particle clumps that form are so rigidly-locked together and
aligned with the initial positive field that they are unable to follow the applied field
direction. In the corresponding video (see Supplemental Information), one can see the
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single particles flip up and down with the field, but the chains that form cannot flip. This
gives rise to a hysteresis loop that has positive magnetization at all times. The M− H area
is decreased compared to the other three cases.

Figure 3. Magnetization versus applied field ( f = 1.25 kHz and Hmax = 100 kA/m) for different
clumping constants: c = (a) 0, (b) 0.9, (c) 0.99 and (d) 0.999. In each of the four top panels, the
particles are started at random positions and in zero field. As the field is applied, small clumps form,
influencing the net magnetization in the oscillating field. The changing color of the points is designed
so that one can follow the changing magnetization as a function of time, starting from red and going
to red after five field cycles. In panel (e), the final hysteresis loops are shown in the four cases after 5
field cycles, when the loops are at a steady state. (For c = 0.9, the loop in (e) is after 10 cycles rather
than 5.)

In Figure 3e, hysteresis loops are drawn corresponding to (a–d) for one field cycle,
after several cycles have occurred and the system has approached steady state. One
sees that the hysteresis area increases and then decreases above the critical value of c
(0.999). This has implications on magnetic hyperthermia. The area enclosed by global
hysteresis loops—but not local ones [45]—is correlated with the amount of heat that can be
generated. One sees that this heat can be increased or decreased by large amounts when
ligand friction/stickiness is increased, depending on whether particle agglomerates have
sufficient time to follow the oscillating applied field.

In Figure 4, the effect of increasing the dipole cut-off distance is explored. In panel
(a), the initial hysteresis loops (starting from randomly placed particles) for c = 0.9 are
shown with a dipole cut-off of 10(r + L) (as seen before, color points) and 20(r + L) (black
line). One sees that there are small differences, but the M − H loops settle to a similar
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shape and the coercive field is not affected. In panel (b), the particle positions at the end
of the simulation are shown (magnetization near negative saturation) for dipole cut-off
distance 10(r + L) (red particles) and 20(r + L) (blue particles). The results are overlaid to
make a better comparison. There are some longer chains that form with the larger dipole
cut-off, which is as to be expected. However, note that both cases show interesting clump
shapes, beyond the single-width chains that are predicted by simulations without frictional
forces included. This is of particular note as the magnetization is nearly saturated, yet
some messy clumps remain.

Figure 4. (a) The initial M− H loops for c = 0.9 redrawn from Figure 3b (color) along with the same
results using a larger dipole cut-off distance (black lines). After a few cycles of the field, there is little
difference. (b) The configuration of magnetic nanoparticles at the end of both simulations, overlaid
on top of one another. The red particles are with the smaller dipole cut-off of 10(r + L) and the blue
particles are with the larger dipole cut-off of 20(r + L).

4. Discussion

A particle-level Langevin dynamics simulation is presented with a phenomenological
sticking parameter c included to model ligand interdigitation and ligand bridging in a
computationally cheap manner. The ligand interdigitation and bridging restricts particles
from translating or rotating independently when their ligand coatings are in contact. We
see in a uniform, weak applied field that by increasing the value of the sticking parameter,
the formed agglomerates’ shape transitions from linear, organized clumps to more disor-
dered, complex clump shapes. We find through simulations that there is a critical sticking
parameter for the transition between these two different behaviors, around c = 0.999 for the
50 nm diameter magnetite particles used here. An analytic estimate agrees with this result.
A phenomenological sticking parameter of c = 0.999 corresponds to ligand forces on the
order of 10 pN, on the same order as the deterministic forces in the system. This does not
seem unreasonable given experiments on the binding of ligands to surfaces [26,27], which
show using Atomic Force Microscopy that rupture forces for ligand-ligand or ligand-metal
binding are on the order of 100–1000 pN.

In experiments, it is rare to see the self-assembly of long, straight chains of ferromag-
netic particles (see for example Ref. [15]). Typically the clumps have a more disordered
shape. Here the effect of ligand bridging and interdigitation is shown to help stabilize
such shapes, that do not minimize the magnetic dipolar energy, whereas clumps that are
highly ordered are simulated when ligand sticking is ignored. These calculations therefore
provide a useful step to explaining such experiments. However, other explanations for the
disordered clump shapes may include the fact that single particles are not perfectly spheri-
cal (thus the point dipole approximation breaks down) or that there are size distributions
among particles [46,47]. The size of the magnetic moment and the density of particles may
play a role in the shape of formed agglomerates [48,49]. Furthermore, taking into account
hydrodynamic interactions between particles will change how they approach each other
when self-assembling. All these effects therefore need to be considered in future work to
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provide a realistic model of self-assembly, in order to guide the design of materials for
many applications.

We also present simulations for these magnetic particle systems in an oscillating field
( f = 1.25 kHz, Hmax = 100 kA/m) that is appropriate for hyperthermia treatments. The
change in the particle dynamics is dramatic changing c from 0 to 0.999. Correspondingly,
the change in the M− H area and the heat that may be produced is dramatic. At first the
M− H area increases due to particle agglomerates rotating more slowly to align with the
field, and then the area decreases when particle chains become locked in position. The effect
of ligand bridging or interdigitation on hyperthermia could be tested in an experiment by
preparing magnetic particle samples that have different ligand coatings (although the same
length to keep dipole–dipole interaction strength constant) and comparing their specific
absorption rates.

Only one applied field frequency and amplitude is presented here, but there is a
whole range of particle parameters that may be explored in order to optimize heating.
This work is exploratory in nature, and the effects of size, field amplitude, frequency and
magnetization are yet to be explored in detail. As one example, we found that a higher
frequency field changes the hysteresis loops presented in Figure 3 significantly as more
agglomerates have a rotation time that is longer than the period of the field, causing more
agglomerates to be locked in place.

It must be emphasized again that the magnetic moment is rigidly locked to the
ferromagnetic particles in our simulations (Brownian rotations are considered, but not
internal Néel rotations). For smaller particles—which are more realistic for biomedical
applications—the Néel relaxation of the magnetization may be the dominant relaxation
mechanism, even in agglomerates. Indeed, an “avalanche” of magnetic moment Néel
reversals in chains of superparamagnetic particles was recently reported as giving rise
to wide, square hysteresis loops [50]. These loops in turn enabled a greatly enhanced
magnetic particle imaging (MPI) signal. An extension to our work would be to incorporate
Néel relaxation mechanisms too, in order to tailor magnetic particle agglomerates for
specific applications.
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Appendix A. Particle Interactions

The short-range repulsive potential due to ligands used here was developed by de
Gennes and is given by [30,31]

Vsteric(Dij) =
100rL3

(Dij − 2r)πh3 kBT exp
(
−

π(Dij − 2r)
L

)
, (A1)

where Dij is the center-to-center distance between particles i and j, r is the particle radius,
L is the mean ligand length, and h is the mean distance between ligand head-groups. This
potential produces a semi-hard sphere repulsion, that matches well with exponentially
decaying potentials that others have used [29,51], but without the need for any fitting
parameters, such as the potential’s decay rate. The corresponding short-range repulsive
force felt by i due to particle j is given by

~Fsteric
ij =

100rL2(L + π(Dij − 2r)
)

(Dij − 2r)2πh3 kBT exp
(
−

π(Dij − 2r)
L

)
D̂ij, (A2)

where D̂ij is a unit vector pointing from i to j.
The van der Waals attractive force felt by particle i due to particle j is

~FvdW
ij = −A131

6

(
2Dij

D2
ij − 4r2

−
4r2Dij

(D2
ij − 4r2)2

− 2
Dij
− 4r2

D3
ij

)
D̂ij, (A3)

where A131 is the Hamaker constant.
The magnetic force felt by particle i because particle j can be attractive or repulsive

and is given by the point dipole approximation

~Fdip
ij = − 3µ0

4πD4
ij

{
D̂ij(mij − 5mirmjr) + mjr~mi + mir~mj

}
. (A4)

Here, mi and mj are the magnetic dipole moments of particles i and j, respectively, and
have magnitude m = MV, where M is the material magnetization and V is the volume.
We have used several shorthand notations,[29] namely mij = ~mi · ~mj, mir = ~mi · D̂ij, and
mjr = ~mj · D̂ij.

The dipole–dipole interaction between particles also results in torques which can be
calculated using

~Tij = ~Dij × ~Fdip
ij . (A5)
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