
nanomaterials

Article

Facile Synthesis of N-Doped Graphene Quantum Dots as Novel
Transfection Agents for mRNA and pDNA

Minchul Ahn 1,2, Jaekwang Song 1 and Byung Hee Hong 1,3,*

����������
�������

Citation: Ahn, M.; Song, J.; Hong,

B.H. Facile Synthesis of N-Doped

Graphene Quantum Dots as Novel

Transfection Agents for mRNA and

pDNA. Nanomaterials 2021, 11, 2816.

https://doi.org/10.3390/

nano11112816

Academic Editor: Cristina Martín

Received: 22 August 2021

Accepted: 13 October 2021

Published: 23 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Korea;
mincheol@snu.ac.kr (M.A.); saver04@snu.ac.kr (J.S.)

2 BioGraphene Inc., Advanced Institute of Convergence Technology, Suwon 16229, Korea
3 Graphene Research Center, Advanced Institute of Convergence Technology, Suwon 16229, Korea
* Correspondence: byunghee@snu.ac.kr

Abstract: In the wake of the coronavirus disease 2019 (COVID-19) pandemic, global pharmaceutical
companies have developed vaccines for the severe acute respiratory syndrome coronavirus-2 (SARS-
CoV-2). Some have adopted lipid nanoparticles (LNPs) or viral vectors to deliver the genes associated
with the spike protein of SARS-CoV-2 for vaccination. This strategy of vaccination by delivering
genes to express viral proteins has been successfully applied to the mRNA vaccines for COVID-19,
and is also applicable to gene therapy. However, conventional transfection agents such as LNPs and
viral vectors are not yet sufficient to satisfy the levels of safety, stability, and efficiency required for
the clinical applications of gene therapy. In this study, we synthesized N-doped graphene quantum
dots (NGQDs) for the transfection of various genes, including messenger ribonucleic acids (mRNAs)
and plasmid deoxyribonucleic acids (pDNAs). The positively charged NGQDs successfully formed
electrostatic complexes with negatively charged mRNAs and pDNAs, and resulted in the efficient
delivery and transfection of the genes into target cells. The transfection efficiency of NGQDs is found
to be comparable to that of commercially available LNPs. Considering their outstanding stability
even at room temperature as well as their low toxicity, NGQDs are expected to be novel universal
gene delivery platforms that can outperform LNPs and viral vectors.
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1. Introduction

COVID-19, coronavirus disease 2019, has threatened global society, and various types
of vaccines have been developed to overcome the pandemic [1–6]. Gene-based vaccines
such as messenger ribonucleic acid (mRNA) with lipid nanoparticles (LNPs) or deoxyri-
bonucleic acid (DNA) with viral vectors have been approved by the United States Food
and Drug Administration (FDA) for clinical uses [7–11]. Some pharmaceutic companies
have developed the vaccine platform based on mRNAs employing LNPs as a delivery
platform, which exhibits a high prevention rate [12,13]; others use viral vectors to transfer
spike proteins genes into cells, which are similar to Ebola vaccines [14,15]. The therapeutic
strategy that uses genes such as mRNA or plasmid DNA (pDNA) is called gene therapy,
which has drawn much attention because it easily expresses desired proteins in the body
through their corresponding sequence information to be transcribed and translated into
therapeutic proteins to fight various diseases [16–18].

The viral vectors such as adeno-associated virus (AAV) are the main platforms that
deliver genes into cells with high transfection efficiency [19,20]. However, they have
some drawbacks such as limited size of cavities, high immunogenicity, mutagenesis,
and undesired inflammatory responses [21–23]. LNPs, cationic polymers, and inorganic
nanoparticles also have been actively recruited as non-viral vectors to overcome such
limitations of viral vectors [24]. In particular, LNPs have already been approved by the
FDA and have been used to deliver doxorubicin or mRNA [25,26]. However, LNPs also
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have drawbacks such as short half-life in the body, harsh storage conditions for stability,
and low loading efficiency [27,28]. Therefore, it is of great importance to develop alternative
gene delivery platforms to overcome the above-mentioned disadvantages.

Many researchers have tried to transfect genes using carbon-based materials such as
graphene oxides (GOs) and graphene quantum dots (GQDs) [29–32]. GOs are the oxidized
form of graphene sheets with a size ranging from several hundred nanometers to several
micrometers [33]. As GOs are soluble in water and can interact with various drugs and
genes, they have been utilized as drug delivery and biosensor platforms. It was previously
reported that GOs can be modified with polyethylene glycol (PEG), polyethyleneimine
(PEI), or/and targeting moieties to deliver genes into a cell [32,34,35]. Although the GO
platform shows a good transfection efficiency, their high toxicity has limited their actual
in vivo applications.

On the other hand, GQDs with a size of 1~10 nm that are functionalized with hy-
droxyl, carbonyl, alcohol, carboxylic groups, etc. exhibit relatively low toxicity [36]. This
enabled the various applications of GOs in nanomedicine and bio-imaging fields, taking
advantages of unique biological, chemical, and optical properties, amphiphilicity, and
high biocompatibility [37]. In our previous reports, we found that GQDs with hydropho-
bic cores and hydrophilic edges interact with α-synuclein fibrils and dissociated them
into monomers [38]. Additionally, we showed that GQDs exhibit low cytotoxicity and
do not affect microbiome environment when fed to mice via oral administration [39].
GQDs also can be loaded with various drug molecules and genes through physicochemical
conjugation between their functional groups [40–44]. Like GOs, GQDs need additional
functionalization to interact electrostatically or covalently with therapeutic molecules or
genes [45,46]. However, their relatively complicated synthetic processes has been a hurdle
for practical applications [47,48], and the covalent modifications of genes possibly lower
the gene activities [49]. In addition, most of previous studies have been focused on the
delivery of pDNAs [50–53] as the intracellular distribution of GQDs near the nucleus is
supposed to be advantageous for pDNA transfections [54,55]. Recently, Ya et al. reported
the first study on the delivery of mRNAs using GQDs [56]. However, in this case, the GQDs
required post-modifications with PEI via covalent bonding catalyzed by ethylenediamine
(EDA) and dicyclohexycarbodiimide (DCC), which resulted in lower transfection efficiency
than that of LNPs. In addition, the PEI-modified GQDs were incapable of delivering other
types of genes such as pDNA.

GQD is a promising drug delivery platform that can deliver a wide range of small
molecules, peptides, and genes into cells. It was found that GQDs localize in the late
endosome or the lysosomes around the Golgi apparatus and nucleus after incubating
cells with GQDs, which indicated that the cellular uptake of GQDs happens via endo-
cytosis [55,57–59]. Furthermore, GQDs entered cells through diverse pathways related
to endocytosis like caveolae-mediated endocytosis after drug loading. It is well known
that GQDs interact with various types of drug molecules like doxorubicin and curcumin
through electrostatic interaction or π—π interaction, where the loaded drugs don’t affect
cellular uptake efficiency [42,60,61].

Herein, we synthesized positively charged NGQDs as gene transfection agents, uti-
lizing the microwave-assisted hydrothermal reactions between polyethyleneimine (PEI)
and citric acid precursors. It was expected that the negatively charged mRNA and pDNA
interact electrostatically with the positively charged NGQDs. Indeed, NGQDs showed an
excellent transfection efficiency even at ~200 times lower concentrations than their CC50
(50% of cytotoxic concentration ~125 µg/mL). To the best of our knowledge, these are
the first applications of the as-synthesized NGQDs capable of transfecting both mRNA
and pDNA without additional chemical modifications, which is expected to enable the
cost-efficient large-scale synthesis that is essential for future clinical applications.
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2. Materials and Methods
2.1. Synthesis of NGQDs

200 mg of citric acid (Sigma Aldrich, St. Louis, MO, USA) and 50 mg of PEI (branched,
Mw 1800, Polyscience, Warrington, UK) were added to 15 mL of distilled water. After 30
min of sonication, a transparent solution was placed into the center of a microwave (MWO-
2027, 800 W, Midea, Foshan, China). 30 s of a microwave-assisted hydrothermal reaction
was iterated about 10 times until the reaction solution turned yellow. The product solution
was filtered with 200 nm and 20 nm disc filters (AnodiscTM, GE Healthcare Life Sciences,
Chicago, IL, USA) and dialyzed for 5 days with a 3.5 kDa dialysis tube (SnakeskinTM,
Thermo Fisher Scientific, Waltham, MA, USA) for removal of the remaining reactants. The
finished solution was lyophilized for 2 days.

2.2. Characterization of NGQDs

The morphology and size distributions of NGQDs were analyzed with a Cs-corrected
transmission electron microscope (Cs-TEM; JEM-ARM200F, JEOL Ltd., Tokyo, Japan).
The zeta potential was measured by a zeta potential analyzer (Zetasizer NanoS, Malvern
Instruments, Malvern, UK). The functional groups of NGQDs were characterized by
Fourier transform infrared (FT-IR; Vertex-80V, BRUKER, Billerica, MA, USA) and X-ray
photoelectron spectroscopy (XPS; AXIS-His, Kratos Analytical Ltd., Manchester, UK). A
Raman spectrometer (in Via Raman microscope, Renishaw, Wotton-under-Edge, UK) was
used to identify the D and G bands of the graphene in the NGQDs. The absorbance
of the NGQDs was analyzed with an ultraviolet-visible (UV-Vis) spectrophotometer (S-
3100, Scinco, Seoul, Korea). The emission spectra at various excitation wavelengths were
acquired with a spectrofluorometer (FP-8300, Jasco Inc., Tokyo, Japan).

2.3. Loading Capacity

To analyze the ratio of NGQDs to genes, 100 ng of mRNA (CleanCap® EGFP mRNA,
TriLink Biotechnologies, San Diego, CA, USA) and pDNA (pcDNA3-EGFP, Addgene,
Watertown, MA, USA), encoding green fluorescent protein (GFP), were added to various
amounts (0, 0.5, 1, 2, 4 µg) of NGQDs in 20 µL of 1× phosphate buffer saline (PBS) solution.
The loading process was executed in a 1 mL tube. After 1 h of incubation, the series of
complexes were mixed with 4 µL of LoadingSTARTM (Dyne Bio Inc., Seongnam, Korea)
and the mixtures were loaded on a 1% agarose gel. The loading capacity of NGQDs was
determined by measuring the intensity of the bands derived from the remaining genes after
agarose-gel electrophoresis (Mupid-2plus, ADVANCE, Tokyo, Japan) at 100 V for 30 min.

2.4. Cell Viability Assay

HeLa cells were seeded in a 96-well plate at a density of 5 × 103 cells for 24 h before
transfection. HeLa cells were then treated with various concentrations of NGQDs in
complete media for 24 h. After removal of the media, the cells were washed with 1× PBS
solutions and incubated in 90 µL of serum-free media with 10 µL of cell counting kit-8
(CCK-8) (Dojindo Molecular Technologies Inc., Rockville, MD, USA) solution. To evaluate
the cell viability of the treated cells, the optical density of formazan salt was measured at
450 nm using a microplate absorbance reader (Synergy Mx, BioTek, Winooski, VT, USA),
and the background absorbance of the media was subtracted. Experiments were carried
out in triplicate.

2.5. Gene Transfections Efficiency

HeLa cells were seeded in a 24-well plate at a density of 3 × 104 cells. After in-
cubation for 24 h, the cells were treated with 1× PBS (Ctrl), mRNA, Lipofectamine®

2000 (Thermo Fisher Scientific), NGQDs, mRNA with Lipofectamine® 2000, and mRNA
with NGQDs in 0.5 mL of serum-free media. For preparation of the complex-containing
genes and the NGQDs, 3 µL of mRNA solution (10 µg/mL) and 6 µL of NGQDs solution
(0.1 mg/mL) were mixed and 2 µL of 10× PBS solution was added with 9 µL of deionized
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water. After incubation with the complexes for 24 h, media were eliminated, and the
cells were washed with 1 mL of 1× PBS solution. Bright-field and fluorescence images
(λEx/λEm = 488 nm/507 nm) were acquired by fluorescence microscopy (Nikon Co., Tokyo,
Japan) with Metamorph image analysis software (Molecular Devices, San Jose, CA, USA).
For quantitative analysis of the transfection, cells were trypsinized and harvested, followed
by suspension of the cells in 0.5 mL of 1× PBS solution. The fluorescence intensity of
the samples was analyzed by flow cytometry (BD FACSLyric, BD Biosciences, New York,
NY, USA).

3. Results and Discussion

PEI and citric acid were recruited as precursors and GQDs were synthesized by
the microwave-assisted hydrothermal reaction. The synthesized GQDs were named N-
doped GQDs (NGQDs). TEM observation of prepared NGQDs was performed to analyze
their morphology and size. The NGQDs were identified as nanoparticles with an overall
diameter distribution of 3–11 nm and average of 7.03 nm ± 0.27 nm (Figure 1a,b). The zeta
potential is measured to be 1.91 ± 1.77 mV, indicating that the surface charge of NGQDs
in deionized water is considerably positive (Figure 1c), which allows NGQDs to interact
electrostatically with genes that are negatively charged due to phosphate backbones.
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We performed FT-IR and XPS for the analysis of functional groups. We observed the
representative peaks of the NGQDs at 1720 and 1650 cm−1, which were interpreted as
the C=O stretching and C=C stretching vibrations in carboxylic acid and aromatic groups,
respectively (Figure 2a). In addition, we could clearly observe the peaks at 1550 and
1000–1250 cm−1, which correlated with N-H bending in primary and secondary amine
groups as well as the C-N bond of amine groups, and appeared in the FT-IR spectra of
the precursors (Figure S1). In XPS C1s and N1s spectra, we found that NGQDs contain
aromatic sp2 C=C, sp2 C-N, sp3 C-N, and carboxyl groups, which correspond to the peaks
at 284.5, 285.7, 287.5, and 288.6 eV (Figure 2b,c). We also observed the D band and the G
band at 1350 cm−1 and 1580 cm−1, respectively, as the characteristic peaks of graphene from
the Raman spectrum (Figure 2d). These results indicate that the NGQDs are composed of
hydrophobic aromatic sp2 domains and hydrophilic functional groups such as carboxylic
acid, amine groups, etc.

NGQDs show UV-Vis absorption peaks at 250 and 350 nm, which corresponded to
the π–π* transition of aromatic sp2 C=C and the n–π* transition of carbonyl C=O [62],
respectively, which means that NGQDs are composed of aromatic sp2 C=C domains
and carbonyl groups (Figure 3a). In addition, the NGQDs emitted blue fluorescence
(Em, max = 432 nm) at 365 nm excitation (Figure 3b,c). From the overall characterization data,
we demonstrated that NGQDs had the characteristic properties of GQDs: the graphitic core
with the diverse functional groups and the positive charge required to interact with genes.
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Next, we performed loading tests to evaluate the loading capacity of NGQDs to genes.
We mixed the NGQDs with two types of genes in 1× PBS solutions and incubated them
at room temperature. According to the results from the agarose-gel electrophoresis, the
columns for 1 µg and 0.5 µg NGQD, with respect to 0.1 µg mRNA and 0.1 µg pDNA in
agarose gel, show an incomplete band shift. Thus, we supposed that the equivalent amount
of NGQDs for perfect loading would be somewhere between 1 and 2 µg for 0.1 µg mRNA,
and 0.5 and 1 µg for 0.1 µg pDNA, respectively (Figure 4a,b). The positively charged
NGQDs could interact with genes via electrostatic force and formed complexes with the
genes by the simple mixing at room temperature.
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Prior to in vitro gene transfection with NGQDs, we verified the cytotoxicity of the
NGQDs via a CCK-8 assay kit. For the CCK-8 assay, various concentrations of NGQDs
from 1 µg/mL to 1000 µg/mL were treated to HeLa cells in complete media for 1 day.
NGQDs exhibited a dose-dependent toxicity, and reduced cell viability was observed at a
concentration of 63 µg/mL (Figure 4c).

To evaluate the transfection efficiency of NGQDs, we delivered mRNA into HeLa cells
with NGQDs. As shown in Figure 4a, the NGQDs formed complexes with mRNA at a 20:1
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ratio (wt/wt), and the results show that 30 ng of mRNA, encoding a GFP, formed complexes
with 600 ng of NGQDs before transfection. As a positive control, Lipofectamine 2000 was
used, a representative transfection agent that forms liposomes with various genes. After
incubation for 1 h at room temperature, the NGQDs + mRNA complexes, as well as other
groups—1 × PBS (control), mRNA only, Lipofectamine only, NGQDs only, Lipofectamine
+ mRNA—were treated to HeLa cells for 24 h. To visually confirm the transfection by each
group, we observed green fluorescence through fluorescence microscopy. The fluorescence
images from Figure 5 show that the number of cells expressing GFP in the NGQDs + mRNA
complex group was comparable to groups using Lipofectamine as a transfection agent
(Figure 5e,f). These results indicate that the NGQDs with gene complexes had entered
the cell successfully. This result shows that the NGQDs formed complexes with mRNA
and pDNA at 10–20 times their amounts, which implies that several NGQDs wrap an
mRNA or DNA molecule and deliver it to nearby cellular membranes, followed by cellular
uptake. We supposed that the neutralized charge complex between NGQDs and genes
enables cellular uptake, although some have previously reported the preferred interaction
of the positively charged NGQDs with the cellular membrane [63–65]. Although the
NGQDs had fluorescence emission at around 500 nm under excitation at 360 nm, a similar
wavelength to GFP emission, the fluorescence in Figure 5f did not result from NGQD
fluorescence. The fluorescence of NGQDs was not visualized in fluorescence microscope
images because the excitation range of NGQDs is from 280 to 430 nm, and not the GFP
excitation wavelength (~488 nm) (Figures 5d and S2). From these results, we can conclude
that NGQDs have been successfully delivered mRNA into cells, followed by translation to
generate therapeutic proteins.
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We performed a flow cytometry analysis to quantify the transfection efficiencies of
each group. Similar to the results of fluorescence microscopy, GFP-expressing cells were not
detected in control, mRNA only, Lipofectamine only, and NGQDs only groups. In particular,
the fluorescence of NGQDs at around 500 nm did not affect the flow cytometry analysis.
Although both the NGQDs + mRNA complex and the Lipofectamine + mRNA complex had
similar fluorescence images, the NGQDs + mRNA complex showed enhanced transfection
of up to 50% when compared to the Lipofectamine + mRNA complex, the positive control
in the quantitative analysis (Figures 6 and S3). Through these experiments, NGQDs have
great potential as mRNA delivery platforms for vaccinations or gene therapy even though
there are a few more factors to be validated, such as in vivo safety and efficiency.
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In addition to mRNA, we performed a pDNA transfection test using NGQDs. similarly,
the GFP-encoding pDNA complexed with NGQDs were prepared by simply mixing them
at room temperature. After incubation for 1 h, we treated each group to HeLa cells
for 24 h. Fluorescence microscopy images after treatments show that NGQDs had the
best performance as pDNA delivery platforms. In the fluorescence microscope image,
the NGQDs + pDNA group showed the strong green fluorescence comparable to the
Lipofectamine + pDNA group (Figure 7).

A flow cytometry analysis was performed to quantify the transfection efficiencies. As
a result of the flow cytometry analysis, the transfection efficiency of NGQDs (~42.5%) was
slightly lower than that of the Lipofectamine + pDNA group (~49.3%) (Figure 8 and Figure
S4). The disagreement between the flow cytometry results in Figure 8g and the fluorescence
microscopy image in Figure 7e,f is likely due to the difference in the fluorescence intensities
of the transfected cells. The cells treated with pDNA + NGQDs tend to express strong
fluorescence in flow cytometry analysis, which made the fluorescence image brighter as
shown in Figure 7e,f. Despite that mRNA and pDNA work at the different intracellular
locations, we confirmed that NGQDs are capable of delivering both genes into the cells,
and the transfected genes are functioning, successfully [54].



Nanomaterials 2021, 11, 2816 8 of 11Nanomaterials 2021, 11, x FOR PEER REVIEW 9 of 12 
 

 

 
Figure 7. Fluorescence microscopy images of HeLa cells after 24 h transfection with (a) control, (b) pDNA only, (c) Lipofec-
tamine only, (d) NGQDs only, (e) Lipofectamine + pDNA complex, and (f) NGQDs + pDNA complex. All scale bars are 
200 μm. 

 
Figure 8. Flow cytometry analysis of HeLa cells after 24 h transfection with each group; (a) control, (b) pDNA only, (c) 
Lipofectamine only, (d) NGQDs only, (e) Lipofectamine + pDNA complex, (f) NGQDs + pDNA complex groups. (g) pDNA 
transfection efficiency of each group. 

Figure 7. Fluorescence microscopy images of HeLa cells after 24 h transfection with (a) control,
(b) pDNA only, (c) Lipofectamine only, (d) NGQDs only, (e) Lipofectamine + pDNA complex, and
(f) NGQDs + pDNA complex. All scale bars are 200 µm.

Nanomaterials 2021, 11, x FOR PEER REVIEW 9 of 12 
 

 

 
Figure 7. Fluorescence microscopy images of HeLa cells after 24 h transfection with (a) control, (b) pDNA only, (c) Lipofec-
tamine only, (d) NGQDs only, (e) Lipofectamine + pDNA complex, and (f) NGQDs + pDNA complex. All scale bars are 
200 μm. 

 
Figure 8. Flow cytometry analysis of HeLa cells after 24 h transfection with each group; (a) control, (b) pDNA only, (c) 
Lipofectamine only, (d) NGQDs only, (e) Lipofectamine + pDNA complex, (f) NGQDs + pDNA complex groups. (g) pDNA 
transfection efficiency of each group. 

Figure 8. Flow cytometry analysis of HeLa cells after 24 h transfection with each group; (a) control, (b) pDNA only, (c)
Lipofectamine only, (d) NGQDs only, (e) Lipofectamine + pDNA complex, (f) NGQDs + pDNA complex groups. (g) pDNA
transfection efficiency of each group.

4. Conclusions

In conclusion, we synthesized positively charged NGQDs to deliver genes such as
mRNA and pDNA. NGQDs were synthesized using PEI and citric acid as precursors to
give positive charges. The NGQDs synthesized via microwave-assisted hydrothermal
reactions were characterized by TEM, DLS, FT-IR, XPS, and Raman spectroscopy. Overall
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characterization data exhibit that NGQDs consist of a hydrophobic graphene domain and
hydrophilic functional groups such as carboxylic acid and amine. It is confirmed that the
positively charged NGQDs interact with the model mRNA and pDNA, the representative
types of components for gene therapy, and transfect the cells, successfully. Thegene
transfection efficiency of NGQDs was measured to be comparable to Lipofectamine that is
recognized as the “gold-standard” for in vitro gene transfection agents. Even in the case of
mRNA transfection, the NGQDs exhibited a better performance than Lipofectamine. We
expect that NGQDs can be utilized in the clinical field after further studies on their toxicity
and metabolism in consideration of the previous studies on the intracellular distribution of
NGQDs [55,66].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11112816/s1, Figure S1: FT-IR spectra for NGQDs, PEI + citric acid, and PEI. Figure
S2: Emission spectra of NGQDs at excitation wavelength from 280 nm to 580 nm. Figure S3: Flow
cytometry analysis for mRNA transfection efficiency. Figure S4: Flow cytometry analysis for pDNA
transfection efficiency.
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