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Abstract: Longwave infrared (LWIR) optics are essential for several technologies, such as thermal
imaging and wireless communication, but their development is hindered by their bulk and high fab-
rication costs. Metasurfaces have recently emerged as powerful platforms for LWIR integrated optics;
however, conventional metasurfaces are highly chromatic, which adversely affects their performance
in broadband applications. In this work, the chromatic dispersion properties of metasurfaces are
analyzed via ray tracing, and a general method for correcting chromatic aberrations of metasurfaces
is presented. By combining the dynamic and geometric phases, the desired group delay and phase
profiles are imparted to the metasurfaces simultaneously, resulting in good achromatic performance.
Two broadband achromatic metasurfaces based on all-germanium platforms are demonstrated in
the LWIR: a broadband achromatic metalens with a numerical aperture of 0.32, an average intensity
efficiency of 31%, and a Strehl ratio above 0.8 from 9.6 µm to 11.6 µm, and a broadband achromatic
metasurface grating with a constant deflection angle of 30◦ from 9.6 µm to 11.6 µm. Compared with
state-of-the-art chromatic-aberration-restricted LWIR metasurfaces, this work represents a substantial
advance and brings the field a step closer to practical applications.

Keywords: achromatic metalens; achromatic metasurface grating; longwave infrared; dynamic phase;
Pancharatnam–Berry phase

1. Introduction

The longwave infrared (LWIR) wavelength band from 8 µm to 12 µm is essential for a
wide range of applications, including environmental sensing, medical imaging, wireless
communication, and nighttime autonomous driving [1–3]. For example, at international
airports, LWIR thermal imaging is often used to identify fevers in travelers, to contain the
spread of deadly infectious diseases. However, conventional LWIR optics are bulky and
expensive compared with their visible and near-infrared counterparts, which hinders the
further development of LWIR integrated optics.

Metasurfaces comprising subwavelength meta-atoms can locally control the phase,
polarization, and amplitude of light, and are promising platforms for integrated optical
devices. In 2011, Yu et al. [4] first demonstrated a metasurface that deflects light anoma-
lously through an aperiodic array of V-shaped plasmonic antennas. Since then, plasmonic
metasurfaces have been widely investigated, and various plasmonic metadevices based on
the resonance phase have been demonstrated [5–7]. However, the efficiency of plasmonic
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metasurfaces is greatly limited owing to the absorption loss of metallic material. To solve
this dilemma, dielectric metasurfaces composed of high-refractive-index dielectric antennas
are used to realize optical metadevices with high efficiency [8,9]. Moreover, the dielectric
metasurface can be processed at low cost using standard nanofabrication approaches. To
date, various metasurfaces with extraordinary functionalities have been demonstrated,
such as metalenses [4,10–13], metasurface gratings [14,15], orbital angular momentum
(OAM) generators [16,17], retroreflectors [18–20], metaholograms [21–23], structured light
generators [24,25], and nonlinear optics [26], covering a wide spectrum from ultraviolet
to microwave wavelengths. Recently, metasurfaces have been employed in biosensing
applications [27]. By integrating a metasurface on the tip of an optical fiber, highly sensitive
detection of biological substances has been achieved [28]. Conventional metadevices are
highly chromatic, despite comprising weakly dispersive materials. Some pioneering stud-
ies have demonstrated achromatic metasurfaces at discrete multiwavelengths or narrow
wavebands [29,30]. However, broadband achromatic metasurfaces are more desirable ow-
ing to their compact size and powerful functionality. Chen et al. [31] reported a broadband
achromatic TiO2 metalens in the visible region; Wang et al. [32] reported a broadband achro-
matic Au metalens and Au metasurface grating in the near-infrared range; Ou et al. [33]
reported broadband achromatic focusing vortex generators based on all-silicon platforms
in the mid-infrared regime.

Studies on LWIR metasurfaces are rather scarce compared with metasurfaces at other
wavelengths [34–36]. A significant reason for this is the lack of available materials, since
most optical materials (e.g., silicon and silicate glasses) are opaque in the LWIR regime. In
addition, most achromatic metasurfaces take the form of high-refractive-index material pat-
terns at wavelength-scale heights on low-refractive-index substrates [13,37–40]. However,
depositing wavelength-thickness high-refractive-index films in the LWIR range is challeng-
ing owing to quality issues and material stress. Van der Waals materials, such as MoO3,
offer new opportunities for infrared metaphotonics [41–45]. In this study, we propose a
general method of implementing LWIR achromatic metasurfaces based on all-germanium
platforms. To demonstrate the validity of the proposed method, a broadband achromatic
metalens (BAML) and a broadband achromatic metasurface grating (BAMG) operating in
the LWIR range are presented.

The remainder of this work is organized as follows. First, we analyze the dispersion
properties of chromatic metasurfaces via ray tracing. Then, we summarize the general
conditions for correcting chromatic aberrations and introduce a method to satisfy these
conditions by manipulating the phase and group delays of birefringent meta-atoms simulta-
neously. Finally, we present a BAML with a diameter of 400 µm, a numerical aperture (NA)
of 0.32, and an average intensity efficiency as high as 31%, operating from 9.6 µm to 11.6 µm.
Further analysis of the Strehl ratio confirms the achromatic diffraction-limited focusing per-
formance of the proposed BAML. To demonstrate the versatility of the proposed method, a
BAMG with a constant deflection angle of 30◦ from 9.6 µm to 11.6 µm is also implemented.
To the best of our knowledge, this study presents the first reported transmission broadband
achromatic metasurfaces for LWIR. Moreover, owing to the low loss and high refractive
index of germanium, the efficiency of the proposed broadband achromatic metasurface is
as high as those of the monochromatic metasurfaces reported in the literature [35,46]. We
believe that the proposed work represents a substantial advance and brings the field a step
closer to practical applications.

2. Principles and Design
2.1. Chromatic Dispersion of a Metasurface
2.1.1. Chromatic Dispersion of a Metasurface Grating

A metasurface is characterized by a local phase gradient that results in a local deflec-
tion angle. A metasurface grating is a type of device whose local phase gradient is constant
across its surface. The behavior of a metasurface is governed by the generalized Snell’s
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principle, which can be derived from Fermat’s principle [4]. For a metasurface grating
under normal illumination, the generalized Snell’s principle is of the form

2π

λ
sin(θ) = kG (1)

where θ is the deflection angle, λ is the wavelength, and kG = ∂ϕ
∂x is the local grating

momentum or phase gradient. For simplicity, we assume that the phase gradient is
introduced by the Pancharatnam–Berry (PB) phase modulation only [47]; therefore, the
phase gradient is independent of the wavelength, and the angular dispersion relation of
the grating can be obtained simply, as follows:

θ = arcsin
(

λ

λ0
sin(θ0)

)
(2)

where θ0 is the deflection angle at the central wavelength λ0. As depicted in Figure 1a,
larger deflection angles are observed at longer wavelengths, and an identical phenomenon
occurs when polychromatic light passes through a prism composed of a material with
negative dispersion. Therefore, we also refer to the dispersion of the metasurface grating
as “negative chromatic dispersion”.
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Figure 1. Dispersion properties of chromatic metasurfaces and schematic of the achromatic metalens.
(a) Angular dispersion of the metasurface grating; (b) dispersion of polychromatic light incident at
the edge of the chromatic metalens; (c,d) ray tracing of light at different coordinates; (e) schematic
of the achromatic metalens in the LWIR range. In (a) through (d), the red ray represents light at
λmax, the yellow ray represents light at λ0, and the blue ray represents light at λmin. On the right is a
schematic of meta-atoms, where H is the height of the nanopillar, and p is the period of the nanopillar.
All meta-atoms have the same height and period.

2.1.2. Dispersion of a Metalens

A metalens is a type of metasurface that can focus light on a diffraction-limited spot.
The local deflection angle at each point on the metalens depends on the radial coordinate
as follows:

−r
f

= tan θ (3)



Nanomaterials 2021, 11, 2760 4 of 13

where f is the focal length, r is the radial coordinate, and θ is the local deflection an-
gle. Considering the relationship between the deflection angle and the wavelength in
Equation (2), the relationship between the focal length at coordinate r and the wavelength
can be expressed as

f =
f0

cos(θ0)

√(
λ0

λ

)2
− sin2(θ0) (4)

where f0 and θ0 are the focal length and the local deflection angle at the central wavelength,
respectively. As depicted in Figure 1b, the focal point is closer to the metalens at a longer
wavelength. Moreover, using the geometric relationship cos(θ0) = f0√

r2+ f 2
0

, sin(θ0) =

−r√
r2+ f 2

0
, Equation (4) can be rewritten as

f =

√√√√(λ2
0 − λ2

λ2

)
r2 +

λ2
0

λ2 f 2
0 (5)

As depicted in Figure 1c,d, the focal length is radially dependent at wavelengths other
than the central wavelength, indicating that the metalens is no longer free of spherical
aberrations. Specifically, when λ < λ0 a positive spherical aberration is introduced, and
when λ > λ0 a negative spherical aberration is introduced. Notably, this phenomenon is
more severe in high-NA metalenses than in low-NA metalenses (where r � f0). In addition,
for low-NA metalenses, Equation (5) can be approximately simplified as f λ = f0λ0,
indicating that the focal length is inversely proportional to the wavelength, which helps
to estimate the longitudinal chromatic aberrations of the metalenses. Briefly, chromatic
dispersion of a metalens may cause defocusing and spherical aberrations, both of which
adversely affect its performance.

Here, it is again emphasized that the dispersion law of the chromatic metasurface
obtained above is for the case where an abrupt phase is introduced only by PB phase mod-
ulation; the dispersion law for the case where an abrupt phase is introduced by resonance
is more complex and cannot be predicted directly from the ray-tracing perspective.

2.2. Achromatic Metasurface Design

Without loss of generality, we derive the principle of the BAML. According to the
discussion in Section 2.1, to realize broadband achromatic diffractive limit focusing, the
local deflection angle should not vary with wavelength. Therefore, the phase gradient
imparted to the metalens must satisfy the following equation:

∂ϕ(r, ω)

∂r
=

2π

λ

−r√
r2 + f 2

0

=
ω

c0

−r√
r2 + f 2

0

(6)

where ω is the angular frequency, and c0 is the speed of light in a vacuum. Equation (6)
shows that the phase gradient is linearly proportional to the frequency when the deflection
angle does not vary with frequency. We can integrate Equation (6) from the edge of the
metalens (r = Rmax) to an arbitrary point (r = R) on the metalens, such that the phase at
r = R is of the form

ϕ(R, ω) =
ω

c0

(√
R2

max + f 2
0 −

√
R2 + f 2

0

)
+ ϕ(Rmax, ω) (7)
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This phase profile is hyperbolic at any given frequency, and the phase dispersion is
determined by the phase dispersion of the reference point (r = Rmax). In the general case,
ϕ(Rmax, ω) can be Taylor expanded around the central frequency, as

ϕ(Rmax, ω) = ϕ(Rmax, ω0) + (ω−ω0)
∂ϕ(Rmax,ω)

∂ω

∣∣∣
ω=ω0

+ 1
2 (ω−ω0)

2 ∂2 ϕ(Rmax,ω)
∂ω2

∣∣∣
ω=ω0

+ . . .
(8)

where ω0 is the central angular frequency, and the first three terms on the right-hand side
(RHS) of Equation (8) are the phase, group delay, and group delay dispersion, respectively.
Theoretically, the phase dispersion at the reference point can be arbitrary; however, when
the third term and remaining terms on the RHS of Equation (8) are not zero, the operating
bandwidth of the BAML will be limited. Thus, to achieve broadband achromatic perfor-
mance, we retain only the first two terms on the RHS of Equation (8), meaning that the
phase of the reference point is linearly proportional to the frequency. By substituting this
result in Equation (7), we find that the phase at any point on the BAML is linear with respect
to the frequency, and that the slope of the phase with respect to the frequency and the phase
at the central frequency point are determined by the following equations, respectively:

∂ϕ(R, ω)

∂ω
=

1
c0

(√
R2

max + f 2
0 −

√
R2 + f 2

0

)
+

∂ϕ(Rmax, ω)

∂ω

∣∣∣∣
ω=ω0

(9)

ϕ(R, ω0) =
ω0

c0

(√
R2

max + f 2
0 −

√
R2 + f 2

0

)
+ ϕ(Rmax, ω0) (10)

At this point, we have summarized the two conditions for correcting the chromatic
aberrations of the BAML: the group delay (derivative of the phase with respect to frequency)
condition as shown in Equation (9), and the phase condition as shown in Equation (10).
The physical insights into these conditions are illustrated in Figure 1e, where a light pulse
is assumed to be incident from the left side of the metalens, and the group delay condition
of Equation (8) ensures that the group delay acquired by the metalens compensates for
the time delay caused by the differences in optical path length (group delay is equal to
the actual time delay experienced by the signal in most cases [48]). Therefore, plane-wave
packets incident from any radial coordinate on the metalens reach the focal point at the
same time. The phase condition of Equation (9) ensures that the plane-wave packets
incident from any radial coordinate arrive at the focal point with the same phase; thus,
they can interfere constructively.

Anisotropic nanostructures are generally utilized to modulate both the phase and
group delays, as shown in Figure 1e. Owing to the anisotropic geometry, such nanostruc-
tures can be treated as birefringent wave plates. When circularly polarized light is incident
on such anisotropic nanostructures, both dynamic and PB phases are introduced in the
cross-polarized component of the electric field (light). The dynamic phase is frequency
dependent, whereas the PB phase is frequency independent; hence, the phase and group
delays can be tuned independently.

The dependence of the outgoing light on the incoming light can be described using
the Jones calculus as follows:[

Eout
x

Eout
y

]
= R(θ) ·M · R(−θ)

[
Ein

x

Ein
y

]
(11)

where R(θ) is a rotation matrix that can be expressed as R(θ) =
[

cos θ sin θ
− sin θ cos θ

]
, θ is

the rotation angle with respect to the x axis, and M =

[
Aoeiϕo 0

0 Aeeiϕe

]
is a matrix that

accounts for the amplitudes (Ao and Ae) and phases (ϕo and ϕe) of ordinary light (polarized
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along the x axis) and extraordinary light (polarized along the y axis), respectively. The
relation between the outgoing light and incoming light can be rewritten as[

Eout
x

Eout
y

]
=

(
Aoeiϕo + Aeeiϕe

2

[
1 0
0 1

]
+

Aoeiϕo − Aeeiϕe

2

[
cos 2θ sin 2θ
sin 2θ − cos 2θ

])[ Ein
x

Ein
y

]
(12)

Here, we assume that the incident light is left-circularly polarized (LCP) and injected
from the bottom of the substrate:[

Eout
x

Eout
y

]
=

Aoeiϕo + Aeeiϕe

2
1√
2

[
1
i

]
+

Aoeiϕo − Aeeiϕe

2
ei2θ 1√

2

[
1
−i

]
(13)

Equation (13) indicates that the phase of the outgoing right-circularly polarized (RCP)
light can be divided into two parts. The first part is ϕd = arg

(
Aoeiϕo − Aeeiϕe

)
, known as

the dynamic phase, where arg denotes the argument of the complex number, ϕo =
ω
c0

noh,
and ϕe = ω

c0
neh, where h is the height of the nanostructure, and no, ne are the effective

refractive indices experienced by the ordinary and extraordinary light, respectively. The
second part is ϕg = 2θ, known as the PB phase. It is seen that the dynamic phase is
frequency dependent and the PB phase is frequency independent; thus, by combining the
dynamic and PB phases, we can manipulate both the group and phase delays. Moreover,
when ϕo − ϕe = π, the amplitude of the outgoing RCP light Arcp = abs

(
Aoeiϕo−Aeeiϕe

2

)
is maximized, and the nanostructure behaves as a half-wave plate. We define the cross-

polarization conversion ratio (PCR) as η =
4A2

rcp

A2
o+A2

e
× 100% to characterize the intensity

proportion of cross polarization in the outgoing light. Because the PB phase only acts on
the cross-polarization component, the PCR must be as large as possible so that more of the
outgoing light is converted to the cross-polarization component.

According to the discussion above, the design of the achromatic metalens can be
generally divided into four steps. First, the target phase and group delays are calculated
according to Equations (9) and (10). Second, a library of nanostructures should be built to
connect a given structural geometry to the dynamic phase that it provides. Third, a linear
fitting is conducted on the dynamic phase spectrum of each nanostructure in the library,
and the group delay is calculated. Finally, the target group delay profile is matched by
identifying the nanostructure that imparts a group delay that is as close to the target one as
possible, and the target phase profile is matched by rotating the selected nanostructure to
impart a frequency-independent PB phase.

3. Results and Discussion
3.1. Meta-Atom

Although the geometric parameters play an important role in the design of nanos-
tructures, their properties are also fundamentally determined by the constituent materi-
als. Owing to well-developed fabrication techniques and complementary metal-oxide-
semiconductor (CMOS) compatibility, silicon is usually chosen as the base material for
infrared (IR) metasurfaces [35,36,49,50]; however, silicon shows strong absorption beyond
8.5 µm [51]. In this study, we chose monocrystalline germanium as the base material.
On the one hand, germanium has a high refractive index and low absorption loss in the
LWIR range, which enables meta-atoms based on germanium to have strong light con-
finement, resulting in negligible interactions among the adjacent meta-atoms. On the
other hand, the fabrication technique for germanium is also well developed; for example,
various germanium-based platform (germanium-on-silicon and germanium-on-silicon-on-
insulator) IR waveguides have been demonstrated [51].

When light travels through a nanostructure, a portion of the light is confined inside
the nanostructure, while the rest leaks into the surrounding material. This is similar to
the situation occurring in a waveguide. Owing to this similarity, the optical properties of
nanostructures can be better understood by treating them as miniature truncated waveg-
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uides. As illustrated in Figure 2, three meta-atom archetypes were employed in our library:
one nanofin corresponds to a rectangular miniature waveguide, two nanofins correspond
to slotted miniature waveguides, and three nanofins correspond to multi-slotted miniature
waveguides. Extensive waveguide modes were supported by the meta-atoms in our library,
which allowed more precise regulation of the group delays. Considering future processing
constraints, we controlled the finest size of the nanostructures in the library to be no less
than 1 µm. All the nanostructures had identical heights of H = 10 µm, which allowed an
aspect ratio ≤ 10 : 1. The lattice constant p was equal to the spacing between the centers
of the adjacent meta-atoms, and its inverse was equal to the sampling rate of the target
phase. Therefore, for accurate and efficient implementation of the target phase profile,
the Nyquist sampling criterion should be fulfilled; that is, the sampling rate should be
larger than twice the highest spatial frequency of the phase ( 1

P ≥ 2NA/λmin for BAML and
1
P ≥ 2 sin θ/λmin for BAMG). The lattice constant should also be smaller than the shortest
wavelength across the waveband, to suppress higher-order diffractions. Considering all
the above, we set the lattice constant as p = 6.2 µm for all nanostructures. To obtain the
phase spectrum, simulations were conducted using Lumerical’s FDTD solver (ANSYS Inc.,
Canonsburg, PA, USA) [52]. Periodic conditions were applied in the transverse direction,
the perfect matched layer (PML) condition was applied in the longitudinal direction with
respect to the propagation of light, and LCP illumination was from the substrate. We then
performed a linear fitting for the phase spectra of all the meta-atoms in the library using a
homemade linear regression program and screened the meta-atoms for an R-squared value
greater than 0.95 and a mean PCR efficiency greater than 10%.
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parameters in the inset picture: L1 = 4.4 µm, W1 = 2.2 µm; (b) PCR and phase spectrum for two nanofins, geometry
parameters in the inset picture: L1 = 4.3 µm, W1 = 1.3 µm, g1 = 0.5 µm, L2 = 1.9 µm, W2 = 1.9 µm; (c) PCR and phase
spectrum for three nanofins, geometry parameters in the inset picture: L1 = 1.3 µm, W1 = 1 µm, g1 = 0.5 µm, L2 = 2.1 µm,
W2 = 1 µm, L3 = 1.1 µm, W3 = 1 µm; (d) top and side views of normalized H field intensities for the three meta-atoms.
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Figure 2a,c show the PCR and phase spectra for the three selected meta-atoms. The
phases of the three meta-atoms were linear with respect to the frequency within the operat-
ing bandwidth, and the group delays of the three meta-atoms were 0.82 ps, 1.13 ps, and
0.67 ps, respectively. Figure 2d shows the top and side views of the normalized magnetic
energy density in a periodic array for the three selected nanostructures. Owing to the
waveguide-like effect, the light was observed to mostly remain within the nanostructures.
This indicates that the group delay design for the elements was accurate even when ar-
ranged in a square lattice as a metasurface array; thus, the light coupling effects between
adjacent pairs of elements can be ignored.

3.2. Broadband Achromatic Metalens

Figure 3a shows the layout of our BAML with diameter D = 400 µm, NA = 0.32,
and operating bandwidth from 9.6 µm to 11.6 µm. The PB metalens (whose layout is as
shown in Figure S1) was composed of identical nanofins rotated according to the radial
coordinates, and the PB metalenses were designed to have the same diameter and NA as
the BAML at the central wavelength. Figure 3b presents the normalized intensity profile in
the x–z plane and indicates that the focal point of the BAML did not shift with wavelength,
whereas the focal point of the PB metalens moved toward the metalens as the wavelength
increased. Figure 3c shows the extracted focal lengths of the BAML and PB metalens. The
z coordinate corresponding to the peak intensity was considered to be the focal length for
a given wavelength. The focal length of the BAML shifted from 0.32% to 0.65% relative to
the mean focal length for the entire operating bandwidth, indicating the realization of a
broadband achromatic converging property in the LWIR. As discussed in Section 2, the
focal length of the PB metalens with low NA can be predicted by f = λ0 f0

λ , and Figure 3c
shows that the predicted and simulated focal lengths were in good agreement.

We also characterized the metalenses in terms of their focal profiles. Figure 3d,f show
the normalized intensity distributions at the focal plane (located at z = 590.5 µm) for the
BAML and PB metalens, respectively. The PB metalens showed significant defocusing at
9.6 µm; in contrast, the focal spots of the BAML were diffraction limited for all wavelengths.
Figure 3e,g show the corresponding normalized intensity distributions along the x-lines
in Figure 3d,f, respectively. The intensity distribution of an ideal Airy disk is shown in
Figure 3e,g for comparison. The intensity distribution of the achromatic metalens was very
close to that of the ideal Airy disk, which confirms the excellent focusing performance of
the BAML over the entire operating band.

Figure 4a shows that the full width at half maximum (FWHM) of the BAML ap-
proached the diffraction limit (0.257× f λ

D ) at all wavelengths. The performance of the
achromatic metalens was further quantified by calculating the Strehl ratio of the focal
spots. The calculated Strehl ratios for the entire bandwidths of the metalenses are plotted in
Figure 4b, and the definition of the Strehl ratio is the same as that in [30]. The Strehl ratios
were above 0.8 for all wavelengths, thereby satisfying the condition for diffraction-limited
focal spots. Figure 4c summarizes the intensity efficiency of the BAML. The intensity
efficiency is defined as the ratio of optical power passing through a circular aperture (with
a radius of two to three times the FWHM spanning the center of the focal spot) to the
power incident on the metalens. The maximum intensity efficiency was 34%, and the
average intensity efficiency was 31%. The efficiency of our BAML was close to that of
the LWIR monochromatic metalens in [35]. The efficiency of the metalens can be further
improved by increasing the PCR and scattering efficiency of the meta-atoms. The PCR
of the meta-atoms can be improved by stacking several layers of nanofins, to work as an
ideal achromatic wave plate [53], and the scattering efficiency of the meta-atoms can be
improved by changing the substrate material to a low-refractive-index material, such as
zinc selenide.
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and PB metalenses, with the theoretically predicted focal length calculated as f =
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λ for the PB metalens; (d,f) intensity

distributions at the focal plane for the broadband achromatic metalens and PB metalens, respectively; (e,g) horizontal cuts
(red dashed curves) across the focal spots in (d,f) compared with an ideal Airy spot (black curves).
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(c) intensity efficiency of the broadband achromatic metalens.

3.3. Broadband Achromatic Metasurface Grating

We designed and simulated a BAMG in the LWIR range to demonstrate the versatility
of the proposed approach. Figure 5a shows a schematic of the proposed BAMG. The BAMG
was composed of 10 elements with different in-plane geometry parameters, to satisfy the
group delay condition:
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Figure 5. Schematic and deflection angles of the metasurface gratings: (a,b) schematic of the broadband achromatic and
PB metasurface gratings, respectively; (c,d) far-field intensities of scattered light vs. angle of refraction for the broadband
achromatic and PB metasurface gratings, respectively, where the stars in (c,d) represent the theoretically predicted deflection
angles; (e) deflection angles of the broadband achromatic and PB metasurface gratings, where the deflection angle is defined
as the angle corresponding to the maximum scattering intensities at the different wavelengths.
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Each element is rotated by a specific angle to introduce the PB phase to satisfy the
phase condition:

ϕ(x, ω0) = −
x sin(θ0)ω0

c0
+ ϕ(0, ω0) (15)

For comparison, a PB metasurface grating (layout shown in Figure 5b) was composed
of elements with identical geometry parameters but different rotation angles to match the
phase condition. Figure 5c,d show the far-field intensities of the scattered light vs. the
angle of refraction for the BAMG and PB metasurface grating, respectively. For the PB
metasurface grating, high-intensity scattered light was concentrated at approximately 30◦

at most wavelengths. However, at 11.6 µm, the intensity of the scattered light near 0◦ was
already comparable to that of the scattered light at 30◦. This is mainly attributed to the
reduced PCR (shown in Figure 2b) of the element comprising the PB grating. Considering
the fact that the co-polarized component of the outgoing light is not deflected, whereas the
cross-polarized component is anomalously deflected to the +1st-order diffraction direction,
a higher PCR efficiency means that more scattered light is deflected to the 30◦ angle of
refraction. To meet the group delay condition, some elements with low PCR were used in
the BAMG, which resulted in the light intensity near 0◦ being inadequately suppressed,
as shown in Figure 5d. The stars in Figure 5e represent the deflection angles predicted
using Equation (2). The stars match well with the maximum simulated light intensities at
the selected wavelengths, demonstrating the validity of using Equation (2) to predict the
angular dispersion of the PB metasurface grating. Figure 5c shows the simulated deflection
angles for the BAMG and PB metasurface grating. The deflection angle of the BAMG
remained almost unchanged when the wavelength was changed from 9 µm to 11.6 µm,
indicating that good achromatic performance was achieved.

4. Conclusions

In summary, we theoretically proposed and designed two broadband achromatic
metasurfaces in the LWIR range based on an all-germanium platform, namely a BAML
with NA = 0.32 and an average intensity efficiency of 31%, and a BAMG with a constant
deflection angle of 30◦. By combining the dynamic and PB phases, the required group
delay and phase profiles were imparted to the metasurfaces simultaneously, resulting in a
good achromatic performance across the entire operating bandwidth in simulations. The
broadband achromatic metasurfaces can be efficiently fabricated on germanium wafers
by conventional nanofabrication. We believe that the achromatic metasurfaces generated
using this method will pave the way for broad applications in the LWIR, such as thermal
imaging and wireless communications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11102760/s1, Figure S1: layout of PB metalens. Figure S2: SEM of the fabricated LWIR
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