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Abstract: Hydrogen peroxide (H2O2) plays important roles in cellular signaling and in industry.
Thus, the accurate detection of H2O2 is critical for its application. Unfortunately, the direct detection
of H2O2 by surface-enhanced Raman spectroscopy (SERS) is not possible because of its low Raman
cross section. Therefore, the detection of H2O2 via the presence of an intermediary such as 3,3,5,5-
tetramethylbenzidine (TMB) has recently been developed. In this study, the peroxidase-mimicking
activity of gold–silver core–shell-assembled silica nanostructures (SiO2@Au@Ag alloy NPs) in the
presence of TMB was investigated using SERS for detecting H2O2. In the presence of H2O2, the
SiO2@Au@Ag alloy catalyzed the conversion of TMB to oxidized TMB, which was absorbed onto
the surface of the SiO2@Au@Ag alloy. The SERS characteristics of the alloy in the TMB–H2O2

mixture were investigated. The evaluation of the SERS band to determine the H2O2 level utilized the
SERS intensity of oxidized TMB bands. Moreover, the optimal conditions for H2O2 detection using
SiO2@Au@Ag alloy included incubating 20 µg/mL SiO2@Au@Ag alloy NPs with 0.8 mM TMB for
15 min and measuring the Raman signal at 400 µg/mL SiO2@Au@Ag alloy NPs.

Keywords: surface-enhanced Raman scattering; gold–silver core–shell; gold–silver core–shell-
assembled silica nanostructure; hydrogen peroxide; peroxidase-mimicking catalytic activity;
3,3,5,5-tetramethylbenzidine

1. Introduction

Since the discovery of the peroxidase-mimicking activity of iron (II, III) oxide (Fe3O4)
on 3,3,5,5-tetramethylbenzidine (TMB), the development of enzyme-free H2O2 sensors
with peroxidase-like activity has been accelerated [1]. Various nanostructured materials
such as noble metal nanostructures [2–8], transition metal oxides [9–11], metal organic
frameworks [12–16], and carbon-based nanostructures [17–20] have attracted great interest
and have been successfully used to construct enzyme-free H2O2 sensors. Unlike native
enzymes, nanomaterials possess many advantages, such as ease of preparation, favorable
catalytic activity, low cost, and high stability. In particular, the properties of nanomaterials
are retained when acting as a nanozyme [1,12,21]. However, the reactive intermediates
adsorb to the surface of the nanomaterials and inhibit the catalytic reaction, which limits
their applications [22]. In addition, the understanding of the structure/property relation of
nanomaterials in H2O2 detection is still challenging, in vivo or in vitro [5,14]. Therefore, a
sensitive and cost-effective material for detecting H2O2 must be developed. Noble metals
such as Pt, Pd, Ag, and Au usually show excellent performance for H2O2 detection [23].
However, Au nanoparticles (NPs) show catalytic inefficiency in acidic media [12,24], and
aggregation at high temperatures reduces their surface-to-volume ratio and limits their
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applications [3]. Therefore, the development of stable and high-efficiency nanomaterials as
a nanozyme must be further investigated.

Recently, our group developed SiO2@Au@Ag alloy NPs using a combination of the
seed growth method and a SiO2 template. The distance and uniformity of the Ag shell on
SiO2 NPs was controlled by the Au seed, and the optical properties of the SiO2@Au@Ag
alloy are tunable in the visible to near-infrared region [25–27]. Thus, SiO2@Au@Ag al-
loy exhibits a surface-enhanced Raman scattering (SERS) enhancement of 4.2 × 106 with
high reproducibility. The designing of an NP structure can be critical for SERS enhance-
ment [28–33]. The SERS enhancement of the SiO2@Au@Ag alloy NPs is due to the en-
hancement of the cavity plasmon resonance and the variation of the refractive index of
nanomaterials, by lead shifting the operation wavelength and enhancing the local electro-
magnetic fields of the hotspot region [29,30,33]. Because of their reliability and strength,
SiO2@Au@Ag alloy-based substrates were developed for diagnosing cancers and detecting
pesticides, thiram, and glucose [27,34–39]. However, their use in nanozymes and the
detection of H2O2 using SERS requires further investigation.

The accurate detection of H2O2 is critical and has been gaining research attention as
H2O2 plays important roles both in cellular signaling and in industry [40–42]. Various
techniques, including chromatography [43], chemiluminescence [44], fluorescence [45,46],
spectrophotometry [47], colorimetry [48], titrimetry [49], and SERS [2,50–52], have been
used to detect H2O2. Although the electrochemical method is effective for the detection
of H2O2, the lack of selectivity for interference such as that by oxidative species, because
of the similarity of their potential to that of H2O2, limits its practical application [22].
Compared with the electrochemical method, SERS exhibits remarkable advantages, such
as its indestructibility, fingerprinting, ultrasensitivity, and selectivity [53–57]. Therefore,
various NPs, such as Ag and Au nanostructures as SERS substrates, have been fabricated
for detecting H2O2 [2,50–52]. Unfortunately, the direct detection of H2O2 by SERS is not
possible because of its low Raman cross section. Therefore, the detection of H2O2 via the
presence of an intermediary such as TMB has recently been developed. More recently,
Ag NPs have been utilized to increase the SERS signals in ELISA via the spontaneous
aggregation of Ag NPs with positively charged oxidized TMB (oxTMB). This could be
related to the concentration of some biomarkers such as human C-reactive protein or
respiratory markers [58,59]. However, the underlying mechanism remains unclear.

In this study, SiO2@Au@Ag alloy NPs were used as nanozymes and a SERS substrate
to develop a method for detecting H2O2 via SERS, as outlined in Scheme 1. In the presence
of H2O2, the SiO2@Au@Ag alloy NPs catalyze the conversion of TMB to oxTMB, adsorb
onto the surface of the SiO2@Au@Ag alloy NPs, and demonstrate their SERS characteristics.
As a result, the SERS band in the presence of H2O2 was evaluated by examining the SERS
intensity of oxTMB bands on the surface of SiO2@Au@Ag alloy NPs. This result greatly
expands the applicability of this technique for the detection of other biologically active
targets based on the adsorption of TMB on SERS substrate.
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Scheme 1. Illustration of the peroxidase-mimicking nanozyme activity of gold–silver core–shell-assembled silica alloy 
suspension (SiO2@Au@Ag alloy nanoparticles) in the presence of 3,3,5,5-tetramethylbenzidine and H2O2. 

2. Materials and Methods 
2.1. Preparation of SiO2@Au@Ag Alloy NPs 

SiO2@Au@Ag alloy NPs were prepared according to the steps outlined in a previous 
study [25]. Briefly, SiO2@Au seed was obtained by incubating 10 mL of Au NP suspension 
and 2 mL of aminated silica NPs overnight. The SiO2@Au@Ag alloy NPs were prepared 
by reducing 300 µM Ag+ to Ag on the surface of SiO2@Au in an aqueous medium using 
ascorbic acid in polyvinylpyrrolidone (PVP). The pellet was obtained by centrifuging the 
suspension for 15 min at 8500 rpm, washed thoroughly with EtOH, and re-dispersed in 
absolute EtOH to obtain a 200 µg/mL SiO2@Au@Ag alloy NP suspension. 

2.2. Peroxidase-Like Activity of SiO2@Au@Ag Alloy NPs in the TMB and H2O2 Mixture in 
Various Reaction Conditions 

To verify the peroxidase-like activity of SiO2@Au@Ag alloy NPs, 10 mM TMB solu-
tions were first prepared in EtOH. Next, 100 µL of TMB solution and 100 µL of 
SiO2@Au@Ag alloy NPs were added to 100 µL of phosphate-buffered saline (PBS) buffer 
(pH 7.0) containing freshly prepared H2O2 solution. The mixture was incubated for 15 min 
at 25 °C and centrifuged at 15,000 rpm for 15 min. The excess reagents were washed thor-
oughly with PBS containing 0.1% Tween 20 (PBST), and SiO2@Au@Ag@TMB NPs were 
then re-dispersed in PBST. 

2.3. Optimal Peroxidase-Like Activity of SiO2@Au@Ag in Various Reaction Conditions 
2.3.1. TMB Concentration 

Solutions of various TMB concentration were prepared in EtOH. Next, 100 µL of TMB 
solution, 100 µL of 200 µg/mL SiO2@Au@Ag alloy NPs, and 100 µL of freshly prepared 2.0 
M H2O2 solution were added to a pH 7.0 buffer (700 µL) to obtain final concentrations of 
TMB in the range of 0.1 to 1.0 mM. Each mixture was incubated for 15 min at 25 °C and 

Scheme 1. Illustration of the peroxidase-mimicking nanozyme activity of gold–silver core–shell-assembled silica alloy
suspension (SiO2@Au@Ag alloy nanoparticles) in the presence of 3,3,5,5-tetramethylbenzidine and H2O2.

2. Materials and Methods
2.1. Preparation of SiO2@Au@Ag Alloy NPs

SiO2@Au@Ag alloy NPs were prepared according to the steps outlined in a previous
study [25]. Briefly, SiO2@Au seed was obtained by incubating 10 mL of Au NP suspension
and 2 mL of aminated silica NPs overnight. The SiO2@Au@Ag alloy NPs were prepared
by reducing 300 µM Ag+ to Ag on the surface of SiO2@Au in an aqueous medium using
ascorbic acid in polyvinylpyrrolidone (PVP). The pellet was obtained by centrifuging the
suspension for 15 min at 8500 rpm, washed thoroughly with EtOH, and re-dispersed in
absolute EtOH to obtain a 200 µg/mL SiO2@Au@Ag alloy NP suspension.

2.2. Peroxidase-like Activity of SiO2@Au@Ag Alloy NPs in the TMB and H2O2 Mixture in
Various Reaction Conditions

To verify the peroxidase-like activity of SiO2@Au@Ag alloy NPs, 10 mM TMB solutions
were first prepared in EtOH. Next, 100 µL of TMB solution and 100 µL of SiO2@Au@Ag al-
loy NPs were added to 100 µL of phosphate-buffered saline (PBS) buffer (pH 7.0) containing
freshly prepared H2O2 solution. The mixture was incubated for 15 min at 25 ◦C and cen-
trifuged at 15,000 rpm for 15 min. The excess reagents were washed thoroughly with PBS
containing 0.1% Tween 20 (PBST), and SiO2@Au@Ag@TMB NPs were then re-dispersed
in PBST.

2.3. Optimal Peroxidase-like Activity of SiO2@Au@Ag in Various Reaction Conditions
2.3.1. TMB Concentration

Solutions of various TMB concentration were prepared in EtOH. Next, 100 µL of TMB
solution, 100 µL of 200 µg/mL SiO2@Au@Ag alloy NPs, and 100 µL of freshly prepared
2.0 M H2O2 solution were added to a pH 7.0 buffer (700 µL) to obtain final concentrations
of TMB in the range of 0.1 to 1.0 mM. Each mixture was incubated for 15 min at 25 ◦C and
centrifuged at 15,000 rpm for 15 min. The SiO2@Au@Ag@TMB NPs were then re-dispersed
in PBST (100 µL) to obtain a SiO2@Au@Ag@TMB suspension.
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2.3.2. Reaction Time

The effect of reaction time on the SERS signal of SiO2@Au@Ag alloy NPs was investi-
gated in the mixture containing 8.0 mM TMB solution (100 µL), SiO2@Au@Ag alloy NPs
(0.2 mg/mL, 100 µL), and 2.0 M H2O2 solution (100 µL) in a pH 7.0 buffer (700 µL). The
mixtures were reacted for 5 to 60 min. The prepared NPs were obtained by centrifuging at
15,000 rpm for 15 min, washed thoroughly, and redispersed in PBST.

2.3.3. Amount of SiO2@Au@Ag Alloy NPs

To investigate the effect of SiO2@Au@Ag alloy NP amount on the SERS signal of
SiO2@Au@Ag, 8.0 mM TMB solution (100µL), 2.0 M H2O2 solution (100µL) and SiO2@Au@Ag
alloy NPs in the range of 10 to 50 µg were added in a pH 7.0 buffer (700 µL). The mixtures
were reacted for 15 min at 25 ◦C, centrifuged for 15 min, washed thoroughly with PBST, and
then re-dispersed in PBST (100 µL).

2.3.4. pH Buffer

A 10 mM TMB solution (100 µL), SiO2@Au@Ag alloy NPs (0.2 mg/mL, 100 µL), and
freshly prepared 2.0 M H2O2 solution (100 µL) were added to 700 mL of buffers at various
pH values ranging from 3.0 to pH 9.0. Next, the mixtures were reacted for 15 min at
25 ◦C, centrifuged for 15 min, washed thoroughly with PBST, and then re-dispersed in
PBST (100 µL).

2.3.5. Concentration of SiO2@Au@Ag Alloy NPs for Raman Measurement

A 10 mM TMB solution (100 µL), SiO2@Au@Ag alloy NPs (0.2 mg/mL, 100 µL), and
freshly prepared 2.0 M H2O2 solution (100 µL) were added to pH 6.0 buffer. Next, the
mixtures were reacted for 15 min at 25 ◦C, centrifuged for 15 min, washed thoroughly
with PBST, and then re-dispersed in of PBST. The volume of PBST was adjusted to obtain
final concentrations of SiO2@Au@Ag alloy NPs in the range of 50 to 400 µg/mL for the
Raman measurement.

2.3.6. Detection of H2O2 using SiO2@Au@Ag Alloy NPs

A quantity of 20 µg SiO2@Au@Ag alloy NPs in PBST (100 µL) and 8.0 mM TMB in
EtOH (100 µL) were added to pH 6.0 buffer (700 µL). PBS (100 µL) containing different
concentrations of H2O2 (0.1 to 120 mM) was added to the above-mentioned mixture and
allowed to react for 15 min at 25 ◦C. This mixture was centrifuged for 15 min at 15,000 rpm,
washed thoroughly with PBST, and then re-dispersed in PBST to obtain a 400 µg/mL NP
suspension for Raman measurement.

2.3.7. Long-Term Stability of SiO2@Au@Ag Alloy NPs

To investigate the long-term stability of SiO2@Au@Ag alloy NPs, they were dispersed
in EtOH at 200 µg/mL and stored at 4 ◦C for 60 days. The dispersion of SiO2@Au@Ag
alloy NPs was shaken and diluted to 20 µg/mL. UV–vis spectroscopy was performed at
wavelengths of 300 to 800 nm, and the absorbance of the SiO2@Au@Ag alloy NP suspension
at 460 nm was recorded.

2.4. SERS Measurement

The SERS signals were measured at 10 mW for 5 s at randomly selected sites using a
micro-Raman system with a 532 nm diode-pumped solid-state laser excitation source and
an optical microscope (Olympus BX41, Tokyo, Japan) with a 10× objective lens (0.90 NA,
Olympus, Tokyo, Japan). The laser beam spot was ~2.1 µm, and the SERS spectrum in the
range of 300–1800 cm−1 was obtained.

3. Results and Discussion

SiO2@Au@Ag alloy NPs were prepared using a protocol reported by Pham et al. [27,34–39].
The transmission electron microscopy (TEM, JEOL, Akishima, Tokyo) images and UV–vis
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extinction spectra (Mecasys, Seoul, Korea) of the SiO2@Au@Ag alloy NPs are shown in Figure
S1. The surface of SiO2@Au was effectively coated with the Ag shell. Various tiny Au NPs
decorated the surfaces of the SiO2 NPs. The UV–vis extinction spectra of the SiO2@Au@Ag
alloy NPs are consistent with the TEM images (Figure S1b). The as-prepared SiO2@Au@Ag
alloy NP suspension shows the characteristic spectrum in Figure S1 with a broad band from
320 to 700 nm and a maximum peak at ~460 nm. This indicates that Ag shells formed on
the SiO2@Au NP surfaces, created many hot-spot structures, and led a continuous spectrum
of resonant multi-modes of the SiO2@Au@Ag alloy NP suspension [25,27]. These results are
consistent with Mie’s theory, which states that an increase in particle size leads to a shift of the
plasmon absorption band to longer wavelengths [60].

3.1. Peroxidase-Mimicking Nanozyme Activity of SiO2@Au@Ag Alloy NPs in the
TMB–H2O2 Mixture

The peroxidase-like activity of the SiO2@Au@Ag alloy NPs was evaluated through the
oxidation of TMB. The oxidation of TMB includes two steps: First, TMB is oxidized to TMB+

(oxTMB), and then the clear TMB solution changes to blue in color. However as TMB+ is
quite unstable, it is oxidized to TMB2+ in acidic conditions and exhibits a yellow color [61].
In this study, we investigated the peroxidase-mimicking activity of SiO2@Au@Ag alloy
NPs by mixing 20 µg SiO2@Au@Ag alloy NPs (i) in 100 µL of H2O2 (ii), TMB (iii), and
TMB–H2O2 mixture (iv) as shown in Figure 1a. The reaction solutions were incubated for
15 min at 25 ◦C, and the results are shown in Figure 1a. The color of the SiO2@Au@Ag
alloy NP suspension in TMB solution (left column, (iii)) was dark brown and similar to
that of SiO2@Au@Ag (left column, (i)), whereas the SiO2@Au@Ag alloy NP suspension in
H2O2 solution (left column, ii) turned grey in color due to its oxidation by H2O2 solution.
In the presence of TMB and H2O2, the color of the SiO2@Au@Ag alloy NP suspension
was light brown (left column, iv). After centrifugation, the supernatant in TMB and H2O2
solution in the presence of SiO2@Au@Ag alloy NPs was transparent and colorless (center
column, (ii) and (iii)), indicating that peroxidase-mimicking activity did not occur in the
absence of either H2O2 or TMB. By contrast, the supernatant in the TMB–H2O2 mixture
and SiO2@Au@Ag alloy NPs (center column, (iv)) changed in color from transparent to
yellow as shown in Figure 1a(i–iv). The colors of the pellets of SiO2@Au@Ag alloy NPs
after centrifugation and redispersion in PBST are shown in the right-hand column of
Figure 1a. Once again, the color of SiO2@Au@Ag alloy NP suspension (i) was the same
as that of SiO2@Au@Ag alloy NPs with TMB solution (iii), whereas the SiO2@Au@Ag
alloy NP suspensions in H2O2 (ii) and a mixture of TMB and H2O2 (iv) became light grey
and dark grey, respectively. These results imply that SiO2@Au@Ag alloy NPs possess
peroxidase-mimicking activity in the presence of H2O2 during the conversion of TMB
to oxTMB.

The UV–vis extinction spectra of the SiO2@Au@Ag alloy NP suspension before and
after centrifugation are shown in Figure 1b. The SiO2@Au@Ag alloy NP suspension without
TMB and H2O2 showed a broad band from 320 nm to 700 nm with a maximum peak at
~460 nm. The presence of either TMB or H2O2 led the UV–vis extinction spectra of the
SiO2@Au@Ag alloy NPs to be slightly red-shifted from ~460 nm to ~500 nm (left column),
whereas the suspension of SiO2@Au@Ag alloy NPs in TMB–H2O2 mixture showed a broad
and strong peak in the range of 350 nm to 800 nm with clear and multiple peaks at 370 nm
and 650 nm [62]. This indicated that TMB was converted to oxTMB in the presence of
H2O2; this reaction was catalyzed by SiO2@Au@Ag alloy NPs, as shown in Figure S2.
Moreover, the supernatant of the SiO2@Au@Ag alloy NPs in TMB–H2O2 mixture also
confirmed the presence of oxTMB when the SiO2@Au@Ag alloy NPs were removed from
the suspension because of the excess oxTMB in the supernatant, which did not adsorb onto
the surface of SiO2@Au@Ag alloy NPs (center column). Therefore, SiO2@Au@Ag alloy NPs
possessed an intrinsic peroxidase-mimicking activity that catalyzed the conversion of TMB
to oxTMB, as expected. In addition, the zeta potential values of the SiO2@Au@Ag alloy NPs
in TMB, H2O2, and a mixture of TMB and H2O2 were also studied, as shown in Figure S3a.
SiO2@Au@Ag alloy NPs showed a zeta potential of−24.5± 0.6 mV due to the rich electron
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cloud of the Ag layer. The presence of H2O2 or TMB in the suspension of SiO2@Au@Ag
alloy NPs converted the surface charge to −14.6 ± 0.4 mV or −2.3 ± 0.6 mV, respectively.
Thus, the zeta potential of SiO2@Au@Ag alloy NPs increased from −24.5 ± 0.6 mV to
−14.6 ± 0.1 mV after adding the TMB–H2O2 mixture into the reaction mixture.
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Figure 1. (a) Optical images and (b) ultraviolet–visible (UV–vis) extinction spectra of the peroxidase-mimicking nanozyme
activity of the SiO2@Au@Ag alloy NP suspension (left column), pellet redispersion (right column), and supernatant (center
column) in (i) the absence of TMB and H2O2 and in the presence of (ii) H2O2, (iii) TMB, and (iv) a mixture of TMB and
H2O2. (c) Surface-enhanced Raman scattering (SERS) spectra of SiO2@Au@Ag alloy NPs in the TMB–H2O2 mixture in
(i) EtOH and (ii) PBST at laser excitation of 532 nm. [H2O2] = 100 mM and [TMB] = 1 mM.

In EtOH solution, the Raman spectra of the SiO2@Au@Ag alloy NP suspension in
TMB and H2O2 are shown in Figure 1c(i). In the SiO2@Au@Ag alloy NP suspension, SERS
bands were obtained at 431, 883, 1049, 1093, 1277, and 1455 cm−1, which were assigned
to the EtOH solution [27]. New SERS bands of the TMB–H2O2 mixture in the presence of
SiO2@Au@Ag alloy NPs were also observed at 510, 1191, 1341, 1463, and 1608 cm−1. The
bands of the TMB–H2O2 mixture at 1341, 1463, and 1608 cm−1 were remarkably increased
compared to those of the TMB solution. However, the overlap in some EtOH and oxTMB
bands and the high background signal of EtOH can hinder analysis and give false results.
Therefore, SiO2@Au@Ag alloy NPs must be centrifuged and re-dispersed in PBST, and the
Raman spectra must be measured in the PBST solution. Indeed, the SERS bands of EtOH
disappeared, and the SERS bands of TMB and oxTMB are clearly observed in Figure 1c(ii).
The TMB bands showed typical SERS bands at 1191, 1341, and 1608 cm−1, which correspond
to the CN stretching vibration, CH stretching vibration, and CC stretching vibration,
respectively [59,62]. The SERS bands of SiO2@Au@Ag alloy NPs in the TMB–H2O2 mixture
were observed at 1191, 1341, 1468, 1563, and 1608 cm−1. In contrast with the results of a
previous study [58,59], oxTMB in our study did not induce the aggregation of Ag NPs but
was adsorbed on the surface of SiO2@Au@Ag alloy NPs and showed the characteristic
bands of oxTMB as mentioned above. Therefore, these Raman peaks were all used for the
measurement of the SiO2@Au@Ag alloy NPs + TMB–H2O2 system.
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According to the literature [61,63], peroxidase activity was stopped by adding H2SO4
to convert oxTMB to TMB2+, which is stable under acidic conditions and possesses an
absorbance at 455 nm (Figure S2). The colors of the mixtures of SiO2@Au@Ag alloy NPs
and TMB–H2O2 after adding H2SO4 are shown in Figure 2a (left column). The suspension
changed from brown to blue-green at low H+ concentration (0.01 M H2SO4), indicating
that oxTMB can partly convert to TMB2+, giving a mix of blue (oxTMB) and yellow (TMB2+

in acidic conditions). By contrast, the colors of the mixtures of SiO2@Au@Ag alloy NPs
and TMB–H2O2 changed from brown to light yellow and yellow, respectively, when 0.1 M
and 1.0 M H2SO4 were added to the reaction suspension (Figure 2a). This indicates that
oxTMB can be completely converted to TMB2+. The results were confirmed by the color of
supernatant after centrifugation in Figure 2a (center column).
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Figure 2. (a) Optical images of SiO2@Au@Ag alloy suspension in the TMB–H2O2 mixture after adding (i) 0 M, (ii) 0.01 M,
0.1 M, and 1.0 M H2SO4. (b) UV–vis extinction spectra of (i) SiO2@Au@Ag alloy total suspension, (ii) supernatant,
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SiO2@Au@Ag alloy suspension in the mixture of TMB and H2O2 after the addition of (i) H2SO4, (ii) HCl, and (iii) HNO3.
[H2O2] = 100 mM and [TMB] = 1 mM.

The UV–vis extinction spectra of the SiO2@Au@Ag alloy NPs suspensions in TMB–H2O2
mixture + H2SO4 are consistent with the optical images in Figure 2b. At low H+ concentra-
tions, the peaks of oxTMB at 370 and 650 nm are clearly observed in Figure 2b(i,ii). These two
peaks disappeared after the addition of 0.1 M and 1.0 M H2SO4, indicating the conversion of
oxTMB to TMB2+. However, the absorbance intensity of the SiO2@Au@Ag alloy NP pellet
collected after centrifugation and redispersion in PBST dramatically decreased with the
addition of H2SO4 (Figure 2b(iii)).

Furthermore, the SERS signal of SiO2@Au@Ag alloy NP suspension in TMB–
H2O2 + H2SO4 sharply decreased with an increase in H2SO4 concentration from 0.01 M to
1.0 M (Figure 2c(i)). The decrease in the SERS signal of oxTMB following the addition of
H2SO4 was caused by the desorption of oxTMB from the surface of SiO2@Au@Ag alloy
NPs and/or low enhancement of the Ag substrate due to the formation of Ag2SO4 on the
surface of SiO2@Au@Ag alloy NPs. To examine the charge of SiO2@Au@Ag alloy NPs
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in TMB–H2O2 + H2SO4, the zeta potential of SiO2@Au@Ag alloy NPs in the TMB–H2O2
mixture before and after adding H2SO4 was measured, as shown in Figure S3b. The zeta
potential of SiO2@Au@Ag alloy NPs increased from −14.6 ± 0.1 mV to −4.4 ± 0.4 mV
after the addition of 1.0 M H2SO4 to the TMB–H2O2 mixture. This result indicates that
TMB2+ could still be immobilized on the surface of SiO2@Au@Ag alloy NPs. Therefore,
we changed the acidic agent from H2SO4 to HCl and HNO3, while retaining the H+ con-
centration at 2.0 M in the reaction. Similar to that with H2SO4, the SERS signal of oxTMB
in the SiO2@Au@Ag alloy NP suspension also decreased slightly with an increase in HCl
concentration, possibly because of the formation of AgCl on the surface of SiO2@Au@Ag
alloy NPs (Figure 2c(ii)). By contrast, the SERS signal of oxTMB in SiO2@Au@Ag alloy NP
suspension remained almost the same when 0.2 M and 2.0 M HNO3 were added. However,
the SERS signal of oxTMB slightly decreased when 0.02 M HNO3 was added to the reaction.
This was because the highly water-soluble AgNO3 was dissolved in the aqueous solution
and was not adsorbed on the surface of the SiO2@Au@Ag alloy NPs. Thus, the decrease in
the SERS signal of SiO2@Au@Ag alloy NPs in TMB–H2O2 mixture after adding H2SO4 was
caused by the formation of Ag2SO4, and it decreased the electromagnetic enhancement of
the Ag layer on the surface of the SiO2@Au@Ag alloy NPs. Therefore, we decided not to
use acidic conditions to terminate the peroxidase reaction of SiO2@Au@Ag alloy NPs.

3.2. Effect of Ag+ Concentration on the Detection of H2O2 by SiO2@Au@Ag Alloy NPs

According to our previous report, the SERS enhancement of the SiO2@Au@Ag alloy NPs
depends on the gaps between Ag NPs on the surface of SiO2@Au@Ag alloy NPs, as indicated
by adjusting the concentration of AgNO3 in the solution from 50 to 300 µM [27,38,39]. In
Figure 3a, the size of the Au@Ag increased with the concentration of Ag+ used.
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The UV–vis extinction spectra of the SiO2@Au@Ag alloy NPs shown in Figure 3b are
in agreement with the results of TEM images. The maximum UV–vis extinction peak was
red-shifted from 450 to 530 nm and broadened from 300 to 800 nm with an increase of Ag+
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because of the generation of hot-spot structures between two adjacent Au@Ag NPs on the
SiO2@Au@Ag alloy NPs [22,50,64].

The peroxidase-mimicking activities of SiO2@Au@Ag alloy NPs prepared at vari-
ous Ag+ concentrations toward the TMB–H2O2 mixture are shown in Figure 3c. The
SERS signal intensities at 1314, 1468, 1563, 1608, and 1628 cm−1 were proportional to the
AgNO3 concentration and highest at 300 µM due to the narrow gaps between Ag NPs
on the SiO2@Au@Ag alloy NP surfaces that created “hot-spots” and strongly enhanced
the electromagnetic field surrounding the SiO2@Au@Ag alloy NPs [33,65]. At higher Ag+

concentration, the SiO2@Au@Ag alloy NPs were aggregated in the TMB–H2O2 mixture.
Therefore, 300 µM AgNO3 was the optimal concentration for synthesizing SiO2@Au@Ag
alloy NPs with the highest peroxidase-mimicking activity.

3.3. Optimization of SiO2@Au@Ag Alloy NPs for Detecting H2O2

In the literature, the catalytic activity of nanozymes is also affected by reaction con-
ditions [1,66–70]. The effects of the reaction conditions, including TMB concentration,
reaction time, number of SiO2@Au@Ag alloy NPs, and pH of the buffer, on the peroxidase-
mimicking activity of SiO2@Au@Ag alloy NPs were considered in this study. As mentioned
above, the SERS bands of oxTMB at 1191, 1341, 1468, 1563, 1608, and 1628 cm−1 were
investigated in the TMB–H2O2 mixture. The effects of these conditions on the SERS signal
of the SiO2@Au@Ag alloy NPs in the TMB–H2O2 mixture were examined and optimized,
as shown in Figure 4.
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To establish the effect of TMB concentration on the SERS signal of the SiO2@Au@Ag
alloy NPs in the TMB–H2O2 mixture, the concentrations of TMB were investigated in the
range of 0 to 1.0 mM (Figure 4a). The SERS signal of SiO2@Au@Ag alloy NPs was almost
insignificant at TMB concentrations lower than 0.4 mM. It increased remarkably when the
TMB concentration was higher than 0.4 mM, achieved the highest value at 0.8 mM, but
then decreased at higher TMB concentrations because of the poor solubility of TMB in
aqueous solution (Figure 4a) [63].

The reaction time or incubation time for detecting H2O2 using SiO2@Au@Ag alloy
NPs is also shown in Figure 4b. The SERS signals of oxTMB at 1191, 1341, 1468, 1563,
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1608, and 1628 cm−1 increased with reaction time and were saturated at 20 min. A gradual
decrease in the SERS signal of SiO2@Au@Ag alloy NPs occurred after 20 min, owing to the
instability of oxTMB [61].

In addition, the effect of the amount of SiO2@Au@Ag alloy NPs was observed in the
range of 10–40 µg, as shown in Figure 4c. The SERS signal is dependent on the Raman
reporter density on the nanomaterial surface [26]. Therefore, when a large amount of
SiO2@Au@Ag alloy NPs was added, less oxTMB was available on the surface of the
SiO2@Au@Ag alloy NPs. The SERS signals at all SERS bands of SiO2@Au@Ag alloy NPs
in the TMB–H2O2 mixture decreased when 40 µg of SiO2@Au@Ag alloy NPs was used,
indicating that the density of oxTMB gradually decreased with an increase in the number
of substrates. The SERS signals at all SERS bands of SiO2@Au@Ag alloy NPs increased
with a decrease in alloy quantity, as shown in Figure 4c. However, a small amount of
SiO2@Au@Ag alloy NPs reduces the peroxidase-mimicking catalytic efficiency of the
SiO2@Au@Ag alloy NPs to convert TMB to oxTMB and lower the SERS signal of oxTMB
at 10 µg (Figure 4c). Therefore, to ensure that the SiO2@Au@Ag alloy NPs can convert
sufficient amounts of TMB to oxTMB in the presence of H2O2, we decided to use 20 µg of
SiO2@Au@Ag alloy NPs for further study.

The effect of the pH on the SERS signal of SiO2@Au@Ag alloy NPs in the TMB–
H2O2 mixture is shown in Figure S4 and Figure 4d. Similar to that of Au, the catalytic
activity of SiO2@Au@Ag alloy NPs on H2O2 was also pH-dependent. The SERS signal
of SiO2@Au@Ag alloy NPs in the TMB–H2O2 mixture showed the highest peroxidase-
mimicking activity at pH 6.0. At pH ≤ 4, the SERS signal of the TMB–H2O2 mixture was
too weak in all SERS bands. The SERS signal increased in the pH range of 5–6 and then
decreased in the pH range of 7–9. In previous reports, the catalytic reaction of TMB–H2O2
was much faster in a weakly acidic solution than in neutral or basic solutions. However,
in our study, the SiO2@Au@Ag alloy NPs lost 95% of their maximum activity at pH 3.0
and retained ~70% of their maximum activity in the pH range of 7.0–9.0. This is because
SiO2@Au@Ag alloy NPs catalyze the generation of ·OH from the decomposition of H2O2
with the dissolution of Ag to release Ag+ under strongly acidic conditions, as shown in the
following equation:

H2O2 + 2Ag + 2H+ → 2H2O + 2Ag+

The enhancement of the H2O2-reducing ability at high pH led to an increase in the
SERS signal of oxTMB. However, under basic conditions, the Ag layer on the surface of
SiO2@Au@Ag alloy NPs can be converted to Ag(OH) or Ag2O, which lowers the signal
enhancement of oxTMB on SiO2@Au@Ag alloy NPs.

For Raman measurement in the liquid phase using a capillary tube, the concentra-
tion of the SERS substrate during Raman measurement strongly affects the SERS sig-
nal [26,36,38]. Figure 4d shows the effect of the concentration of SiO2@Au@Ag alloy NPs
after incubation in the TMB–H2O2 mixture. In the absence of H2O2, the SERS signal of
the SiO2@Au@Ag alloy NP suspension decreased slightly with increasing concentration
of SiO2@Au@Ag alloy NPs for Raman measurements. Moreover, the SERS signals of
SiO2@Au@Ag alloy NPs in the TMB–H2O2 mixture increased slightly when the concentra-
tion of SiO2@Au@Ag alloy NPs decreased sharply. The SERS signal achieved the highest
value at 400 µg/mL. Thus, the optimal condition for H2O2 detection by SiO2@Au@Ag
alloy NPs in TMB–H2O2 mixture was achieved at 8 mM TMB for 15 min reaction with
20 µg SiO2@Au@Ag alloy NPs, and Raman measurement was performed at 400 µg/mL
SiO2@Au@Ag alloy NPs.

3.4. Calibration Curve for Detecting H2O2

At optimal conditions, the SERS spectra of SiO2@Au@Ag alloy NPs in the presence
of TMB were recorded at various concentrations of H2O2. Variation in the SERS signal
of SiO2@Au@Ag alloy NPs in the TMB–H2O2 mixture was obtained in concentrations of
H2O2 from 0.1 to 120 mM (Figure 5a). The SERS signals at 1191, 1341, 1468, 1563, 1608, and
1628 cm−1 gradually increased when the concentration of H2O2 was lower than 20 mM
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(Figure 5b). However, they increased remarkably in the range of 40 to 100 mM H2O2. This
implies that H2O2 efficiently converted TMB to oxTMB and that oxTMB was immobilized
on the surface of the SiO2@Au@Ag alloy NPs. The SERS peak reached saturation with an
increase in H2O2 concentration. This result indicates a complete coverage of oxTMB on
the SiO2@Au@Ag alloy NP surfaces. However, the SERS band of oxTMB showed a shift at
high H2O2 concentration due to the formation of a dimer, a trimer, or the twist of oxTMB
on the surface of the SiO2@Au@Ag alloy NPs [71]. Therefore, we concluded that the SERS
signal of SiO2@Au@Ag alloy NPs in H2O2 solution in the presence of TMB was the result
of the catalytic activity involved in the conversion of TMB to oxTMB and the adsorption of
oxTMB on the SiO2@Au@Ag alloy NP surfaces.
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Figure 5. (a) SERS signal curves and (b) SERS plot of SiO2@Au@Ag alloy NPs in TMB–H2O2 mixture at various con-
centrations of hydrogen peroxide from 0 to 120 mM under optimized conditions, which included incubation with 20 µg
SiO2@Au@Ag alloy NPs and 0.8 mM TMB for 15 min and Raman measurement at 400 µg/mL SiO2@Au@Ag alloy NPs.

The calibration of H2O2 detection was performed via linear curve fitting in the experi-
mental data points ranging from 40 to 100 mM (Figure S5). A significant linear relationship
of y = 20.04x + 802.17 was found between the SERS signals and H2O2 concentration, where x
is the H2O2 concentration and y is the SERS signal at 1468 cm−1 (R2 = 0.98). The theoretical
limit of detection was 33.3 mM, as estimated using the 3s blank criterion.

The effect of long-term storage of SiO2@Au@Ag alloy NPs is shown in Figure S6.
SiO2@Au@Ag alloy NPs (200 µg/mL) were stored at 4 ◦C for 60 days. The UV–vis spectra
of the SiO2@Au@Ag alloy NPs were measured at the desired time, and the absorbance at
450 nm was monitored. As shown in Figure S7, the SERS signal was stable for 60 days.

4. Conclusions

We developed a SERS-based H2O2 detection method using SiO2@Au@Ag alloy NPs in
the presence of TMB. In this work, we demonstrated that TMB was converted to oxTMB by
the SiO2@Au@Ag alloy NPs in the presence of H2O2 and that oxTMB was absorbed on the
surface of SiO2@Au@Ag alloy NPs. We also provide a calibration curve to evaluate H2O2
species in the range of 40 to 100 mM with a limit of detection of 33.3 mM. Moreover, the
optimal conditions for H2O2 detection using SiO2@Au@Ag alloy NPs include incubating
20 µg/mL SiO2@Au@Ag alloy NPs with 0.8 mM TMB for 15 min and measuring the Raman
signal at 400 µg/mL of SiO2@Au@Ag alloy NPs. Even though the limit of detection of our
structure is not low, it acted as both a nanozyme and a SERS substrate for the adsorption
of TMB. This result greatly expands its applicability for the detection of other biologically
active targets.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11102748/s1, Figure S1. (a) Transmission electron microscopy images and (b) ultraviolet–
visible extinction spectra of (i) SiO2@Au (1 mg/mL) and (ii) SiO2@Au@Ag alloy nanoparticles (NPs)
(20 µg/mL) synthesized using 2 mg SiO2@NH2 and 300 mM Ag+. Figure S2. Schematic illustration
of the catalytic mechanism of SiO2@Au@Ag alloy NPs in the TMB–H2O2 mixture. TMB is oxidized
to oxTMB by SiO2@Au@Ag alloy NPs that act as peroxidase in the presence of H2O2. Next, oxTMB
is converted to TMB2+ in the acidic condition. Figure S3. (a) Zeta potential of SiO2@Au@Ag alloy
NPs alone and SiO2@Au@Ag alloy NPs in the presence of H2O2, TMB, and a mixture of TMB and
H2O2. (b) Zeta potential of SiO2@Au@Ag alloy NPs in a mixture of TMB and H2O2 before and
after the addition of H2SO4. Figure S4. Surface-enhanced Raman spectroscopy (SERS) signals of
SiO2@Au@Ag alloy NPs in various pH solutions, with pH ranging from 3.0 to 9.0 in the TMB–H2O2
mixture. Figure S5. Calibration curves of SERS signal at (a) 1191, (b) 1341, (c) 1468, (d) 1563, (e) 1608,
and (f) 1628 cm−1 of SiO2@Au@Ag alloy NPs in the TMB–H2O2 mixture with the concentrations of
H2O2 ranging from 40 to 100 mM. Figure S6. Long-term storage of 200 µg/mL SiO2@Au@Ag alloy
NPs at 4 ◦C in ethanol solution.
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