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Abstract: Using first-principles calculations, we predict highly stable cubic bialkali bismuthides
Cs(Na, K)2Bi with several technologically important mechanical and anisotropic elastic properties.
We investigate the mechanical and anisotropic elastic properties under hydrostatic tension and
compression. At zero pressure, CsK2Bi is characterized by elastic anisotropy with maximum and
minimum stiffness along the directions of [111] and [100], respectively. Unlike CsK2Bi, CsNa2Bi
exhibits almost isotropic elastic behavior at zero pressure. We found that hydrostatic tension and com-
pression change the isotropic and anisotropic mechanical responses of these compounds. Moreover,
the auxetic nature of the CsK2Bi compound is tunable under pressure. This compound transforms
into a material with a positive Poisson’s ratio under hydrostatic compression, while it holds a large
negative Poisson’s ratio of about−0.45 along the [111] direction under hydrostatic tension. An auxetic
nature is not observed in CsNa2Bi, and Poisson’s ratio shows completely isotropic behavior under
hydrostatic compression. A directional elastic wave velocity analysis shows that hydrostatic pressure
effectively changes the propagation pattern of the elastic waves of both compounds and switches the
directions of propagation. Cohesive energy, phonon dispersion, and Born–Huang conditions show
that these compounds are thermodynamically, mechanically, and dynamically stable, confirming
the practical feasibility of their synthesis. The identified mechanisms for controlling the auxetic and
anisotropic elastic behavior of these compounds offer a vital feature for designing and developing
high-performance nanoscale electromechanical devices.

Keywords: mechanical properties; elastic anisotropy; negative Poisson’s ratio; auxetic material

1. Introduction

The alkali, bialkali bismuthides, and bialkali antimonides are highly quantum-efficient
semiconductors, attracting the attention of research communities for their applications
in photodetectors, photo-emissive, and sensing technologies [1,2]. Characteristics such
as photon absorption and practical work function make bialkali antimonides suitable
candidates for electron emission devices [3–5]. The topological phases of these compounds
are also studied. The cubic bialkali bismuthide of KNa2Bi can be driven into a topological
insulator or a three-dimensional (3D) Dirac semimetal under uniaxial compression or
tensile strain, respectively [6]. The cubic bialkali antimonide KNa2Sb can also be turned
into a topological insulator under hydrostatic pressure [7]. In addition, among Bi-based
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alkali metal compounds, A3Bi (A = Na, K, Rb) belongs to a particular class of topological
electronic states, 3D Dirac semimetals [8]. Experimentally, much attention has been paid
to alkali antimonides to explore the critical electrical and optical properties for techno-
logical applications [9–12]. On the theoretical side, most bialkali antimonide compounds
have been widely studied. For instance, Kalarasse et al. [13] investigated the structural,
elastic, electronic, and optical properties of cubic bialkali antimonides, Na2KSb, Na2RbSb,
Na2CsSb, K2RbSb, K2CsSb, and Rb2CsSb, using first-principle methods. Amador [14] in-
vestigated the electronic structure and optical properties of Na2KSb and NaK2Sb from the
first-principles many-body theory. Vineet Kumar et al. [15] have studied the thermoelectric
properties of the bialkali antimonide Na2KSb using the full-potential-linearized augmented
plane wave. A recent study examined the nontrivial topological properties of CsNa2Bi and
CsK2Bi compounds [16]. However, a comprehensive study of the stability and mechanical
properties of cubic bialkali bismuthide CsNa2Bi and CsK2Bi compounds under equilibrium
and hydrostatic pressure is still missing.

Most of the theoretically suggested materials are stable; however, their synthesis
was not possible in some cases. One of the main reasons for the contradictory theo-
retical predictions is that not all the stability criteria were respected in the calculations.
Generally, the essential stability criteria for a given structure can be divided into three
categories: (1) A criterion arises from the total energies that must meet the conditions
ET (compound) < ET (all elements); the difference between the two energies is called the
cohesive energy (as a necessary condition), which must be negative; (2) the mechanical
stability (as a necessary condition); a necessary condition for the thermodynamic stability of
a crystal system is that the crystals must be mechanically stable against arbitrary (but small)
homogeneous deformations [17]; (3) the dynamical stability (as a sufficient condition); this
condition is satisfied by the phonon dispersion. The presence of imaginary frequencies in
phonon dispersion leads to a violation of this criterion.

Elastic constants provide essential information concerning the strength of materi-
als and often act as stability criteria or order parameters in investigating the problem of
structural transformations [18,19]. Physical properties, such as sound velocity, hardness,
Debye temperature, and the melting point, are related to the elastic constants [20–22]. In
addition, phenomena such as a negative Poisson’s ratio (NPR), negative linear compress-
ibility (NLC), and anisotropic mechanical response are characterized by these constants.
These properties are an essential requirement for fundamental research and experimental
investigations [23,24]. The anisotropic mechanical response and NPR in auxetic materi-
als are of great interest because of the generally enhanced mechanical properties. The
materials with NPR typically possess enhanced toughness, shear resistance, and efficient
sound or vibration absorption, which enable various applications, such as personnel pro-
tection [25], automotive industries [26], biomedicine [27], aerospace and defense [28], and
many commercial applications [29,30]. The elastic anisotropy of materials is also an impor-
tant characteristic that affects other material properties, such as phase transformations [31],
indentation resistance [32], plastic deformation [33], and crack propagation [34]. Therefore,
the analysis of elastic anisotropy is an essential characterization of material properties.

The present report introduces so-far hypothetical cubic bialkali bismuthides Cs(Na,
K)2Bi and investigates all the stability criteria as well as the mechanical and anisotropic
elastic properties under hydrostatic tension and compression. First, we study the structural
properties and stability conditions of these compounds, including the formation energy
and mechanical and dynamical stability. Then, the effect of hydrostatic pressures on the
mechanical behaviors, such as the anisotropic elastic property, NPR, and elastic wave
velocities, is investigated. Furthermore, several polycrystalline modules involving the bulk
modulus, Young’s modulus, shear modulus, Pugh ratio, and brittle/ductile characteristics
will be presented.
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2. Computational Details

Our calculations are carried out in the framework of DFT by using the WIEN2k
package (v19.1, Vienna, Austria) [35]. The generalized gradient approximation (GGA)
of Perdew–Burke Ernzerhof (PBE) formalism is adopted for the exchange–correlation
potential [36]. The bulk BZ of these compounds is calculated using a 12 × 12 × 12 k-
point mesh. Furthermore, the wave function inside the muffin-tin sphere is extended in
terms of spherical harmonics up to lmax = 10 and the plane wave cut off RMT/Kmax = 9.5.
The energy convergence criterion is set to 10−5 Ry, and the charge convergence is less
than a 10−3 electronic charge in these materials. The phonon dispersion of the Cs(Na,
K)2Bi material is computed using the all-electron FHI-aims code (v200112, Volker Blum,
Berlin, Germany) [37] with the Phonopy package (v2.9.0, Kyoto, Japan) [38] within the
GGA approach. For elastic constants calculations, we used the IRELAST code [39]. In
addition, the ELATOOLS code [40] was performed for the analysis of elastic constants and
visualization of mechanical properties.

3. Results and Discussion
3.1. Structural Properties and Stability Conditions

Bialkali bismuthide Cs(Na, K)2Bi has a cubic crystal structure with space group Fm-
3m (No. 225) (similar to full Heusler compounds [41,42]), as shown in Figure 1. In these
structures, the Cs atoms are sited at the 4a (0, 0, 0) Wyckoff position, Na/K atoms are sited
at the 8c (0.25, 0.25, 0.25) and (0.25, 0.25, 0.25) Wyckoff positions, and Bi atoms are sited at
4b (0.5, 0, 0) leading to a primitive cell involving four formula units, namely two K/Na
atoms and two Bi and Cs atoms. The optimized values of the primitive lattice constants
(a0) of these compounds are 5.86 Å (CsNa2Bi) and 6.32 Å (CsK2Bi). In the following, we
will investigate all the essential stability criteria, namely, thermodynamic, mechanical, and
dynamic stability of these compounds.
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Figure 1. The crystal structures of Cs(Na, K)2Bi compounds (a) under hydrostatic tension, (b) equilibrium states, and
(c) hydrostatic compression. The Cs atoms are sited at 4a (0, 0, 0) Wyckoff position, Na/K atoms are sited at 8c (0.25, 0.25,
0.25) and (0.25, 0.25, 0.25) Wyckoff positions, and Bi atoms are sited at 4b (0.5, 0.0, 0.0) leading to a primitive cell involving
four formula units, namely two K/Na atoms and two Bi and Cs atoms.

The cohesive energy (EC) is calculated to determine the thermodynamic stability of
the structures. The EC, which is the necessary energy to separate the solids in atoms at
stable states, was calculated using the following equation [43,44],

EC =
ETot

Bulk − NCsETot
Cs − NBiETot

Bi − NNa/KETot
Na/K

NCs + NBi + NNa/K
, (1)

where ETot
Bulk is the total energy of the bulk, and ETot

Cs , ETot
Bi , and ETot

Na/K are the total energy of
each element. Furthermore, NCs, NBi, and NNa/K are the number of atoms of each element
in the unit cell.
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The calculated cohesive energies for CsNa2Bi and CsK2Bi compounds are −1.70 and
−1.62 eV/atom, respectively. According to the negative values of cohesive energy [44–46],
these structures are thermodynamically stable. In addition to the cohesive energy, the
enthalpy of formation (∆FH) (or formation energy (Ef)) of these compounds has been
calculated. The ∆FH can be defined as the difference in total energy of the compound and
the energies of its constituent elements in their stable states [47]:

∆F H = Etot
Cs(Na, K)2Bi − EBulk

Cs − 2EBulk
Na/K − EBulk

Bi , (2)

where Etot
Cs(Na, K)2Bi is the total energy per formula unit of Cs(Na, K)2Bi, and EBulk

Cs , EBulk
Na/K,

and EBulk
Bi are the total energies per atom of pure elements in their stable structures. If we

ignore the influence of pressure on the condensed phases and calculate the energies at 0 K
without any entropic contributions, the formation energy can be taken as ∆FH [47]. The
calculated enthalpy formation of CsNa2Bi and CsK2Bi compounds is −44.73 kJ/mol and
−26.28 kJ/mol, respectively. The results of the EC and ∆FH show that CsNa2Bi is more
stable than CsK2Bi. On the other hand, it was predicted (in Materials Project (MP) with
mp-1096426 ID [48]) that the compound CsNa2Bi can be decomposed into Cs3Bi (cubic
phase) and Na3Bi (hexagonal phase):

3CsNa2Bi
∆FH= −17.47 kJ/mol−−−−−−−−−−−−→ Cs3Bi + 2Na3Bi . (3)

Based on this balanced chemical equation, the sum of product enthalpy of the forma-
tions (∆FH products) and reactions (∆FH reactions) is −231.81 kJ/mol and −214.34 kJ/mol,
respectively. Therefore, the reaction enthalpy of the formation (∆FH reaction = ∆FH products
− ∆FH reactions) is −17.47 kJ/mol (exothermic reaction), indicating that this compound
can be decomposed into Cs3Bi and Na3Bi compounds. For the CsK2Bi compound, such a
balanced equation is also examined:

3CsK2Bi
∆FH= +2.05 kJ/mol−−−−−−−−−−−→ Cs3Bi + 2K3Bi . (4)

In this balanced chemical equation, the sum of ∆FH products and ∆FH reactions is
−469.45 kJ/mol and −471.50 kJ/mol, respectively. Although the difference in enthalpy energy
between products and reactants is small, it is an exothermic reaction (∆FH reaction ≈ 2 kJ/mol). It
should be noted that these results were calculated at the standard temperature and pressure
(STP) conditions. Thus, though the energies suggest that these materials could be found at
normal conditions, other stabilities may still be required to synthesize the material.

The elastic tensor was calculated to evaluate the mechanical stability by evaluating
the elastic constants, which are listed in Table 1. As listed in Table 1, the elastic constants of
CsK2Bi are in good agreement with the elastic constants in MP. In general, the Born–Huang
criterion is used to illustrate the mechanical stability of the crystal structure [49]. In the
case of cubic crystals, the Born–Huang conditions of stability is a simple form:

C11 − C12 > 0 ; C11 + 2C12 > 0 ; C44 > 0 . (5)

The mechanical stability of the CsNa2Bi and CsK2Bi compounds show that the elastic
constants of the compounds satisfy the Born–Huang criterion, i.e., they are mechanically stable.

As a determination of the last stability condition, the dynamic response of these
compounds is investigated by phonon calculation. The calculated phonon dispersions of
CsNa2Bi and CsK2Bi along the high symmetry points in the Brillouin zone are shown in
Figure 2a,b, respectively. No imaginary phonon frequency is found for these compounds.
An imaginary phonon frequency, if it existed, would indicate that the structure is dynami-
cally unstable (or has a phase transition) and vice versa [50]. Therefore, it is concluded that
Cs(Na, K)2Bi materials are thermodynamically, mechanically, and dynamically stable. This
proves that both compounds have a high degree of stability.
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Table 1. Calculated elastic constants (Cij), bulk modulus (B), shear modulus (G), Young’s modulus (E), and Kleinman
parameter (ξ) of Cs(Na, K)2Bi compounds under hydrostatic compression (V/V0 = 0.97), tension (V/V0 = 1.03), and
equilibrium state (V/V0 = 1.0). Voigt, Reuss, and Voigt–Reuss–Hill were utilized to calculate these moduli.

Properties

CsNa2Bi CsK2Bi

V/V0 = 1.03
(~0.76 GPa) V/V0 = 1.0 V/V0 = 0.97

(~1.0 GPa)
V/V0 = 1.03
(~0.72 GPa) V/V0 = 1.0 V/V0 = 0.97

(~1.0 GPa)

C11 (GPa) 19.82 29.58 38.81 8.80 14.05, 14 * 25.88

C12 (GPa) 4.73 7.24 7.71 5.83 7.85, 6 * 10.14

C44 (GPa) 10.26 12.38 15.23 9.09 10.25, 9 * 12.73

BV/BR/BVRH (GPa) 9.7/9.7/9.7 14.7/14.7/14.7 18.1/18.1/18.1 6.8/6.8/6.8 9.9/9.9/9.9 15.4/15.4/15.4

GV/GR/GVRH (GPa) 9.1/8.9/9.0 11.9/11.9/11.9 38.6/38.6/38.6 6.0/2.9/4.5 7.39/5.32/6.36 10.9/10.2/10.5

EV/ER/EVRH (GPa) 20.9/20.6/20.7 28.1/28.1/28.1 35.9/35.9/35.9 14.0/7.8/10.9 17.7/13.5/15.6 26.2/25.1/25.6

νv/νR/νVRH 0.142/0.148/0.145 0.181/0.181/0.181 0.169/0.169/0.169 0.158/0.309/0.233 0.201/0.272/0.236 0.215/0.228/0.222

B/GV/B/GR/B/GVRH 1.06/1.08/1.07 1.23/1.23/1.23 1.17/1.17/1.17 1.12/2.29/1.51 1.34/1.86/1.55 1.42/1.50/1.46

ξ 0.446 0.454 0.392 1.111 0.930 0.665

* Taken from Materials Project with mp-867339 ID.
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Brillouin zone. It can be clearly seen that the phonon dispersion exhibits no imaginary frequency (soft phonon modes),
confirming the dynamic stability of these compounds.

3.2. Basic Mechanical Properties

At the beginning of this section, we discuss the elastic constants (Cij) under hydrostatic
pressures and define their relationship with the macroscopically measurable quantities
that give us information about the elastic and mechanical properties of the system. In
the present work, the hydrostatic pressures (i.e., hydrostatic tension and compression)
are investigated according to the volume ratio V/V0, which is between small values of
V/V0 = 1 ± 0.03. The corresponding hydrostatic pressures of these volume ratios for each
of these compounds are presented in Table 1. The Young’s modulus (E), bulk modulus (B),
shear modulus (G), and Poisson’s ratio (ν) are known as the fundamental elastic properties
and are macroscopically measurable quantities that give a measure of the elasticity of the
material. Voigt–Reuss–Hill (VRH) approximation [44,51,52] was utilized to calculate the
four moduli (E, B, G, and ν). Table 1 shows the calculated elastic constants under pressures
with V/V0 = 1.03 (hydrostatic tension), V/V0 = 1.0 (equilibrium state/zero pressure), and
V/V0 = 0.97 (hydrostatic compression) volume ratios. It is well known that C11 indicates the
[100] directional linear compression resistance [53], and C44 represents the magnitude of the
[001] directional resistance on the (100) plane under the monoclinic shear stress [53,54]. This
table shows that between two compounds, the C11 values of CsNa2Bi are larger than C12
and C44 in all three pressure cases, indicating that it is difficult to compress CsNa2Bi along
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the [100] direction. However, under V/V0 = 1.03, the C44 value of CsK2Bi is larger than C12
and C11, which indicates that this material shows higher [001] directional resistance on the
(100) plane under shear deformation.

Generally, the bulk modulus (B) shows the compressibility of solids under hydrostatic
pressure [53]. So, a larger B value indicates that the material is more difficult to be com-
pressed. It can also be used as a measure of the average bond strength of atoms for given
crystals. From Table 1, the CsNa2Bi and CsK2Bi have the largest and smallest bulk moduli
(under V/V0 = 1.0 and 1.0 ± 0.03), respectively, indicating that CsNa2Bi and CsK2Bi are the
most incompressible and the most compressible, respectively. Therefore, the bond strength
of CsK2Bi should be the weakest, while that of CsNa2Bi should be the strongest. The shear
modulus (G) is an important characteristic for resisting deformation under shear stress, and
a larger G corresponds to a higher shear resistance [54]. On the other hand, G is also related
to hardness, and a large shear modulus corresponds to high hardness. The CsNa2Bi and
CsK2Bi compounds have the largest and smallest shear moduli, respectively, indicating that
CsNa2Bi and CsK2Bi have the highest hardness and they are the highest shear resistance
under shear stress, respectively. Furthermore, Young’s modulus (E) defined as the ratio of
the stress to strain, is used to measure the stiffness of the solid, and when the value of E is
large, the material is stiff. In this case, Young’s modulus of CsNa2Bi is the largest, which
indicates that it has the highest stiffness. Poisson’s ratio (ν) and Pugh’s ratio (B/G) can
be used to describe the ductility and brittleness of solids. According to Pugh’s criterion
(Poisson’s criterion), if a material shows B/G > 1.75 (ν > 0.26), it means that this solid
is ductile [51,55]. On the contrary, the solid is brittle. Table 1 shows that, at equilibrium
states, CsNa2Bi and CsK2Bi are brittle (in VRH approximation). It is noteworthy that under
hydrostatic compression (V/V0 = 0.97) and tension (V/V0 = 1.03), these compounds remain
in the brittle regime. The degree of directionality of the covalent bonds can be estimated
from the value of Poisson’s ratio. The value of Poisson’s ratio is small (ν = 0.1) for covalent
materials, while for ionic materials, a typical value of ν is 0.25. Poisson’s ratio values of
CsNa2Bi and CsK2Bi are about ν < 0.18 and ν > 0.23, respectively. Therefore, the bonds in
CsNa2Bi and CsK2Bi compounds are dominated by the covalent and ionic contributions,
respectively, and the covalent contribution increases with hydrostatic tension.

To explain the nature of chemical bonding in the different atoms, the valence electronic
charge density distribution was computed in (100) and (110) crystallographic planes at
equilibrium states of the CsNa2Bi and CsK2Bi compounds (see Figure 3). It is evident from
the valence charge density contours of Figure 3a,b that the Bi charge density overlaps Na
and Cs alkali metals in the CsNa2Bi compound, pointing to a covalent bond. In addition, it
can be seen from Figure 3c that Cs in the CsK2Bi compound, in the (001) and (110) planes,
have a spherical electron charge density distribution with no overlap with the Bi and K
atoms, pointing to an ionic bond. However, in this compound, some overlap exists between
K and Bi atoms in the (110)-plane, which points to a covalent bond (Figure 3d). Thus, the
covalent nature of the atomic bonds in the CsNa2Bi compound is more pronounced than
in the CsK2Bi compound. On the other hand, the presence of s-p hybridization between
alkali metals and bismuth could be further confirmation of the presence of a covalent bond
between these atoms, which can also be seen in the electron density map. These results are
consistent with Poisson’s ratio analysis.

Another important mechanical parameter is the Kleinman parameter (ξ), which de-
scribes the relative positions of the cation and anion sublattices under volume-conserving
strain distortions for which positions are not fixed by symmetry [56]. The internal strain
can be quantified by ξ. This parameter describes the relative ease of bond bending versus
bond stretching. In general, minimizing bond bending leads to ξ = 0, while minimizing
bond stretching leads to ξ = 1. The Kleinman parameter is defined as the elastic constants
by the following equation:

ξ =
C11 + 8C12

7C11 + 2C12
. (6)
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Due to the small values of the elastic constants of these structures, other properties 
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Figure 3. Electronic charge densities in (100) and (110) planes for (a,b) CsNa2Bi and (c,d) CsK2Bi compounds. It is evident
from the valence charge density contour of the CsNa2Bi compound that the Bi charge density overlaps with Na and Cs,
pointing to a covalent bond. In addition, the Cs-atom of CsK2Bi compound in the (001)-plane has a spherical electron charge
density distribution with overlap with Bi and K, pointing to an ionic bond.

The Kleinman parameter under V/V0 = 1.03, V/V0 = 1.0, and V/V0 = 0.97 are found
to be 0.446, 0.454, and 0.392 (1.111, 0.930, and 0.665) for CsNa2Bi (CsK2Bi), respectively.
Therefore, the value of ξ for CsNa2Bi (CsK2Bi) indicates that bond bending (bond stretching)
is dominated in this compound.

Due to the small values of the elastic constants of these structures, other properties
such as the group wave velocities (Vg) and the phase wave velocities (Vp) may be interesting.
Using the elastic constants and the density of these compounds, we can further determine
the direction dependence of these properties. We calculated the Vg and Vp from elastic
constants using the Christoffel equation [57] for both the longitudinal (L) wave velocity and
the two transverse (T) modes. The two secondary modes, namely, the fast secondary mode
(FS) and slow secondary mode (SS), correspond to the T-wave, and the single primary mode
(P) is the L-wave [57]. Comparing these properties provides a measure of how the acoustic
properties deviate from isotropy and allows for a direct comparison of the anisotropy
among different materials. Figures 4–7 show the calculated directional-dependent group
and phase velocities of Cs(Na, K)2Bi for the primary and secondary modes at different
pressures. It is observed that both compounds in the equilibrium state have approximately
similar patterns in primary modes of phase velocity (Figures 4a and 5a). This pattern
has not changed in either compound after applying hydrostatic tension (V/V0 = 1.03),
and only the maximum and minimum values of the P mode have been reduced. Under
V/V0 = 1.0 and V/V0 = 1.03, Vp has maximum (minimum) values in the P mode along
the [111] ([100], [010], and [001]) direction(s). In addition, Vp has maximum (minimum)
values in the FS and SS modes along the (110)/(011)/(101) plane ([111] direction) and
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[100]/[010]/[001] direction ([110]/[101]/[011] direction), respectively (Figure 4b,c). For the
two secondary modes (i.e., FS and SS modes) in an equilibrium state and under hydrostatic
tension, the patterns have not changed, and the minimum and maximum values are in
the [111] and [100] ([001] or [010]) directions, respectively. Although under hydrostatic
tension, the change is not observed in the propagation patterns of the Vp, under hydrostatic
compression, these patterns change significantly. For the CsNa2Bi under hydrostatic
compression (V/V0 = 0.97), the propagation patterns of P, FS, and SS modes of Vp are
reversed so that the direction of the minimum and maximum values are switched, as
shown in Figure 4. As shown in Figure 5, such behavior does not exist in the phase velocity
propagation pattern of CsK2Bi.
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Figure 4. The calculated 2D directional dependence of the phase wave velocity (Vp) in (xy)/(001)-plane for CsNa2Bi.
There are two types of acoustic wave velocities, i.e., the longitudinal wave velocity and the transverse wave velocities in
two directions. The single primary mode (a) is the longitudinal wave velocity, and the two secondary modes, namely, fast
secondary (b) and slow secondary (c), correspond to the transverse wave velocities. Although under hydrostatic tension no
changes are observed in the propagation patterns of Vp, in hydrostatic compression, these patterns change significantly.

Similar to the phase velocity, the group velocity behavior is shown in Figures 6 and 7.
However, a few points are worth mentioning. Under hydrostatic compression of CsK2Bi,
the maximum value for the P mode of Vg in the [001] (or [010] and [100]) direction is
sharpened, while in the equilibrium state (or hydrostatic tension) in the [001] direction, it
covers a large area (see Figure 6a compared to Figure 7a). Under this pressure (V/V0 = 1.03)
for the FS mode of Vg, the distribution pattern is much more complex in CsK2Bi than in
the case of the FS mode at hydrostatic tension (V/V0 = 0.97) (see Figure 6a compared to
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Figure 7b). According to these results, it can be seen that the group and phase velocities
of CsNa2Bi are sensitive to hydrostatic compression, while those of CsK2Bi are not. The
minimum and maximum values of phase and group velocities for the three propagation
modes (P, FS, and SS) decrease and increase under hydrostatic tension and hydrostatic
compression, respectively. These values are listed in Table 2.
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Figure 5. The calculated 2D directional dependence of the phase wave velocity (Vp) in (xy)/(001)-plane for CsK2Bi.
There are two types of acoustic wave velocities, i.e., the longitudinal wave velocity and the transverse wave velocities in
two directions. The single primary mode (a) is the longitudinal wave velocity and the two secondary modes, namely, fast
secondary (b) and slow secondary (c), correspond to the transverse wave velocities.

3.3. Elastic Anisotropy

For practical applications of solid materials, like mechanical properties, knowledge
about the anisotropic nature of these elastic properties is vital. As mentioned in the
previous sections, the elastic anisotropy of materials is responsible for certain essential
physical phenomena, such as crack behavior, phase transformations, anisotropic plastic
deformation, etc. The extent of anisotropy can be determined from the different values of
elastic parameters in different crystallographic directions and anisotropy indices. Therefore,
in the continuation of this section, we will focus on the anisotropic elastic properties
of Cs(Na, K)2Bi and the effect of hydrostatic pressure on them. For this purpose, the
illustrations of Young’s modulus and Poisson’s ratio in the different crystal planes and
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three-dimensional closed surfaces are computed using the ElATools code. The behavior of
anisotropy is understood from the shape of the three-dimensional (3D) plots. For isotropic
materials, the 3D diagrams of these elastic parameters are expected to be perfectly spherical
and their projections on different planes to be circular. Thus, the deviation from spherical
and circular shapes represents the anisotropic nature. In addition to this method, some
anisotropy indices are explored due to their scientific interest. The universal anisotropy
index (AU) and the Zener anisotropy factor (AZ) are the most critical anisotropy indices to
describe elastic anisotropy. The following equations (Equations (7) and (8)) were used to
calculate these anisotropic indexes, and the outcomes are listed in Table 2.

AU = 5
GV
GR

+
BV
BR
− 6 , (7)

AZ =
2C44

C11 − C12
. (8)
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Figure 6. The calculated 2D directional dependence of the group wave velocity (Vg) in (xy)/(001)-plane for the CsNa2Bi
compound. There are two types of acoustic wave velocities, i.e., the longitudinal wave velocity and the two transverse
wave velocities in two directions. The single primary mode (a) is the longitudinal wave velocity and the two secondary
modes, namely, fast secondary (b) and slow secondary (c), correspond to the transverse wave velocities. Although under
hydrostatic tension no change is observed in the propagation patterns of the Vg, in hydrostatic compression, these patterns
change significantly.
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Figure 7. The calculated 2D directional dependence of the group wave velocity (Vg) in (xy)/(001-plane for CsK2Bi. There
are two types of acoustic wave velocities, i.e., the longitudinal wave velocity and the transverse wave velocities in two
directions. The single primary mode (a) is the longitudinal wave velocity and the two secondary modes, namely, fast
secondary (b) and slow secondary (c), correspond to the transverse wave velocities.

If a solid presents AU = 0 and AZ = 1, the solid exhibits an isotropic nature; otherwise,
the solid is anisotropic. In addition, the larger values of AU and AZ indicate a higher degree
of elastic anisotropy. The orientation dependence and two-dimensional (2D) representation
in the xy-plane of Young’s modulus of Cs(Na, K)2Bi under V/V0 = 1.03, 1.0, and 0.97 are
plotted in Figure 8. As shown in Figure 8a, CsNa2Bi in the equilibrium state exhibits a
relatively isotropic nature with AU = 0.0126 and AZ = 1.11. Under hydrostatic compression
(V/V0 = 0.97), this compound is completely isotropic. This is because its planar contours
are more spherical than the equilibrium state. Anisotropy indices AU ≈ 0 and AZ = 0.98
also confirm this. Hydrostatic compression increases the anisotropy of this compound and
takes the anisotropy indices out of the isotropic criteria. The degree of anisotropy of CsK2Bi
is higher than CsNa2Bi, as shown in Figure 8b. This is due to the difference between the
minimum (Emin) and maximum (Emax) values of Young’s modulus (E) (see Table 2), and the
3D graphs (2D projections) close to the sphere (circular). It should be noted that the Emax
(Emin) is on in (110) ((100)) and [111] ([100]) directions. These results have also been proven
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by the elastic anisotropy indices AU and AZ in Table 2. Similar to CsNa2Bi, hydrostatic
compression (tension) reduces (increases) the degree of anisotropy.

Table 2. The minimum (max) and the maximum (min) values of primary mode (P), fast secondary (FS), and slow secondary
(SS) of the phase and group velocity, Young’s modulus (E), Poisson’s ratio (ν), and anisotropic indexes AU and AZ of Cs(Na,
K)2Bi under hydrostatic compression (V/V0 = 0.97), hydrostatic tension (V/V0 = 1.03), and equilibrium state (V/V0 = 1.0).

Proprieties
CsNa2Bi CsK2Bi

V/V0 = 1.03 V/V0 = 1.0 V/V0 = 0.97 V/V0 = 1.03 V/V0 = 1.0 V/V0 = 0.97

Pp
max (m/s) 2307.4 2661.1 2968.6 2213.9 2470.7 2894.1

Pp
min (m/s) 2121.3 2591.6 2952.7 1533.5 1906.5 2587.8

FSp
max (m/s) 1526.6 1676.3 1878.8 1533.5 1628.8 1815.2

FSp
min (m/s) 1386.0 1621.3 1859.9 1023.4 1194.0 1568.6

SSp
max (m/s) 1526.6 1676.3 1872.5 1509.2 1628.8 1815.2

SSp
min (m/s) 1308.7 1592.6 1859.9 619.4 895.0 1426.8

Pg
max (m/s) 2307.4 2661.1 2968.6 2213.9 2470.7 2894.1

Pg
min (m/s) 2121.3 2591.6 2952.7 1533.5 1906.5 2587.8

FSg
max (m/s) 1526.6 1676.3 1878.8 1686.4 1717.5 1818.4

FSg
min (m/s) 1401.9 1623.2 1859.9 1368.8 1401.2 1613.8

SSg
max (m/s) 1530.4 1676.3 1872.6 1949.9 1932.2 1853.8

SSg
min (m/s) 1308.7 1592.6 1859.9 619.4 895.0 1426.8

Emax (GPa) 22.80 28.99 36.26 29.95 22.87 18.87

Emin (GPa) 18.00 26.74 35.69 20.17 8.41 4.15

νmax 0.230 0.209 0.176 0.373 0.682 0.961

νmin 0.040 0.147 0.164 0.049 −0.220 −0.449

AU 0.1148 0.0126 0.0005 5.1503 1.9368 0.2837

AZ 1.36 1.11 0.98 6.12 3.30 1.61

Materials that have NPR are known as auxetic materials. These materials have at-
tracted special attention due to their exceptional advantages in sensing technologies. Pois-
son’s ratio is the ratio of the transverse contraction strain to the longitudinal extension
strain in the direction of the stretching force (see Figure 9a). Therefore, a material with
NPR expands in the transverse direction (TD) when stretched in the longitudinal direction
(LD) (see Figure 9b). Interestingly, in addition to the anisotropic nature of CsNa2Bi and
CsK2Bi, CsK2Bi exhibits an auxetic property, although this property has only been observed
in cubic elemental metals so far [58]. Using the elastic constants, we have analyzed the
spatial variation of Poisson’s ratio for each of the studied compounds. In this analysis, the
spherical coordinates of Poisson’s ratio, ν(θ; ϕ; χ), require an extra dimension in addition
to the θ(0; π) and ϕ(0; 2π) coordinates. This additional dimension can be characterized by
the angle χ(0; 2π).

The results in the equilibrium state and under hydrostatic pressure are shown in
Figure 9c,d. The blue color in these figures represents the (001) surface obtained at the
maximum of χ(0; 2π), while the red and green lines correspond to the negative and
positive values of ν obtained at the minimum of χ, respectively. As can be seen, in the
equilibrium state (V/V0 =1.0), CsNa2Bi and CsK2Bi have positive and negative Poisson’s
ratios, respectively. It is noteworthy that CsNa2Bi is not an auxetic material, and as stated,
this compound is almost isotropic. At the equilibrium state, when the TD is parallel to the
[110] direction in CsNa2Bi, the maximum (minimum) positive Poisson’s ratio is close to
0.16 (0.11). In CsK2Bi, when the TD is parallel to the [100] (or [010]) direction, a maximum
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or minimum positive Poisson’s ratio of 0.36 (see 2D projection in xy-plane in Figure 9d) can
be reached (blue and green colors), while the maximum negative Poisson’s ratio (red color)
is−0.22 when the TD is along the [111] direction (45). Hydrostatic pressures have attractive
effects on the auxetic and anisotropic nature of these compounds. At hydrostatic tension,
the anisotropy of Poisson’s ratio is illustrated in Figure 9c, where the positive maximum
(0.23) and minimum (0.04) values are observed along [110] for CsNa2Bi. Considering the
3D representation and 2D projection of Poisson’s ratio and the increase in the difference
between the minimum (νmin) and maximum (νmax) values (see Table 2), it can be concluded
that the degree of anisotropy of Poisson’s ratio increased. Since the νmin is close to zero, it
is predicted that increasing the hydrostatic tension (V/V0 > 1.03) in this compound will
lead to the appearance of a negative Poisson’s ratio. Like CsNa2Bi, for the case of CsK2Bi,
under hydrostatic tension, anisotropy of the Poisson’s ratio increases and exhibits a large
negative Poisson’s ratio with a maximum value of −0.45 in the [111] direction (Figure 9d).
In contrast to the hydrostatic tension, CsNa2Bi is almost isotropic (3D representation of ν
is relatively spherical) at hydrostatic compression, so the νmin (= 0.176) and νmax (= 0.164)
are close to each other. The isotropic Poisson’s ratio of this material shows an interesting
concept: When the transverse contraction is parallel to a particular direction, the vertical
response is the same in all directions. The effect of this pressure in CsK2Bi also causes the
transition from an auxetic material to a non-auxetic material. This is because the NPR is
almost zero (Figure 9d). It can be predicted that with increasing hydrostatic compression
(V/V0 < 0.97), this value will be completely zero.
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Figure 8. 3D representation and 2D projection (in xy-plane) of Young’s modulus of CsNa2Bi (a) and CsK2Bi (b) in equilibrium
state (V/V0 = 1.0), under hydrostatic compression (V/V0 = 0.97), and tension (V/V0 = 1.03). The behavior of anisotropy
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spherical and circular shapes indicates anisotropy.
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4. Conclusions

We investigated the stability, elastic, and anisotropic elastic properties of the so-far
hypothetical Cs(Na, K)2Bi compounds under hydrostatic compression and tension using
first-principles calculations. The stability checks meet the three critical conditions for
thermodynamic, mechanical, and dynamic stability, evidencing highly stable compounds
for practical applications. The hydrostatic compression and tension based on volumetric
change of V/V0 = 1.0 ± 0.03 were used to investigate the mechanical properties and elastic
wave velocities of these compounds. The results show that these compounds are brittle
in an equilibrium state (V/V0 = 1.0) and under the studied pressures. The compounds
are sensitive to the type of hydrostatic pressure, with interesting behaviors appearing
in their mechanical properties. In CsNa2Bi, the direction (propagation pattern) of the
elastic wave velocity is switched (changed) under hydrostatic compression (V/V0 = 0.97),
whereas under hydrostatic tension (V/V0 = 1.03), such behavior is not observed. On the
other hand, in CsK2Bi, there is no significant change in the propagation pattern of elastic
waves, and only the minimum and maximum values change. Hydrostatic compression and
tension in both compounds reduce and increase the mechanical anisotropy, respectively.
The anisotropy index and the spatial shape of Young’s modulus show that CsNa2Bi has
complete isotropic behavior under hydrostatic compression with good approximation. The
results obtained for CsK2Bi show that it has a high anisotropic nature and is an auxetic
material at equilibrium. Hydrostatic compression eliminates the NPR in this compound.
These compounds offer promising candidates for the design and development of high-
performance nanoscale electromechanical devices.
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