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Abstract: In this study, a bio-derived precipitating agent/ligand, palm kernel oil, has been used as an
alternative route for the green synthesis of nanoparticles of Fe-doped Co3O4 via the co-precipitation
reaction. The palm oil was extracted from dried palm kernel seeds by crushing, squeezing and
filtration. The reaction of the palm kernel oil with potassium hydroxide, under reflux, yielded a
solution containing a mixture of potassium carboxylate and excess hydroxide ions, irrespective of the
length of saponification. The as-obtained solution reacts with an aqueous solution containing iron and
cobalt ions to yield the desired metallo-organic precursor, iron cobalt carboxylate. Characterization of
the precursors by IR and gas chromatography (GC) attests to the presence of carboxylate fatty acids in
good agreement with the proportion contained in the oil, and ICP confirms that the metallic ratios are
in the proportion used during the synthesis. Analysis of the products thermally decomposed between
400 ◦C and 600 ◦C by XRD, EDX, TEM and ToF-SIMS, established that cobalt iron oxide nanoparticles
(Co(1−x)Fex)3O4 were obtained for x ≤ 0.2 and a nanocomposite material (Co(1−x)Fex)3O4/Fe3O4

for x ≥ 0.2, with sizes between 22 and 9 nm. ToF-SIMS and XRD provided direct evidence of the
progressive substitution of cobalt by iron in the Co3O4 crystal structure for x ≤ 0.2.

Keywords: green synthesis; palm kernel oil; carboxylate fatty acids; co-precipitation method;
Fe-doped Co3O4

1. Introduction

In the last three decades, much research has been devoted to the synthesis and char-
acterization of materials at the nano scale. Nanomaterials exhibit unique properties with
respect to their bulk counterparts mainly because of size-dependent effects [1]. As the size
of a system decreases, the surface area increases, changing mechanical, thermal, optical and
catalytic properties significantly [2]. Transition metal oxide nanoparticles have attracted
considerable attention and cobalt oxide, in particular, exhibits specific chemical and thermal
stability [3]. It is well known as a photocatalyst [4], a catalyst in N2O decomposition [5], a
highly selective CO sensor [6], a high temperature solar selective absorber [7], an electrode
material for thin film supercapacitor [8], a magnetic material [9] and it is used in elec-
trochromic devices [10], because its optical properties changes under an external electrical
stimulus.
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Co3O4 is a black antiferromagnetic p-type semiconductor material, which crystallizes
in a normal spinel structure with the chemical formula AB2O4, based on a cubic close-
packing structure of oxide ions, with Co2+ ions occupying eight tetrahedral A-sites and
Co3+ ions occupying 16 octahedral B-sites. Co3O4 nanoparticles have been extensively stud-
ied [11–14]. In particular, the modification of their properties by progressively substituting
the Co metal ions in their structure with other metal ions (Mg and Ni [14], Fe [5,15,16],
Mn [17,18], Cd [19], Cu [20], Pd [21], Mo [22]), thus, forming a mixed cobalt oxide, is rather
well established. Thus, the synthesis of cobalt oxide and mixed cobalt oxides using various
routes has been reported, including the facile solvothermal route [23], chemical spray
pyrolysis [7], chemical vapor deposition [10], sol-gel [24], hydrothermal [25], simple com-
bustion [26] and co-precipitation methods [5]. Co-precipitation, in particular, is a simple,
low-cost method that is used for the preparation of simple metal oxides and hetero-atom
metal oxides. The main advantages of this synthesis method are that it allows the control of
the stoichiometry of the final product and that it does not require a sophisticated high vac-
uum or high temperature system. For example, using this method, mixed cobalt iron oxide
nanoparticles could be obtained by thermally decomposing a precursor pre-synthesized
via the reaction between a cobalt iron salt solution and an O-donor ligand.

Many O-donor ligands (carboxylates) have been used for the synthesis of simple
and mixed metal oxides in the last few decades like oxalates [15,17], malonates [27,28],
succinates [28,29], acetylacetonates [30,31] and octanoates [32]. Most of the carboxylate
ligands used for that purpose are generally synthetic whereas some are readily available in
our environment (mostly in plants [33]). They can be used as a green and renewable source
of ligand for the synthesis of the precursor. These green sources include, amongst others,
citric acid, tartaric acid, oxalic acid and the linear long-carbon chain fatty acids. The linear
long-carbon chain fatty acids are the major component of every vegetal oil, especially palm
kernel oil. They are present in vegetable oils in the mono-, di- or tri-ester form from which
the corresponding acid can be easily released by a simple saponification reaction. Therefore,
the possibility of using this natural, readily available, renewable and sustainable source
of carboxylate ligands for the synthesis of simple and hetero-metal oxide nanoparticles
of cobalt and iron is explored in this study. It could also open up the possibility of high
exploitation of non-edible oil. Many of such green syntheses have been reported recently
for the synthesis of cobalt oxide nanoparticles [34–42], even though palm kernel oil was
not used as in the present study.

Palm kernel oil is extracted from the palm kernel/nuts of the palm oil tree, Alaeis
guinensis, and contains about 82% saturated fatty acid. In Cameroon, it is mostly used for
the fabrication of soap and in the skin protection while in the USA, Europe and Malaysia,
hydrogenation and fractionation products of palm kernel oil are used for chocolate-type
couvertures, biscuit cream fillings, sugar confectionery, coffee creamers, imitation creams,
to replace butterfat in filled milk [43–45].

In this paper, we report, for the first time and to the best of our knowledge, the use of
a carboxylate ligand extracted from palm kernel oil, a Cameroonian local oil product, as the
precipitating agent for synthesis of mixed cobalt-iron oxide, (Co(1−x)Fex)3O4 (x ≤ 20) and
nanocomposite materials, (Co(1−x)Fex)3O4/Fe3O4 (x > 20) by thermally decomposing the
precursor (hetero-metal carboxylate) pre-synthesized via a simple co-precipitation reaction
The nature of the precursor was partially elucidated using Fourier transform infrared
(FTIR) spectroscopy, thermogravimetric analysis (TGA), gas chromatography (GC) and
inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The structure and
stoichiometry of the hetero-atom metal oxide nanoparticles obtained were determined by
XRD, FTIR, EDX-SEM, ToF-SIMS, XPS and TEM.

2. Materials and Methods
2.1. Materials

Palm kernel seeds were purchased in the local market. Cobalt(II) chloride hexahydrate
(CoCl2·6H2O, 98%, Sigma Aldrich, St. Louis, MO, USA), Cobalt(II) nitrate hexahydrate
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(Co(NO3)2·6H2O, ≥99.0%, Sigma Aldrich, Darmstadt, Germany), Iron(III) nitrate nonahy-
drate (Fe(NO3)3·9H2O, Sigma Aldrich, St. Louis, MO, USA) potassium hydroxide (KOH,
≥85% Carl Roth, Karlsruhe, Germany), sulfuric acid (95%, VWR, Fontenay sous bois,
France), nitric acid (65%, VWR, Darnstadt, Germany) and hexane (97%, VWR, Gliwice,
Poland) were used as received, without further purification.

2.2. Methods

(Co(1−x)Fex)3O4 and (Co(1−x)Fex)3O4/Fe3O4 nanoparticles were obtained via five
experimental steps: 1. Extraction of palm kernel oil from palm kernel seeds; 2. Synthesis
of the carboxylate (using the saponification reaction); 3. Titration of the carboxylate;
4. Synthesis of cobalt iron carboxylate precursors and finally 5. Thermal decomposition of
the precursors.

2.2.1. Extraction of Palm Kernel Oil

The extraction of the palm kernel oil from palm kernel seeds was carried out using
classical traditional methods in the western region of Cameroon. The palm kernel seeds
were spread out on a metal plate with small holes connected to a terracotta oven. After
drying, the palm kernel seeds were then poured into an electric grinder which separates
the hot black palm kernel oil from the pulp of the palm kernel shells. Filtration then yields
the pure yellow palm kernel oil.

2.2.2. Carboxylate Synthesis

The carboxylate ligands were generated via a saponification reaction between the palm
kernel oil (9.98 g) and 30 mL of aqueous KOH (1.375 mol/L), at 96 ◦C, under reflux, varying
the time of the saponification reaction (2 h, 3 h, 6 h, 7 h, 8 h). The same reaction was carried
out by doubling the oil mass for 2 h of reaction time. Each obtained solution was transferred
to a decanted funnel containing 10 mL of hexane. The mixture was homogenized and left
to stand for 24 h. It forms two phases, an aqueous phase containing carboxylates, and a
non-aqueous phase.

2.2.3. Titration of Carboxylate Solution

The amount of carboxylate in the aqueous phase is determined by pH-metric titration.
The pH-meter was calibrated by two buffer solution (pH = 7 and 10). 5 mL of the aqueous
phase are homogenized in 15 mL of distilled water and titrated with sulfuric acid (0.25 M).
From the titration curves, we determined the concentration of the obtained carboxylates,
the remaining hydroxide ions, and deduced the amount of metal ions likely to react.

2.2.4. Synthesis of the Cobalt Iron Carboxylate Precursors

The titration curves allowed us to adopt two synthesis routes: first synthesis route
and second synthesis route, both depending on the nature of the carboxylate solution
obtained in Section 2.2.2 above. The same amount of the carboxylate solution; for each
synthesis route, was used to synthesize cobalt iron carboxylate precursors The first syn-
thesis route used the carboxylate solution as obtained, resulting from the saponification
reaction between 9.98 g of palm kernel oil and 30 mL of KOH solution (1.375 mol/L)
during 2 h. For example, in order to obtain a precursor containing 90% of cobalt and 10%
of iron (mole/mole), an aqueous solution of 0.516 g of CoCl2·6H2O and 0.097 g of Fe
(NO3)3·9H2O was added dropwise in a beaker containing 5 mL of potassium carboxylate
solution. The precipitate formed was rinsed with distilled water and dried. The second
synthesis route used the carboxylate solution resulting from the saponification reaction
between the double mass of oil (19.8 g) and 30 mL of KOH solution (1.375 mol/L). All the
excess hydroxide ions were neutralized by nitric acid prior to the addition of the metallic
solution. For example, for the synthesis of the precursor containing the same proportion
of cobalt and iron as above, 2.5 mL of nitric acid (0.25 M) were added dropwise using a
burette to 3.8 mL solution of potassium carboxylate. To this solution, an aqueous solution
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of 0.218 g of Co(NO3)2·6H2O and 0.0337 g of Fe(NO3)3·9H2O was added dropwise. The
precipitate thus obtained was then rinsed with distilled water and dried.

Samples are designated by the letter S (first synthesis route), S’ (second synthesis
route) and a number which represents the expected percentage of iron in the compound.
For example, sample S10/S’10 is the one that contains 10% of iron and 90% of cobalt. The
carboxylate ligand is represented by RCOO. The amounts of metallic reagents used during
the synthesis are presented in Table 1.

Table 1. Amounts of the metallic reagents used during the synthesis.

Reagents (g) S0 S1 S2 S3 S4 S10 S20 S30

CoCl2.6H2O 0.602 0.593 0.584 0.576 0.567 0.516 0.438 0.367
Fe(NO3)3·9H2O 0 0.010 0.020 0.030 0.040 0.097 0.186 0.267

S’0 S’1 S’2 S’3 S’4 S’10 S’20 S’30

Co(NO3)2·6H2O 0.243 0.241 0.238 0.236 0.233 0.219 0.194 0.170
Fe(NO3)3.9H2O 0.000 0.003 0.007 0.010 0.013 0.034 0.067 0.101

2.2.5. Thermal Decomposition of the Precursors

The cobalt iron carboxylates obtained were thermally decomposed in a ceramic com-
bustion boat holder between 400 ◦C and 600 ◦C in a thermal oven for one hour at a heating
rate of 10 ◦C/min under air atmosphere. The thermal decomposition process/temperature
was followed/determined by thermogravimetry.

2.2.6. Characterization of the Precursors and Final Products

Metallic elemental analyses of the precursors were performed via inductively coupled
plasma-atomic emission spectroscopy (ICP-AES) using the Thermo scientific ICAP 6500
Duo (Watham, MA, USA). ~40 mg of sample were digested in 4 mL of mixed acid (3 mL
of concentrated nitric acid and 1 mL of concentrated hydrochloric acid) and the mixture
diluted with 500 mL distilled water. Measurements were carried out on this final solution.

The functional groups in the precursors and the calcined products were determined
using the Nicolet Nexus 870 Fourier transform infrared (FTIR) spectrometer (Madison, WI,
USA) and the Thermo Scientific Nicolet iN10 infrared microscope (Waltham, MA, USA)
in transmission mode. All samples were prepared by the method of KBr pellets except
precursors obtained by the second synthesis route which were simply squeezed onto a
transparent KRS-5 crystal. The spectra were recorded with 64 scans at 4 cm−1 resolution for
the Nicolet Nexus 870 spectrometer and with 64 scans at 16 cm−1 for the Scientific Nicolet
iN10 infrared microscope, all in the 4000–500 cm−1 range, in transmission mode.

The content of the carboxylates present in the precursors was determined by gas
chromatography and then compared with those present in the oil. Carboxylates were
slowly released from the metallo-organic precursors by their reaction with 50 mL of
sulfuric acid 0.25 M at about 70 ◦C under magnetic stirring. This formed an oily layer
of carboxylic fatty acid, which coagulated after cooling. It was washed, filtered and, as
for palm kernel oil, esterified by the method described by Folch et al. [46]. This method
involves a saponification with 0.1 M KOH/MeOH at 70 ◦C for 1 h, followed by esterification
using a 1.2 M HCl/MeOH solution at 70 ◦C for 20 min. An HPLC grade hexane-water
solvent (95:5) was used to extract the methylated fatty acids. They were finally analyzed
by GC trace gas chromatography (Thermoquest; Milan, Italy) equipped with a flame
ionisation detector. For the chromatographic separation, a restek RT2560 capillary column
(0.25 mm in diameter, 100 m in length) coated with a polar stationary phase of 0.2 µm
thickness (Bellefonte, PA, USA) was used. The carrier gas, hydrogen, was maintained at
a constant pressure of 200 KPa. The column of temperature was programmed as follows:
80 ◦C for 0 min; 80–175 ◦C for 3.8 min (25 ◦C/min); 175 ◦C for 30 min; 175–205 ◦C for
3 min (10 ◦C/min); 205 ◦C for 4 min; 205–225 ◦C for 2 min (10 ◦C/min); 225 ◦C for 20 min.
and 225–80 ◦C for 7.25 min (20 ◦C/min). The detector temperature was set at 280 ◦C.
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Hydrogen and air flow rates for the detector were maintained throughout all runs at 35 and
350 mL/min, respectively. A calibration mixture of fatty acids standards was processed in
parallel. The data were analyzed by a chromquest 3.0 software (Thermo Fisher, Waltham,
MA, USA).

Thermal behavior of the precursor was studied by thermogravimetric analysis (TGA)
on a METTLER TOLEDO Thermal Analyzer (Columbus, OH, USA) in air at a flow rate of
100 mL.min−1, a heating rate of 10 ◦C min−1 and a temperature range of 25–600 ◦C/900 ◦C.

XRD measurements of the calcined precursors were performed using a Bruker D8
advanced diffractometer (Bruker, karlshube, Germany) equipped with a linkeye XE-T
detector and Cu source. The two-theta range from 5 to 80◦ was scanned with an increment
of 0.015◦ and an integration time of 0.15 s using a Bragg Brentano geometry. For the
experiment, the decomposition product was spread out on the silicon plate in such a
manner as to avoid preferred orientations. The Bruker software DIFFRAC.EVA (version
V4.2, Karlsruhe, Germany) was used for data processing using either the COD or PDF 2
database for phase identification.

Raman spectroscopy was carried out using a confocal Microscope DXR Raman Ther-
moScientifc inc. model (Madison, WI, USA) equipped with a diode light (785 nm). The
resolution was set to 4 cm−1. The number of scans was 10 and the time of accumulation
was 10 s per scan. The laser power was set to 10 mW and the 50× objective was used.

The surface chemical composition of the decomposition product was determined by X-
ray photoelectron spectroscopy (XPS) using a SSX 100/206 photoelectron spectrometer from
Surface Science Instruments (Mountain view, CA, USA) equipped with a monochromatized
micro focused Al X-ray source (powered at 20 mA and 10 kV).

The morphologies of the sample were investigated by transmission electron mi-
croscopy using the TEM Leo922 (Zeiss, Germany) with an accelerating voltage of 120 kV.
TEM samples were prepared by dropping a sonicated water dispersion suspension of the
powder samples on a carbon-coated copper grid.

Chemical characterisations of the samples were carried out using a TOF.SIMS5 instru-
ment (IONTOF GmbH, Münster, Germany). A pulsed Bi5+ metal ion source was used to
produce a primary beam with an acceleration voltage of 30 kV to bombard powder samples
pressed onto the adhesive part of Post-it® papers. An AC target current of 0.08 pA with a
bunched pulse width lower than 1 ns was used. Both positive and negative secondary ion
species were analysed. For spectra acquisition, a raster of 128 × 128 data points over an
area of 250 × 250 µm2 was used. The total primary ion beam dose for each analysed area
was always kept below 5 × 1010 ions.cm−2, ensuring static conditions. Lateral resolution
of ~3 µm and mass resolution m/∆m > 5000 at 29 m/z were maintained for positive and
negative spectra acquisition. Charge compensation was achieved by interlaced electron
flood gun (Ek = 20 eV). All data analyses were carried out using the software supplied by
the instrument manufacturer, SurfaceLab (version 6.8; Münster, Germany).

3. Results and Discussion
3.1. Titration Curves of the Carboxylates Solutions

Figure 1 presents the titration curves of the carboxylate solutions obtained.
The average concentration of all the carboxylate solutions is 1.01 mol/L. All curves

look like a titration of a strong acid with a solution containing both strong and weak base.
This means that, in addition of the carboxylate formed, hydroxide ions (strong base) remain
in the solutions obtained. The quantity of remaining hydroxide ions decreases with the
time of the saponification reaction from 2 h until 6 h and then, remains constant. However,
the same quantity of hydroxide ions is obtained for only 2 h when the initial quantity of oil
is doubled. Thus, two different synthesis routes have been adopted: Using the carboxylate
solution as obtained for 2 h/9.98 g of oil of the precursor (first synthesis route), and using
the carboxylate obtained for 2 h/19.8 g of oil prior to the neutralization of all the excess
hydroxide ion (second synthesis route).
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Figure 1. The pH-metric titration curve between obtained carboxylate solution and sulfuric acid
solution.

3.2. ICP-AES Analysis of the Precursors

The ratios between metals contained in the precursors were determined using ICP-
AES. The results are presented in the Table 2 and are compared with those calculated from
the concentrations of reagents.

Table 2. Comparison between expected and obtained mole ratio of metal in the precursors.

Elements S0/S’0 S1/S’1 S2/S’2 S3/S’3 S4/S’4 S10/S’10 S20/S’20 S30/S’30

Found
experi-

mentally

First syn-
thesis
route

Fe/Co 0.000 0.0103 0.0210 0.0319 0.0428 0.113 0.247 0.414

Second
synthe-

sis
route

Fe/Co 0.000 0.0116 0.0200 0.0315 0.0396 0.0974 0.219 0.440

calculated Fe/Co 0.000 0.0101 0.0204 0.0309 0.0417 0.111 0.250 0.429

The results reveal that the ratios of metallic ions present in the precursor correspond
to the expected value which confirms that the synthetic method adopted was good.

3.3. Fourier Transform Infrared (FTIR) Spectral Characterization of the Precursor

Figure 2 shows IR spectra of the obtained precursors. To this effect, samples S0, S10,
S20 and S30 were selected as being more representative of the eight samples for the first
synthesis route while samples S’0, S’10, S’20, S’30 were chosen for the second synthesis
method.
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Figure 2. Fourier transform infrared (FTIR) spectra of samples (a) S0, S10, S20, S30 and (b) S’0, S’10,
S’20, S’30.

Figure 2 shows that in all the samples, the peaks characteristic of the symmetric and
asymmetric stretching vibrations of carboxylic group OCO are observed, respectively, at
1410–1413 cm−1 and 1554–1561 cm−1. This attests the presence of carboxylate groups in
the samples. The peaks at 1297 and 1469 cm−1 are being assigned to the bending vibrations
of the C–H while that at 1115–1120 cm−1 is being attributed to C–O stretching and that at
723–726 cm−1 to the bending deformation of OCO. The intense peaks at 2853 cm−1 and
2929 cm−1 are typical of the aliphatic symmetric and asymmetric stretches, respectively,
of the –CH group. It should be noted that the peak at 1720 cm−1 characteristic of the
C=O double bond of the carboxylate group present in the S’ samples, is practically absent
in the S samples. Since for all the S samples obtained by the 1st synthesis route there
is no residual carboxylate acid present, it implies that the entire carboxylate group is
engaged in the formation of the coordination compound. Kamta et al., working with the
octanoate ligand (a C-8 straight-chain carboxylate) and employing the same synthesis
method, obtained similar results [32]. The prominent –OH peak observed at 3450 cm−1 for
S samples (Figure 2a) are absent in the S’ samples (Figure 2b). This is ample proof that all
the excess OH− ions were completely neutralized in the S’ samples prior to the reaction
with the metal salt solutions.

3.4. Gas Chromatography (GC) Analysis

Table 3 compares the carboxylate contents (%) in the precursors and in the palm kernel
oil.

These results in Table 2 show that the palm kernel oil used in this work is saturated at
86.25% with 47.16% of lauric acid. This is in agreement with the literature which estimates
the average percentage of saturated fatty acid at about 82% with 48% of lauric acid [45,47].
The high proportion of saturated fatty acid found in the precursors (88.33% of saturated
acid with 52.75% of lauric acid) indicates that the carboxylates present in the oil are almost
completely released in solution irrespective of their molar masses. From Table 3, it is
evident that the relative proportions of the carboxylates present in the palm kernel oil and
in the metallo-organic precursors are comparable. The table also shows that the principal
fatty acids in the palm kernel oil and the precursors are, respectively lauric acid, myristic
acid, oleic acid and palmitic acid, caprilic, capric, linoleic and stearic.
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Table 3. Carboxylate contents in the metallo-organic precursors and the palm kernel oil.

Acids Palm Kernel Oil (%) Metallo-Organic Precursors (%)

Lauric acid, C12:0 47.16 52.75
Myristic acid, C14:0 16.89 18.60

Oleic acid, C18:1; cis9 13.90 11.05
Palmitic acid, C16:0 8.48 9.35
Caprilic acid, C8:0 4.11 1.34
Capric acid, C10:0 3.59 2.85

Linoleic acid, C18:2; C9C12 2.29 0.22
Stearic acid, C18:0 2.79 2.91
Caproic acid, C6:0 0.36 0.26

Arachidic acid, C20:0 0.12 0.12
Oleic acid C18:1; cis11 0.11 0.09
Tridecylic acid C13:0 0.10 0.12

Arachidic acid C20:1; C11 0.08 0.05
Pentadecylic acid C15:0 0.02 0.03
Oleic acid C18:1; trans9 0.00 0.10

Arachidic acid C20:2; C11, C14 0.00 0.10

3.5. Thermogravimetry Analysis of the Precursors

Figure 3a,b give the comparative thermogravimetric and differential thermal analysis
(DTA) curves of S samples (S0, S10, S20, S30) and S’ samples (S’0, S’10, S’20, S’30), respec-
tively. The weight loss peaks have been determined by a graph of the weight difference
for consecutive rows against the temperature (called DTA curves). The thermogravimetric
(thermograms) and DTA curves, of all the samples synthesized with the same synthesis
route have similar thermal behavior. However, it should be noted that for samples obtained
by the first synthesis method, those in which cobalt is substituted by iron (S10, S20, S30)
decompose at a lower temperature.

Figure 3. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) curves for
samples (a) S0, S10, S20, S30; (b) S’0, S’10, S’20, S’30.

DTA curves of S samples S0, S10, S20, S30 show that their decompositions follow three
main steps. Taking the DTA curve for the S0 as an illustration, the maximum weight losses
occurs around 165, 305 and 345 ◦C. The weak weight loss (~5.9%) observed between 70 ◦C
and 170 ◦C is attributed to 0.75 molecules of water of crystallization. A major peak (48.18%)
occurring between 170 ◦C and 370 ◦C is being attributed to the loss of the organic part of
the precursor. All the decomposition product residues correspond to a total weight loss of
~61% and no further weight loss is observed beyond 370 ◦C. Therefore, this explains why
400 ◦C was adopted as the thermal decomposition temperature for all the S samples. On
the other hand, DTA curves for the S’ samples (S’0, S’10, S’20, S’30) show five main steps,
generally with some overlapping. For example, for the S’0 sample, the weight loss peaks
occur around 190, 340, 400, 450 and 553 ◦C. They all completely decompose around 570 ◦C
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with a total weight loss of 85.3%, the reason why 600 ◦C was chosen as the decomposition
temperature for all the S’ samples. Comparing the total weight loss of ~61% for the S
samples (those with OH− ions present) to that of 85.3% for the S’ samples (those with
the carboxylate group linked directly to the metal), it is evident that the S’ samples yield
the desired results given that their theoretical total weight loss is 84%. This assertion is
confirmed by the absence of an –OH peak at 3450 cm−1 in the IR spectra for the S’ samples
(see the –OH peak observed for the S samples). According to previous results published
by Kamta et al. [29], the formula proposed for the compounds synthesized with the first
synthesis route (S samples, in our case) is Co(RCOO)0.7(OH)1.3·0.75H2O while that for
samples obtained via the second synthesis route (S’ samples in our case) is Co(RCOO)2
(where RCOO corresponds globally to the carboxylate groups in Table 2).

3.6. FTIR Spectral Characterization of the Decomposition Products

Figure 4 represents the IR spectra of the products obtained from the thermal decom-
position at 400 ◦C and 600 ◦C, respectively, of the precursors of the S samples (S0, S10, S20,
S30) and the S’ samples (S’0, S’10, S’20, S’30). As the spectra indicate, the bands often due
to the carboxylate (OCO) and aliphatic carbon-hydrogen (–CH) groups are absent. On the
other hand, new peaks appear at 578 cm−1 and 670 cm−1 which are attributed, respectively
to the stretching vibrations of the Co3+-O-Co3+ and Co3+-O-Co2+ moieties, indicative of the
formation of a Co3O4 spinel structure [9,21]. Peaks associated with the stretching vibration
of the water/OH− group at 3450 cm−1 and the bending vibration of water at 1615 cm−1

are also observed. Even though it is not usual to find peaks due to water after calcination
at 400 ◦C/600 ◦C, Makhlouf et al. have observed similar –OH in the spectra of Co3O4
obtained after the calcination of cobalt oxalate precursors at 773 K (500 ◦C) [9]. Lontio et al.
also found water in the Ni1−xZnxO and Ni1−xZnxO/ZnO spectra obtained after calcination
of the nickel zinc malonate precursor at 500 ◦C [27]. This tendency for metal oxide to bind
hydroxide group on their surface has equally been reported by Gengnan Li et al. even
though the role it plays as an inhibitor of catalytic activity is still under debate [15].

Figure 4. Infrared (IR) spectra of the decomposition products obtained from (a) S samples (S0, S10,
S20, S30) calcined at 400 ◦C and (b) S’ samples (S’0, S’10, S’20, S’30) calcined at 600 ◦C.

3.7. X-ray Diffraction (XRD) Analysis of the Decomposition Products

Figure 5 represents the XRD patterns of the thermally decomposed samples. All the
diffraction peaks of sample S0 (S’0) have been perfectly indexed into the face centered cubic
Co3O4 structures (space group Fd3m), without any trace of other phases. This observation
corroborates IR spectra. For S samples S0 to S20 and S’ samples S’0 to S’10, there is no
appearance of a new phase. A new phase, identified as Fe3O4 appears for S samples in S30
and S’ samples in S’20 (very small amount), and S’30.
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Figure 5. X-ray diffraction (XRD) of samples (a) S0 to S30, inset is zoom on the S samples highest peak; (b) S’0 to S’30
decomposition products, inset is zoom on the S’ samples highest peak. * Co3O4 diffraction peaks; # Fe3O4 diffraction peaks.

The absence of a new phase for S samples, from S0 to S20 and for S’ samples, from
S’0 to S’10, suggests the complete substitution of cobalt ions by iron ions in the Co3O4
crystalline structure. This is confirmed by a perceptible shift toward the lower 2θ values of
the peaks of the XRD diffraction patterns of these materials (see the insets of Figure 5) in
agreement with similar works [48]. These shifts correspond to the increase in the unit cell
volume due to the substitution of cobalt by iron in the Co3O4 unit cell because the iron ion
radius is slight larger than the cobalt ion radius (r(Fe3+) = 0.64 Å > r(Co3+) = 0.63 Å) for
octahedral coordination [49].

Figure 6 confirms the increase of the unit cell parameter of Fe3+-doped materials with
the increasing iron percentage. It is also observed on Figure 5 that the width of the peaks
increases with the quantity of Fe3+ ions for these doped materials. This indicates that
the particle size is reduced for these doped materials. The size D of the crystallites was
calculated by the Debye–Scherer equation with the most intense diffraction peak of the
samples.

D =
λ

βcosθ
(1)

where λ is the X-ray wavelength of the radiation (1.54 Å), θ is the diffraction angle of Bragg
and β is the full width of the most intense peak.
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Figure 6 shows an overall decrease of the crystallite size till the limit of substitution of
iron inside the cobalt oxide crystalline structure. For S sample S30 and S’ samples S’20 and
S’30, where a new phase has appeared, the increase of the substitution of iron inside Co3O4
yields to a distortion of diffraction patterns in such a way that determination of crystallites
size or cell lattice parameters was not possible. However, for the first synthesis route, even
beyond the limit of substitution of iron inside the cobalt oxide structure (S20), it seems
that the crystallite size continues to decrease, as we can observe on the diffraction patterns
which become broader. For both methods, the particle size values of these doped samples
are around or less than 20 nm indicating that nanomaterial are obtained by both synthetic
routes. According to the literature, the degree of substitution of a metal inside a crystalline
structure of another metal oxide depends on the nature of those metals and the synthesis
method. S. Angelov and al. synthetized CuxCo3−xO4 by calcining the corresponding
metals nitrates, and showed that beyond x = 0.9 (30% of metallic percentage), a new phase
of CuO appears [50]. Li Gengnan et al. synthesized FexCo3−xO4 by co-precipitation method
using oxalate as precipitant agent, and showed that the materials could be obtained for
x = 1/3; 3/5; 1 (11,11; 20 and 33,33% of metallic percentage) [15]. Kwang Joo Kim et al.
synthesized FexCo3−xO4 by spin coating mixed cobalt iron acetate dissolved in a solution
2-methoxyethanol as precursors and showed that the materials could be obtained for x
= 0–2 [51]. Lontio et al. synthesized ZnxNi1−xO by co-precipitation using malonate as
precipitant agent and showed that beyond x = 0.15, a new phase ZnO appeared [27].

3.8. Raman Analysis of the Thermal Decomposition Products

Raman spectroscopy is well known to be very sensitive to the microstructure of
nanocrystal materials. Figure 7 gives the Raman spectrum of the decomposition products
for samples synthesized by the first synthesis route. In accordance with the group theory
prediction and other works reported on Co3O4 nanoparticles characterization [26,52–54],
five main peaks are observed, 3F2g, Eg, and A1g. The intense band at 685.7 cm−1 is
characteristic of the symmetric stretching vibration of octahedral sites (CoO6) associated
to the A1g symmetry. The Raman bands with medium intensity located at 477.7 and
519.8 cm−1 indicate Eg and F2g

2, respectively, while the weak band located at 613.4 cm−1

has F2g
1 symmetry. The band at 199.7 cm−1 is attributed to the characteristics of the

tetrahedral sites (CoO4) which are attributed to the F2g
3 symmetry [52].
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Figure 7. Raman spectra of samples S0, S1, S2, S3, S4, S10, S20 and S30 obtained by the first synthesis
route. Inset is zoom of F2g

3 and A1g peaks located respectively at 200 cm−1 and 685.7 cm−1.

The random variation of the A1g band position with increasing amount of iron percent-
age while F2g

3 band position doesn’t shift suggests that the substitution of iron by cobalt
take place predominantly in octahedral sites. Lattice disorder and low dimension crystal
lead to the asymmetrical broadening and downshifting of A1g. However for samples S20
and S30, all the peaks become wider and are shifted towards a small wavenumber. This
could be attributed to the particle size because of small particles scattering at so large angle
that it becomes difficult to get defined peaks [53]. However, this analysis gives no new
information about the obtained products (like the substitution of metal in a preferential
metal site). It has not been performed on products obtained by the second synthesis route.

3.9. X-ray Photoelectron Spectroscopy (XPS) Analysis of the Thermal Decomposition Products

S Samples S0, S10, S20, S30 and S’ samples S’0, S’10, S’20, S’30 have been analyzed by
XPS. Multiplet decomposition, described by Biesinger et al. [55], was used to fit the Fe 2p
and Co 2p regions. Due to the complexity of this decomposition, only the global envelops
corresponding to Co3O4 (blue) and Fe3O4 (brown) are shown here. Figure 8 displays the
high-resolution spectrum corresponding to Co 2p and Fe 2p photoemissions. They show
spin-orbit splitting into 2p1/2 and 2p3/2. Co 2p3/2 and Co 2p1/2 are located respectively
at 780 and at 794.4 eV while Fe 2p3/2 and Fe 2p1/2 are located respectively at 711 and
724 eV. They result from the overlapping of the contribution of Co2+/Co3+ and Fe2+/Fe3+.
Both 2p1/2 and 2p3/2 lines contain qualitatively the same chemical information [56].
Therefore, only the higher intensity lines with their shake-up satellite, for each element, are
used to determine the contribution of each oxidation state.
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Figure 8. High-resolution X-ray photoelectron spectroscopy (XPS) spectra showing the Co 2p and Fe 2p lines of samples S0,
S10, S20, S30 (a,b) and S’0, S’10, S’20, S’30 (c,d).
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Information about the relative proportion of each oxidation state of cobalt ion is
usually determined by considering their satellite. The Cobalt(II) oxide has a strong shake-
up satellite at about 5.9 eV (785 eV) above the Co 2p3/2 main peak which is absent in Co(III)
complexes [57–59] or very low [56]. As Li Gengnan noted, for samples S0, S10, S20, S30 and
samples S’0, S’10, S’20, S’30 we observe a progressive decrease of the contribution of those
satellites with the increasing amount of iron, this implies an increasing of Co3+ species
contribution at the surface of material [15]. It could be an important result since it has
been proven that only octahedral sites occupied by Co3+ are responsible of the properties
attributed to Co3O4 [12,60,61]. However, the previous analysis does not take into account
that the insertion of a hetero atom modifies the environment around the targeted atom.

The binding energy of iron electrons emitted by the photoelectric effect overlaps with
the one of cobalt electrons emitted by the Auger effect. Therefore, the XPS spectra of iron
have been obtained by subtracting the contribution of Auger electrons of cobalt, fitted
to the spectra of samples S0 and S’0, from all the Fe 2p spectra. One can observe the Fe
2p3/2 and Fe 2p1/2 lines at 711 and 725 eV, respectively, which are characteristic of iron(III)
oxide [62,63]. The absence of peak at 707 eV indicates that there is no metallic iron on
the surface. We note the absence of shake-up satellite at about 714 eV, which would be
characteristic of iron (II) oxide. This suggests that almost all the iron atoms at the surface
are in the Fe(III) state. However, according to the fact that this analysis considers that the
contribution of cobalt Auger electrons in mixed sample S10, S20, S30 remains the same as
in the pure sample S0, reservations have to be made.

The XPS spectra of O 1s are presented on Figure S1 (see supplementary information).
The shape of the O 1s peaks shows the presence of at least two components. The first,
which is relatively narrow and centered around 530.0 eV, is attributed to the lattice oxygen
of the mixed cobalt-iron oxide phases. The second is much larger and centered around
532 eV. It can be assigned to the oxygen bound to contaminated carbon and to hydroxyl
groups attached to the material surface [55]. This result corroborates well the FTIR analysis
where the hydroxyl groups appear on the spectra.

Table 4 compares the expected values with the ICP and XPS data. The ICP analyses of
samples obtained by the second synthesis route were performed on calcined samples.

Table 4. Comparison of results of atomic Fe/Co ratio obtained by different analysis techniques.

1st Synthesis Method 2nd Synthesis Method

Elements S0 S10 S20 S30 S’0 S’10 S’20 S’30
Calculated Fe/Co 0 0.11 0.25 0.43 0 0.11 0.25 0.43
ICP results Fe/Co 0 0.11 0.25 0.41 0 0.12 0.24 0.48
XPS results Fe/Co 0 0.12 0.27 0.65 0 0.18 0.64 0.84

According to the data presented in Table 4, the composition of the surface and the
bulk are similar for samples obtained by the first synthesis route, except sample S30. It
is explained by the appearance of the new phase Fe3O4. For the samples obtained by the
second synthesis route, the Fe/Co ratio is higher at the surface than in the bulk. This reveals
a strong tendency of iron to migrate at the surface of the material for sample S’10 (obtained:
0.18, expected: 0.11), where iron is completely inserted inside the cobalt oxide structure.
The difference between expected and obtained Fe/Co ratio is even more important for
sample S’20 (obtained: 0.64, expected: 0.25) and S’30 (obtained: 0.84; expected: 0.43). Again,
this can tentatively be attributed to the formation of the separate Fe3O4 phase.

3.10. ToF-SIMS Analysis of the Thermal Decomposition Products

The presence of iron in the Co3O4 spinel structure is corroborated by ToF-SIMS.
Figure 9 shows the partial negative secondary ion mass spectra corresponding to the mass
ranges of ions FeCoO3

− and FeCoO4
−, for samples S0 and S20 after calcination. The

identification of these two mixed-metal ion peaks, absent from the pure cobalt oxide
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sample S0, indicates the proximity of the two types of atoms at the nanoscale in sample
S20.

Figure 9. Partial negative spectra of S0 and S20 decomposition products showing the (a) FeCoO3
−;

(b) FeCoO4
− peak. The peak’s intensities are normalized with the respect to the total spectrum

intensity (total spectrum).

Indeed, in SIMS, 10–30 Bi3−5
+ primary ions eject matter from a hemispherical crater

that is smaller than 10 nm of radius in inorganic materials such as metals or their oxides
(e.g., 4–5 nm for 10 KeV Bi3−5 impinging on Au [64]). The presence of those additional ion
peaks, which contain both iron and cobalt, confirm that the two metals are present in close
vicinity, most probably in the same ≥10 nm particles.

The variation of the FeCoO3
− and FeCoO4

− peak intensities, normalized by the total
spectrum intensities, with an increasing amount of iron was investigated and the results
are presented in Figure 10.

Figure 10. Variation of the intensities of the FeCoO3
− and FeCoO4

− ions normalized by the total
spectrum intensity as a function of the Fe percentage for (a) the first synthetic route; (b) the second
synthetic route.

For both synthetic routes, the intensities of the FeCoO3
− and FeCoO4

− ions increase
with the ion percentage up to 20% of iron. The increase can be explained by the fact that,
up to that point, all the iron (or almost all in the case of sample S’20) is inserted in the
Co3O4 structure. This corroborates the XRD results, which indicate that there is only one
crystalline phase of the spinel type up to 20% of substitution of cobalt by iron. However, for
sample S30 and S’30, we observe a decrease of the normalized intensities of FeCoO3

− and
FeCoO4

−. This is explained by the fact that beyond 20% of insertion of iron inside Co3O4,
the new phase Fe3O4 starts to occupy the analyzed surface. As the represented intensities
are normalized by the total intensity, the decrease of FeCoO3

− and FeCoO4
− intensity

simply mirrors the gradual reduction of the surface area covered by the mixed oxide in
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favor of the Fe3O4 phase. Lontio Fomekong et al. have reported similar observations when
studying the insertion of Zn inside the NiO structure [27].

The presence of an excess of iron, at the surface of the decomposition products,
obtained by the second synthesis method was also corroborated by ToF-SIMS results.

Figure S2 (confer supporting information) compares the intensity ratios of FeO−2
FeO−2 +CoO−2

with

increasing amount of iron, obtained by the two synthesis methods. The intensity ratios of
FeO−2

FeO−2 +CoO−2
increases with the amounts of iron, for both S and S’ samples. However, it is

obvious that this ratio is higher for S’ samples (S’10, S’20, S’30) than for S samples (S10, S20,
S30).

3.11. Transmission Electron Microscopy (TEM) Analysis of the Decomposition Products

TEM images of the obtained samples (Figure 11) reveal a polycrystalline nature. For
sample S0, S10 and S30 obtained with the first synthesis method, the TEM images show
that there is not a well-defined and uniform shape. However, a tendency toward hexagonal
shapes is observed. Sample S’0 and S’10 obtained by the second synthetic route exhibit
a more uniform morphology. A closer look at the crystal edges also reveals hexagonal
shapes for those two samples. In contrast, S’20 displays diamond shapes. This suggests
that the crystallite shapes are better defined using the second synthesis route, with shapes
varying with the amount of iron in the sample. The crystallite sizes revealed by TEM
are in the sub-50 nm range, with some variation across the synthetic routes and iron
percentages and a distribution of sizes in each sample. This roughly corroborates the
estimates from XRD analysis which, for instance, provided values of 20 nm for samples S0
and S’0. In the literature, Co3O4 particles have been synthesized with various morphologies
such as hollow nanospheres [65], nanowires [66], nanotubes [67,68] and octahedrons [69].
The properties of Co3O4 nanoparticles are known to vary with their shape, size and
crystallization conditions.

Figure 11. Transmission electron microscopy (TEM) images of the decomposition products S0, S10, S30 and S’0, S’10, S’20.
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4. Conclusions

Nanoparticles of mixed cobalt-iron oxide, (Co(1−x)Fex)3O4 (x = 0–0.1), and the com-
posite materials, (Co(1−x)Fex)3O4/Fe3O4 (x > 0.2), have been obtained by green synthesis
via co-precipitation at a relatively low temperature (400–600 ◦C) using, for the first time, a
hetero-metal carboxylate precursor extracted from palm kernel oil, a Cameroonian local
oil product. For the synthesis of the hetero-metallic carboxylate precursors from the oil,
two methods were employed, the first in which the excess OH− ions in solution were
not neutralized and the second in which neutralization was carried out. The nature of
both types of precursor was partially elucidated using Fourier transform infrared (FTIR)
spectroscopy, thermogravimetric analysis (TGA), gas chromatography (GC) and ICP-AES
while the structure and stoichiometry of the hetero-metal oxide nanoparticles, obtained
from the precursors by thermal decomposition, were determined by XRD, FTIR, EDX-SEM,
ToF-SIMS, XPS and TEM. XRD results, in particular, showed that the particle sizes of
the calcination products (hetero-metal oxides) obtained from the neutralized precursors
decreased from 22 to 14 nm with increasing substitution of Fe in the Co3O4 lattice while
those from the non-neutralized precursors were agglomerated and decreased from 20 to 9
nm. XRD and Raman spectroscopy show that the particles obtained are crystalline while
ToF-SIMS confirms the presence of Fe in the Co3O4 lattice. XPS and ToF-SIMS indicate
that the composition in the bulk and the surface materials remains the same for samples
obtained using the first synthesis method while for the second synthesis method, iron is
more concentrated on the surface.

The availability of palm kernel oil in copious quantities all over Cameroon implies that
these (hetero-metal oxides) and other such materials could be synthesized on an industrial
scale.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11112833/s1, Figure S1. High resolution XPS spectra showing the O 1s lines of samples
(a) S0, S10, S20, S30 and (b) S′0, S′10, S′20, S′30. Figure S2. SIMS intensity ratio FeO2

−/(FeO2
− +

CoO2
−) with the increasing amount of iron, measured on calcined samples obtained with the 1st

synthesis method and the 2nd synthesis method.
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