
nanomaterials

Article

One-Pot Synthesis of Bright Blue Luminescent N-Doped GQDs:
Optical Properties and Cell Imaging

Huaidong Wang 1, Chong Qi 1, Ailing Yang 1,*, Xiaoxu Wang 2 and Jie Xu 2

����������
�������

Citation: Wang, H.; Qi, C.; Yang, A.;

Wang, X.; Xu, J. One-Pot Synthesis of

Bright Blue Luminescent N-Doped

GQDs: Optical Properties and Cell

Imaging. Nanomaterials 2021, 11, 2798.

https://doi.org/10.3390/

nano11112798

Academic Editor: Antonio

Di Bartolomeo

Received: 25 September 2021

Accepted: 19 October 2021

Published: 22 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Physics & Optoelectronic Engineering, Ocean University of China, Qingdao 266100, China;
wanghuai-dong@stu.ouc.edu.cn (H.W.); qichong@stu.ouc.edu.cn (C.Q.)

2 College of Food Science & Engineering, Ocean University of China, Qingdao 266003, China;
wangxx0416@163.com (X.W.); xujie9@ouc.edu.cn (J.X.)

* Correspondence: ailingy@ouc.edu.cn

Abstract: High fluorescent graphene quantum dots (GQDs) are promising in bioimaging and opto-
electronics. In this paper, bright blue fluorescent N-doped GQDs were synthesized using a ultrasonic-
assisted hydrothermal method. The morphology, structure, surface chemistry, optical properties, and
stability subject to photo-bleaching, temperature, pH and preservation period for the N-GQDs were
investigated in detail using various microscopy and spectroscopy techniques. The results showed
that the N-GQDs possessed an average size of 2.65 nm, 3.57% N doping, and up to 54% quantum
yield (QY). The photoluminescence (PL) spectra of the N-GQDs are excitation dependent when
excited in the range of 300–370 nm and excitation independent in the range of 380–500 nm for the
core and surface states emission. The N-GQDs showed excellent photo-bleaching resistance and
superior photo-stability. At room temperature and in the pH range of 3–8, the fluorescence of the
N-GQDs was almost invariable. The N-GQDs can be stably preserved for at least 40 days. The
average decay lifetime of the N-GQDs was 2.653 ns, and the radiative and nonradiative decay rate
constants were calculated to be 2.04 × 108 s−1 and 1.73 × 108 s−1, respectively. The PL mechanism
was qualitatively explained. The N-GQDs was used for cell imaging, and it showed good results,
implying great potential applications for bioimaging or biomarking.

Keywords: ultrasonic-assisted hydrothermal; nitrogen doped graphene quantum dots; optical
properties; photo-stability; cell imaging

1. Introduction

Graphene (Gr) and its derivative graphene oxide (GO) have been a hot research
direction in materials science in recent years [1–7]; however, applications of Gr in the
fields of bioimaging and optoelectronics have been limited, because Gr is a zero-band-gap
semiconductor and a non-fluorescent substance. Graphene quantum dots (GQDs) are small
sheets of Gr with lateral size of less than 10 nm, with oxygen-containing groups at the edges.
As a result of the quantum confinement effect and the lateral effect, GQDs are fluorescent
matter. In addition to this, GQDs possess other outstanding advantages, such as their
being green, nontoxic, chemically inert, possessing good aqueous solubility and excellent
biocompatibility, and lending themselves to easy modification, rendering GQDs as one of
the most promising fluorescent nanomaterials, superior to conventional fluorescent organic
dyes and luminescent inorganic quantum dots, with extensive potential applications in bio-
imaging [8–10], as drug carriers [11], and in disease diagnosis [12], optical sensors [13–15],
solar cells [16–18], light emitting diodes [19], and photocatalysts [20]. Several methods have
been developed for the fabrication of GQDs. Generally, these approaches can be classified
into two types: top-down and bottom-up. Top-down methods are mainly based on cutting
the large carbon materials into nanoparticles (NPs), such as through the chemical exfoliation
of graphite NPs [21] and the hydrothermal cutting of oxidized graphene sheets [22]. Top-
down methods may produce some toxic products [23] that are difficult to completely
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remove in post-treatment procedures, thus leading to environmental pollution, causing
health hazards to humans, and also limiting their widespread use. Bottom-up approaches
use small molecules containing C, H, and O as precursors, via solid phase pyrolysis or
hydrothermal condensation, to obtain GQDs [24,25].

Nitrogen-doped GQDs (N-GQDs) may improve the fluorescent quantum yield (QY)
by adjusting the photoluminescence (PL) range. This enhances biocompatibility, and there-
fore, the properties of N-GQDs have attracted a significant amount of research interest [26].
The direct pyrolysis of small molecules in solid phase [27–29] and via the hydrothermal
route [12,30,31] has been used to prepare N-GQDs. The direct pyrolysis of small molecules
in solid phase to obtain N-GQDs is simple and quick, but small molecules are easily
over-carbonized, and large particles can readily be produced, leading to a product with a
wide size distribution and complex post-treatment procedures. The negative effects the
direct pyrolytic method described above restrict its widespread use in the preparation of
N-GQDs. The hydrothermal route seems to be the key to solving the problems inherent
in the direct pyrolysis of small molecules in solid phase [32]. The ultrasonic hydrother-
mal method has distinct advantages with respect to maintaining homogeneous reaction
conditions to prevent the N-GQDs from agglomerating, as well as providing a shorter
reaction time, milder reaction conditions, lower energy consumption, better stability, and
good reproducibility. Thus, in this paper, an ultrasonic hydrothermal method was used to
synthesize N-GQDs in one step, with citric acid (CA) as a precursor and L-glutamic (L-Glu)
for N doping and as a passivant. Compared to the two-step approach (first fabrication
of GQDs, then amino-modification), the one-step strategy is easier and saves time; more
importantly, the L-Glu functionalized GQDs have the benefit of decreasing the surface
defects of GQDs, thus enhancing the QY and stability, and improving biocompatibility.
The as-prepared N-GQDs were characterized in detail and used for cell imaging. The
results indicated that the N-GQDs possessed excellent photo-physical properties and were
effective in BV2 cell imaging. In this regard, this new strategy overcomes the limitations
of existing N-GQDs, by reducing the surface defects, increasing the QY and stability, and
improving biocompatibility.

2. Experimental Section
2.1. Materials and Characterization

L-Glu, CA and Rhodamine B reagents were all of analytical grade and were purchased
from Aladdin Reagent Co., Ltd. (Shanghai, China). Ultrapure water (18.2 MΩ·cm) was
used as a solvent. Propidium iodide (95%), Dulbecco’s modified Eagle medium (DMEM)
and fetal bovine serum (FBS) were bought from Gibco (Gaithersburg, MD, USA). Penicillin
and streptomycin sulfate were purchased from Invitrogen.

An YZUR-100 (Shanghai Yan Zheng, Shanghai, China) ultrasonic hydrothermal reac-
tor (220 V) was used to synthesize N-GQDs; the ultrasonic power could be adjusted within
250 W, and the stirring speed was 200 rad/min; the pressure in the cavity was controlled be-
tween 0.84–0.88 MPa. The ultraviolet-visible (UV-Vis) absorption spectra were determined
using a UH5300 spectrophotometer (Hitachi, Japan) at room temperature. PL spectra were
measured using a FluoraMAX-4 fluorescent spectrometer (Horiba JY, Edison, NJ, USA)
with excitation/emission slit width of 2/3 nm. The crystalline structure of N-GQD solid
powder was characterized using an X-ray diffractometer (XRD, Bruker D8 ADVANCE,
BRUKER AXS, Germany) with Cu-Kα radiation (λ = 1.5406 Å). A high-resolution trans-
mission electron microscope (HRTEM, Tecnai G2 F30 Hillsboro, OR, USA) was used to
observe the morphology and lattice of the N-GQDs prepared on an ultra-thin carbon film.
The size distribution of the N-GQDs was analyzed with Image J software. By coating the
diluted N-GQDs on freshly dissociated mica, the surface morphology and thickness of
N-GQDs were characterized using an atomic force microscope (AFM, Seiko-SPA400, Tokyo,
Japan) with ScanAsys atomic imaging optimization technology. Fourier transform infrared
(FTIR) spectroscopy was employed using a Nicolet iN10 FTIR spectrometer (Thermo Fisher
Scientific, Waltham, MA, USA) with a resolution of 4 cm−1 from 4000 to 500 cm−1. The
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test sample was prepared by grinding, mixing then pressing of 2 mg powder of N-GQDs
and 100 mg KBr powder. X-ray Photoelectron Spectroscopy (XPS) with a multifunctional
imaging electron spectrometer (Thermo ESCALAB 250XI, America, with a radiation source
Al Kα-1486.6 eV) was used to analyze the elemental compositions and chemical bonds
of the obtained N-GQDs. The fluorescence lifetime of the N-GQDs was measured us-
ing the time-correlated single photon counting (TCSPC) technique, an Edinburgh F900
time-resolved fluorescence spectrometer (FLS-980, Edinburgh, UK) with an LED excitation
source (370 nm), and an electrically cooled red sensitive R928P photon-counting photomul-
tiplier tube detector to obtain the fluorescence lifetime, with a monitor emission wavelength
of 440 nm. An incubator (Thermo Fisher Scientific, Waltham, MA, USA) was employed to
culture BV2 cells. Cell imaging was performed using a confocal laser scanning microscope
(LSM, Nikon A1R HD25, Tokyo, Japan) with three semiconductor lasers (405, 488, and
532 nm).

2.2. Preparation of N-GQDs

The ultrasonic-assisted method was used to fabricate the N-GQDs as shown in Scheme 1.
The natural organic acid CA provided the carbon source, and the natural amino acid L-Glu
supplied the amino group and part of the carbon source to achieve nitrogen doping. In the
fabrication process, the reaction temperature (180 ◦C) was higher than the boiling point
of CA (160 ◦C), but lower than that of the L-Glu (225 ◦C); therefore, CA was pyrolyzed,
dehydrated and condensed to form GQDs. GQDs possess COOH and OH at the surfaces
and edges; through the dehydration reaction, L-GLu was linked to GQDs, so the GQDs
were functionalized by L-Glu in a single step, which is of great benefit for decreasing the
surface defects on GQDs, thus enhancing the QY [33,34]. The amino groups in GQDs make
them useful in the field of biomedicine [35]. The synthesis was optimized step by step (the
experimental process is shown in the Supporting Information, see Figure S1 and Table S1).
Typically, 3.6 g CA and 1.8 g L-Glu were dispersed into 30 mL deionized water; the solution
was heated up to 180 ◦C in the ultrasonic hydrothermal reactor and kept at a constant
temperature for 3 h; then the solution was cooled down to room temperature. By filtrating
three times (filter with 0.22 µm hole) and dialysis (1000 D) for 18 h, a pure N-GQD solution
was obtained. After freeze drying, solid-phase N-GQDs were obtained and stored in a
refrigerator at 4 ◦C for later use.
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Scheme 1. Schematic diagram of the formation of N-GQDs by ultrasonic-assisted hydrother-
mal method.

3. Results and Discussion
3.1. Morphology and Structure of the N-GQDs

The morphology and structure of the N-GQDs were characterized in detail using TEM,
HRTEM, AFM and XRD. Figure 1 presents the experimental results; TEM (Figure 1A) shows
that the N-GQDs have a good dispersity, with most N-GQDs being circular nanosheets; the
statistical calculation for more than 100 N-GQDs indicated that the average diameter of the
N-GQDs was about 2.65 nm (Figure 1B); the clear and regular lattice fringes in the HRTEM
image (Figure 1C) indicate that the interplanar spacing of the N-GQDs was 0.213 nm, which
is equivalent to graphite carbon [36]; AFM images (Figure 1D,E) indicate that the heights
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of the N-GQDs were in the range of 1.5–4.5 nm, implying that the N-GQDs contained
4–12 layers of graphene [37]; the XRD pattern of the N-GQDs indicates a wide diffraction
peak at 2θ = 21.06◦, corresponding to the (002) crystal facet of graphene [38]. According to
the Bragg equation 2dSinθ = λ [39], the layer spacing was about d = 0.36 nm, which is larger
than that of graphite (0.335 nm) [40]; the main reasons for this are the nitrogen doping of
the GQDs and the oxygen-containing functional groups at the edges of the GQDs [41].
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3.2. Surface Chemistry of the N-GQDs

The surface chemical architectures of the N-GQDs were detected using FTIR (Figure 2) and
XPS (Figure 3). For comparison, the FTIR spectra of pure CA and L-Glu were also measured
(Figure 2a,b). The FTIR spectrum of CA shows O–H stretching (3490–3280 cm−1), C=O
stretching (1750 and 1710 cm−1), –CH2– scissor vibration (1430 cm−1), –CH2– oscillation
out of plane (1390 cm−1), in-plane deformation vibration of C–OH bond (1180–1290 cm−1

and 1310–1360 cm−1), twisting vibration of –CH2– (1220–1240 cm−1), C–O stretching
(1080–1140 cm−1) and C–C stretching (1050 cm−1) peaks (Figure 2a) [42,43]. The FTIR of
L-Glu (Figure 2b) exhibits O–H and N–H stretching (2780–3600 cm−1), –C–H stretching
(2650–2740 cm−1), carboxylic acid of C=O stretching (1740 and 1640 cm−1), N–H out-of-
plane bending vibration (1510 cm−1), C–N stretching (1420 cm−1), –CH2– oscillation out of
plane (1360 cm−1), twisting vibration of –CH2– (1250–1310 cm−1), in-plane deformation
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vibration of C–OH bond (1130 cm−1 and 1230 cm−1), C–O stretching (1080–1130 cm−1)
and C–C stretching (1050 cm−1) peaks [44]. By contrast, the FTIR of N-GQDs shows the
intensification of O–H and N–H stretching, C–O stretching, deformation vibration of C–OH
bond and C=O stretching, demonstrating that the oxygen content in the N-GQDs was
increased, and that the number of oxygen-containing functional groups was also increased.
Notably, the formation of C=C stretching (1650 cm−1) and the intensification of −C−H
stretching and C–C stretching peaks in N-GQDs, indicating that the formation of sp2

(graphitic) or sp3 (amorphous) carbon structures [45]. In addition, the distinct characteristic
peak at 1220 cm−1 belongs to the stretching vibration of the C–O–C bond [46], it was
presumably formed by decarboxylation of the CA as conjugating to GQDs. The presence
of the N–H bond and the C–N bond on the N-GQDs also show L-Glu conjugated to the
GQDs. Our fabrication method demonstrates that GQDs can be amino-functionalized
during the synthesis process. Comparison to the two-step approach (first fabrication
of GQDs, then amino-modification), the one-step method is easier and saves time. The
amino-functionalized GQDs benefit from their biocompatibility; the groups of hydroxyl,
carboxyl, carbonyl, and amino in the N-GQDs indicate its good hydrophilicity and stability
in solution [47].

The XPS characterization was carried out in order to further analyze the elemental
compositions and chemical bonds of the obtained N-GQDs. As illustrated in Figure 3A,
the full scan spectrum of XPS exhibits three obvious peaks at 545.0, 402.2 and 298.1 eV,
revealing the presence of O1s, N1s and C1s, respectively. Quantitative determination of the
XPS spectrum shows that the as-prepared N-GQDs consisted of 36.42% O, 3.57% N and
60.01% C, indicating the successful doping of nitrogen into the GQDs. The C to O atomic
ratio for the N-GQDs was about 1.65, which is slightly higher than that reported in [28]
(1.51), demonstrating that the N-GQDs have a low oxidation level [48]. The N to C atomic
ratio was calculated to be 0.06, which is as same as that reported in [28], but remarkably
higher than that of the N-GQDs prepared using the electrochemical method (0.04) [49,50].
The deconvolution of the high-resolution XPS spectra of C1s (Figure 3B) reveals five main
peaks, confirming the presence of C=C/C–C (284.5 eV), C–N (285.2 eV), C–OH (286.4 eV),
C=O (287.3 eV), and O–C=O (288.9 eV) bonds [51], indicating that the as-prepared N-GQDs
are rich in hydrophilic groups, such as hydroxyl, carboxyl, and carbonyl groups on the
surfaces of N-GQDs, which is consistent with the result of FTIR. The deconvolution of the
N1s spectrum (Figure 3C) shows three peaks at 399.9, 400.5, and 401.7 eV. The fitting results
coincide well with the experimental results; the three peaks are attributed to the pyridinic
N, pyrrolic N and graphitic N respectively [52], confirming again that nitrogen was partly
doped into the GQDs. The fitted peaks at 532.1, 532.8 and 533.6 eV of O1s XPS spectrum
shown in Figure 3D can be assigned to the three components C=O, C–O, and C–OH [53],
respectively, which is in agreement with the XPS spectrum of C1s.
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3.3. Optical Properties

The UV-Vis absorption spectra (Figure 4A, Abs) of the N-GQDs aqueous solution
shows an obvious absorption peak at 230 nm, which can be attributed to the π→π* elec-
tronic transition of the aromatic sp2 domains [54]; the absorption peak near 300 nm from
the n→π* transition of the heteroatom double bond in GQDs is very weak, indicating
the existence of functional groups containing lone pairs of electrons (such as carboxyl
groups, etc.) [55]; the excitation (Figure 4A, Ex) and emission (Figure 4A, Em) spectra
exhibit good mirror symmetry; the N-GQDs emitted a very bright blue fluorescence that
could be observed by naked eye (Figure 4A, inset). When the excitation wavelengths were
changed from 300 nm to 500 nm (Figure 4B), the emission peaks of N-CQDs shifted from
430 nm to 548 nm (Figure 4C,D), and the maximum intensity was obtained at the excitation
of 370 nm (Figure 4B); when the excitation was in the range of 300–370 nm, the emission
peaks were almost invariable (~447 nm), indicating that the emission spectra are excitation
independent; thus, from the emission was mainly produced by the carbon core (sp2 do-
main) of the N-GQDs (band I) [56]. Meanwhile, with excitation in the range from 380 to
500 nm, the emission peaks increased with the excitation wavelength, implying that the
emission originated from the transitions related to the surface states (hybridization of the
carbon backbone and connected chemical groups) (band II). In [55], excitation-dependent
emissions were associated with both the n−π* transition of the N/O surface groups and
the π–π* charge transfer between the carbon core and the edge of the GQDs. The full width
at half maximum (FWHM) of the strongest emission spectrum was only 87 nm. Compared
with the reported GQDs synthesized with CA [57], our N-GQDs indicate a narrow emission
range; the main reason for this is that L-Glu-functionalized GQDs decrease the surface
defects. The QY of the N-GQDs was determined to be 54% (calculation data is shown
in Table S1 of Supporting Information). This relatively high QY might be due to the low
oxygen content [58], N doping and the protection of the L-Glu as the surface passivation
agent. The high QY and narrow FWHM imply that the N-GQDs could be used for imaging
or as fluorescent sensors.
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fiber), respectively; (B) the PL spectra of N-GQDs under excited different excitation wavelengths;
(C) the peak positions and (D) the maximum intensities of the PL spectra varying with the excitation
wavelengths in (B).

The photo-stability of the N-GQDs is easily influenced by photo-bleaching, pH value,
temperature and preservation time. For practical applications, the photo-stability is very
important. Here we probed this question in detail. The results show that the N-GQDs
exhibited excellent photo-stability. Under continuous excitation (at 370 nm) for 50 min, the
fluorescence intensity remained invariable, indicating the N-GQDs have superior photo-
bleaching resistance (Figure 5A). Compared with previously reported N-GQDs [47,59], our
N-GQDs show excellent photo-bleaching resistance. For comparison, the traditional organic
dye Propidium iodide (PI) was also continuously irradiated for 50 min (Figure 5A, blue line);
after irradiation for 10 min and 50 min, the intensity of PI decreased by 19% and 25%,
respectively. The above results show that the prepared N-GQDs not only exhibit high QY,
but also excellent photo-bleaching resistance. It can be inferred that the N-GQDs should be
an excellent candidate for bioimaging.

The fluorescence intensities of the N-GQDs varying with pH value in the range of
2–9 (adjusted by HCl and NaOH) are shown in Figure 5B. Because the intensities did not
show any obvious change with pH values in the range of 3–8, it was concluded that the
as-prepared N-GQDs exhibit good stability under acid and neutral pH environments, and
thus the protonation or deprotonation of the N-GQDs is also very weak [60–62]. Compared
with the results reported in [63], the as-prepared N-GQDs can be used in a wide range of
pH environments. Thus, the N-GQDs have good prospects for the fluorescence imaging of
cells and other living organisms.
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The thermal stability of N-GQDS is also an important parameter for their application.
The emission spectra of the N-GQDs were measured in the range of 0–80 ◦C. As shown
in Figure 5C, the peak positions of the emission spectra were close to 447 nm, but the
intensities decrease with increasing temperature, indicating that the thermal stability of the
N-GQDS is not so good; the peak intensity at 40 ◦C is 80% of that at 20 ◦C.

Whether the N-GQDs can be preserved for a long time is also a significant index
for their application. As shown in Figure 5D, the emission spectra of the N-GQDs were
measured over a 60 d storage period. After storage at 4 ◦C for 8, 11, 17, 31, 40 and 60 days,
the peak intensities at 447 nm of the emission spectra were 99.66%, 96.13%, 95.68%, 91.10%,
90.20% and 88.92% of the as-prepared N-GQDs, indicating that the N-GQDs can be stably
preserved for at least 40 days.

The above results show that the ultrasonic hydrothermal approach is facile for obtain-
ing N-doped GQDs with excellent photo-physical properties and stability.

3.4. Mechanism of Photoluminescence

To further investigate the emission mechanism of the N-GQDs, the fluorescence
lifetime of the N-GQDs was measured using the time-correlated single photon counting
(TCSPC) technique. The fluorescence lifetime of the N-GQDs was detected using an
Edinburgh F900 time-resolved fluorescence spectrometer with an LED (370 nm). The
monitor emission wavelength of the N-GQDs is 447 nm. The decay curve could be well
fitted as a three-exponential function, and contains two fast decays (0.62 ns and 2.38 ns)
and one slow decay (16.65 ns), which implies that the N-GQDs have two emission centers;
the slow component lifetime is suggested to be related to the surface states in N-GQDs,
while the quick lifetimes are related to the carbon core of the graphene structure in the
N-GQDs [64]. The decay lifetimes are in good agreement with carbon-based quantum dots
grown using different methods, such as chemical exfoliation [65] and the electrochemical
method [66]. The average exciton lifetime (τav) is 2.653 ns. Additionally, the radiative (κr)
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and nonradiative decay rate constants (κnr) can be obtained on the basis of the measured
QY (ϕ) and average PL lifetime (τav) using the following equations [67]:

κr = Φ/τav· (1)

κr + κnr = 1/τav (2)

The results are κr = 2.04 × 108 s−1 and κnr = 1.73 × 108 s−1.
Since both the source (CA and L-Glu) and the solvent (DI water) exhibit extremely

weak UV absorption and emission, there should be a fluorescence emission originating
from the N-GQDs. The fluorescence emission of the L-Glu-passivated N-GQDs can be
attributed to the π electron transition of C=C in the core of N-GQD, which consists of a
graphene structure and the surface groups of the N-GQDs [68]. As demonstrated above,
our N-GQDs consist of a carbon core, as well as O-, H-, and N-containing functional groups
on the surfaces of the N-GQDs. On the basis of the FTIR and XPS results, it can be seen that
there are different kinds of functional groups (C-OH, C=O, C-O-C, C-H, C-N, and N-H)
present on the surfaces of the N-GQDs; “surface states” are formed via the hybridization of
the carbon backbone and the connected chemical groups, and the corresponding energy
levels are situated between the π and π* states of sp2 C [69]; therefore, the distributed
surface states are a reasonable explanation for the difference in chemical bonding in the
GQDs. The absorption and emission transitions of the N-GQDs and their energy levels
are shown schematically in Figure 6C. In Figure 4C, the excitation-independent emission
corresponds to excitation wavelengths of less than 370 nm; therefore, the energy difference
between π and n can be estimated on the basis of the intrinsic excitation at 285 nm (4.35 eV)
and 370 nm (3.35 eV) (Figure 6A), which is about 1.0 eV. The PL spectra from the carbon
core of the graphene structure in the GQDs does not vary with excitation wavelength [56];
therefore, band I (in Figure 4B–D) is excitation independent. The surface states have
various energy levels [70]; when a certain excitation wavelength illuminates the N-GQDs,
a surface state emission dominates the emission; as the excitation wavelength changes,
another corresponding surface state emission may become dominant. In addition to this,
the electrons excited to π* may relax into surface states, emitting via radiative combination
or not emitting via nonradiative combination. Thus, the excitation-dependent PL of the
GQDs (band II in Figure 4B–D) is mainly a result of the surface states.

3.5. Fluorescence Cell Imaging with the N-GQDs

Most GQDs can be used for biomedical imaging because of their low cytotoxicity, excel-
lent biocompatibility, high fluorescent QY, and excellent photo-bleaching resistance [71,72].
Herein, we used N-GQDs as fluorescent probes for the imaging of BV2 cells. Briefly, BV2
cells were placed on the confocal plate. The cells were cultured in Dulbecco’s modified
Eagle medium (DMEM) containing 1% penicillin–streptomycin and 10% fetal bovine serum
(FBS) in an incubator with 5% CO2 and 95% humidity at 37 ◦C. The culture solution was
changed every other day. When the cell density reached about 80% (~5 × 104 cells/mL),
200 µg/mL N-GQDS was added to the cell medium and cultured at 37 ◦C and 5% CO2
for 1 h. Finally, the BV2 cells were washed three times using PBS buffer (pH 7.4), and
the morphology of the BV2 cells was observed and imaged using confocal LSM. The cells
displayed enhanced blue (405 nm laser excitation) or green (488 nm laser excitation) fluo-
rescence around their nucleus (Figure 7), indicating that the N-GQDs were able to label the
cell membrane and the cytoplasm. Studies have shown that N-GQDs are likely to enter
the cytoplasm, which can be attributed to the smaller amount of carboxyl on the surface
of N-GQDs [68,73–76]. The abundant surface functional groups in N-GQDs (carboxyl,
carbonyl, hydroxyl, and amino) ensure that they adhere easily to the negatively charged
cell membrane [77–79], thus achieving effective uptake by cells. By comparing the bright
field with the dark field images, the number of stained cells accounted for more than 90%,
demonstrating the low cytotoxicity and good biocompatibility of the N-GQDs.
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Figure 6. The photoluminescence mechanism of the N-GQDs: (A) the excitation spectrum obtained
under the monitor emission wavelength at 447 nm and the excitation in the range of 200–430 nm;
(B) the fluorescence lifetime of the N-GQDs; and (C) the schematic energy level of the N-GQDs.
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and (F) overlay of (D,E).

4. Conclusions

The ultrasonic-assisted hydrothermal method is a facile method for obtaining bright
blue fluorescent N-doped GQDs with CA as a precursor and L-Glu for N doping. The
morphology, size, structure, surface chemistry, optical properties, and stability subject
to photo-bleaching, temperature, pH and preservation period of the N-GQDs were in-
vestigated in detail. The results showed that the N-GQDs possess sizes in the range of
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3–6 nm, with an average size of 2.65 nm, containing 36.42% O, 3.57% N and 60.01% O, and
possessing good water solubility, outstanding optical properties, excellent photo-bleaching
resistance and stability, and good biocompatibility. The PL spectra of the N-GQDs are
excitation dependent with excitation in the range of 300–370 nm and excitation independent
with excitation in the range of 380–500 nm for core and surface state emissions. The QY
reaches up to 54%. At room temperature and in the pH range of 3–8, the fluorescence of
the N-GQDs is almost invariable. The N-GQDs can be stably preserved for at least 40 days.
The average decay lifetime of the N-GQDs was measured to be 2.653 ns. The calculated
radiative and nonradiative decay rate constants were 2.04 × 108 s−1 and 1.73 × 108 s−1,
respectively. The PL mechanism was explained qualitatively. The N-GQDs were used
for BV2 cell imaging and showed good results, implying great potential applications for
bioimaging or biomarking.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11112798/s1, Figure S1: The absorption and PL spectra of N-GQDs obtained under
different conditions, Table S1: Quantum yields of N-GQDs under different reaction conditions.
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